作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1514-1524.doi: 10.3724/SP.J.1006.2024.34154
望嘉翔1(), 郁雪婷1, 李梦桃1, 麦伟涛1, 陈新2,3,*(), 王文泉1,*()
WANG Jia-Xiang1(), YU Xue-Ting1, LI Meng-Tao1, MAI Wei-Tao1, CHEN Xin2,3,*(), WANG Wen-Quan1,*()
摘要:
IGT基因家族参与作物株型的调控, LAZY属于IGT的亚家族。以拟南芥6个LAZY成员氨基酸序列为“种子”在木薯基因组中进行比对, 在木薯中共鉴定到8个LAZY基因, 其中MeLAZY1c与调控分枝角度的AtLAZY1高度同源。基于此, 本研究以MeLAZY1c为研究对象, 利用qRT-PCR分析发现MeLAZY1c在茎中转录水平最高, GUS染色显示pMeLAZY1c在维管束中染色较深。在MeLAZY1c启动子中发现8个光响应/调节元件, 随后发现黑暗能显著抑制其表达水平。同时对MeLAZY1c进行基因编辑, 获得纯合编辑株系19个, 炼苗移栽后观测表型, 发现melazy1c突变体植株与SC8野生型相比, 其主茎呈现匍匐生长, 并且弯曲部位茎外皮细胞形态扭曲变形且大小不一致, 近地侧1 mm处细胞数目约是远地侧细胞数量的1.5倍, 表明MeLAZY1c在木薯直立/匍匐生长建成方面发挥着重要作用。
[1] |
严华兵, 叶剑秋, 李开绵. 中国木薯育种研究进展. 中国农学通报, 2015, 31(15): 63-70.
doi: 10.11924/j.issn.1000-6850.casb14110159 |
Yan H B, Ye J Q, Li K M. Research progress in cassava breeding in China. Chin Agric Sci Bull, 2015, 31(15): 63-70. (in Chinese with English abstract) | |
[2] | 蒋和平, 倪印峰, 朱福守. 中国木薯产业发展模式及对策建议. 农业展望, 2014, 10(8): 41-48. |
Jiang H P, Ni Y F, Zhu F S. Development model and countermeasures for China’s cassava industry. Agric Outlook, 2014, 10(8): 41-48. (in Chinese with English abstract) | |
[3] | 李军, 田益农, 盘欢, 罗燕春, 郑华. 木薯品种桂热4号的选育及栽培要点. 南方农业学报, 2014, 45: 1183-1187. |
Li J, Tian Y N, Pan H, Luo Y C, Zheng H. Breeding and cultivation key points of cassava variety Guire 4. J Southern Agric, 2014, 45: 1183-1187. (in Chinese with English abstract) | |
[4] |
李旭娟, 李纯佳, 徐超华, 刘洪博, 吴转娣, 林秀琴. 甘蔗MOC1基因(ScMOC1)的克隆与表达分析. 植物遗传资源学报, 2017, 18: 734-746.
doi: 10.13430/j.cnki.jpgr.2017.04.017 |
Li X J, Li C J, Xu C H, Liu H B, Wu Z D, Lin X Q. Cloning and expression analysis of sugarcane MOC1 gene (ScMOC1). J Plant Genet Resour, 2017, 18: 734-746 (in Chinese with English abstract). | |
[5] | Li X, Qian Q, Fu Z. Control of tillering in rice. Nature, 2003, 422: 618-621. |
[6] | Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386: 485-488. |
[7] |
Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007, 52: 891-898.
doi: 10.1111/j.1365-313X.2007.03284.x pmid: 17908158 |
[8] | Dardick C, Callahan A, Horn R, Ruiz K B, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved family found in diverse plants species. Plant J, 2013, 75: 618-630. |
[9] |
Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication. Nat Genet, 2008, 40: 1365-1369.
doi: 10.1038/ng.247 pmid: 18820696 |
[10] |
Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet, 2008, 40: 1360-1364.
doi: 10.1038/ng.197 pmid: 18820699 |
[11] | Yu X L, Ruan M B, Wang B, Yang Y L, Wang S C, Peng M. A homeodomain-leucine zipper I transcription factor, MeHDZ14, regulates internode elongation and leaf rolling in cassava (Manihot esculenta Crantz). Crop J, 2023, 11: 1419-1430. |
[12] | 雷宁. 木薯TCP转录因子家族的鉴定及MeTCP4的抗逆功能研究. 海南大学硕士学位论文,海南海口, 2018. |
Lei N. Identification of Cassava TCP Transcription Factor Family and Study on the Anti Stress Function of MeTCP4. MS Thesis of Hainan University, Haikou, Hainan, China, 2018. (in Chinese with English abstract) | |
[13] |
耿沙, 张建禹, 王晓彤, 任思杨, 毋志浩, 姚远, 李瑞梅, 郭建春, 刘姣, 罗丽娟. 基于CRISPR/Cas9技术创制木薯MeSTP7和MeSTP15双基因突变体. 热带作物学报, 2022, 43: 463-472.
doi: 10.3969/j.issn.1000-2561.2022.03.004 |
Geng S, Zhang J Y, Wang X D, Ren S Y, Wu Z H, Yao Y, Li R M, Guo J C, Liu J, Luo L H. Creation of cassava MeSTP7 and MeSTP15 dual gene mutants based on CRISPR/Cas9 technology. Chin J Trop Crops, 2022, 43: 463-472 (in Chinese with English abstract). | |
[14] |
徐崟海, 刘佳. IGT基因家族调控作物株型研究进展. 生物技术进展, 2022, 12: 673-682.
doi: 10.19586/j.2095-2341.2022.0103 |
Xu Y H, Liu J. Research progress in IGT gene family regulation of crop plant type. Curr Biotechnol, 2022, 12: 673-682. (in Chinese with English abstract) | |
[15] | 尚小文, 秦昊, 段玉. 茶树(Camellia sinensis)分枝相关基因家族IGT的鉴定与表达分析. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220412.1805.028.html. |
Shang X W, Qin H, Duan Y. Identification and expression analysis of the IGT family of branching related genes in Camellia sinensis. Mol Plant Breed, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220412.1805.028.html (in Chinese with English abstract). | |
[16] |
Yoshihara T, Spalding E P. LAZY genes mediate the effects of gravity on auxin gradients and plant architecture. Plant Physiol, 2017, 175: 959-969.
doi: 10.1104/pp.17.00942 pmid: 28821594 |
[17] |
Yan H, Yong F S, Xiao B Z. Identification of a gravitropism-deficient mutant in rice. Rice Sci, 2017, 24: 109-118.
doi: 10.1016/j.rsci.2016.06.009 |
[18] |
Li P, Wang Y, Qian Q. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402-410.
doi: 10.1038/cr.2007.38 pmid: 17468779 |
[19] |
Dong Z B, Jiang C, Chen X Y. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol, 2013, 163: 1306-1322.
doi: 10.1104/pp.113.227314 pmid: 24089437 |
[20] | Yu G C, David S, Zhu H C, Guan Y. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Meth Ecol Evol, 2017, 8: 28-36. |
[21] |
Wilson M C, Mutka A M. Gene expression atlas for the food security crop cassava. New Phytol, 2017, 213: 1632-1641.
doi: 10.1111/nph.14443 pmid: 28116755 |
[22] | 魏胜华, 孟娜. 改良CTAB法提取大戟属药用植物叶片总DNA试验. 湖北农业科学, 2011, 50: 3418-3420. |
Wei S H, Meng N. Improved CTAB method for extracting total DNA from leaves of euphorbia medicinal plants. Hubei Agric Sci, 2011, 50: 3418-3420. (in Chinese with English abstract) | |
[23] |
Utsumi Y, Utsumi C, Tanaka M. Agrobacterium-mediated cassava transformation for the asian elite variety KU50. Plant Mol Biol, 2021, 109: 271-282.
doi: 10.1007/s11103-021-01212-1 pmid: 34825349 |
[24] | Yoshihara T, Moritoshi I. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J, 2013, 74: 267-279. |
[25] |
Zhang H, Li X, Sang D. PROG1 acts upstream of LAZY1 to regulate rice tiller angle as a repressor. Crop J, 2023, 11: 386-393.
doi: 10.1016/j.cj.2022.11.008 |
[26] |
Xia X B, Mi X Z, Jin L, Guo R. CsLAZY1 mediates shoot gravitropism and branch angle in tea plants (Camellia sinensis). BMC Plant Biol, 2021, 21: 243.
doi: 10.1186/s12870-021-03044-z pmid: 34049485 |
[27] |
黄小龙, 孙贵连, 马丹丹. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选. 生物技术通报, 2023, 39(9): 126-135.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0001 |
Huang X L, Sun G L, Ma D D. Construction of rice seedling yeast monohybrid library and screening of LAZY1 upstream regulatory factors. Biotechnol Bull, 2023, 39(9): 126-135. (in Chinese with English abstract) | |
[28] |
Yoshihara T, Iino M. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and- independent gravity signaling pathways. Plant Cell Physiol, 2007, 48: 678-688.
doi: 10.1093/pcp/pcm042 pmid: 17412736 |
[29] | Xu D, Qi X, Li J. PzTAC and PzLAZY from a narrow-crown poplar contribute to regulation of branch angles. Plant Physiol Biochem, 2017, 118: 571-578. |
[30] | Van Overbeek J. Growth substance curvatures of avena in light and dark. J Gene Physiol, 1936, 20: 283-309. |
[31] |
Li P, Wang Y, Qian Q. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402-410.
doi: 10.1038/cr.2007.38 pmid: 17468779 |
[32] |
Li Z, Liang Y, Yuan Y D, Wang L. OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Mol Plant, 2019, 12: 1143-1156.
doi: S1674-2052(19)30200-X pmid: 31200078 |
[1] | 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148. |
[2] | 郁雪婷, 李可, 李梦桃, 鲍茹雪, 陈新, 王文泉. 木薯蛋白激酶MeSnRK2.12与转录因子MebHLH1的互作鉴定及其表达分析[J]. 作物学报, 2023, 49(9): 2594-2600. |
[3] | 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159. |
[4] | 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965. |
[5] | 雷建峰, 李月, 代培红, 赵燚, 尤扬子, 贾建国, 赵帅, 曲延英, 刘晓东. 棉花中不同植物病毒介导的VIGE体系的研究[J]. 作物学报, 2023, 49(4): 978-987. |
[6] | 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376. |
[7] | 牛志远, 秦超, 刘军, 王海泽, 李宏宇. 不同Cas9启动子对大豆CRISPR/Cas9系统效率的作用分析[J]. 作物学报, 2023, 49(12): 3227-3238. |
[8] | 陈会鲜, 梁振华, 黄珍玲, 韦婉羚, 张秀芬, 杨海霞, 李恒锐, 何文, 李天元, 兰秀, 阮丽霞, 蔡兆琴, 农君鑫. 木薯花性别分化关键时期的转录组分析及雌花分化相关候选基因的筛选[J]. 作物学报, 2023, 49(12): 3250-3260. |
[9] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[10] | 李相辰, 沈旭, 周新成, 陈新, 王海燕, 王文泉. 木薯PEPC基因家族成员鉴定及表达分析[J]. 作物学报, 2022, 48(12): 3108-3119. |
[11] | 陈向前, 姜奇彦, 孙现军, 牛风娟, 张慧媛, 胡正, 张辉. 大豆多基因编辑表达载体的构建及应用[J]. 作物学报, 2022, 48(11): 2706-2714. |
[12] | 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49. |
[13] | 黄忠明,周延彪,唐晓丹,赵新辉,周在为,符星学,王凯,史江伟,李艳锋,符辰建,杨远柱. 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建[J]. 作物学报, 2018, 44(6): 844-851. |
[14] | 张晓琼,王晓雯,田维江,张孝波,孙莹,李杨羊,谢佳,何光华,桑贤春. LAZY1通过BR途径调控水稻叶夹角的发育[J]. 作物学报, 2017, 43(12): 1767-1773. |
[15] | 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299. |
|