欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1514-1524.doi: 10.3724/SP.J.1006.2024.34154

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

MeLAZY1c基因调控木薯株型的初步研究

望嘉翔1(), 郁雪婷1, 李梦桃1, 麦伟涛1, 陈新2,3,*(), 王文泉1,*()   

  1. 1海南大学热带农林学院 / 三亚南繁研究院, 海南三亚 572000
    2中国热带农业科学院热带生物技术研究所 / 海南热带农业资源研究院海南省热带农业生物资源保护与利用重点实验室, 海南海口 571101
    3中国热带农业科学院三亚研究院, 海南三亚 572000
  • 收稿日期:2023-09-12 接受日期:2024-01-12 出版日期:2024-06-12 网络出版日期:2024-02-09
  • 通讯作者: * 陈新, E-mail: chenxin@itbb.org.cn; 王文泉, E-mail: wangwenquan@itbb.org.cn
  • 作者简介:E-mail: 763601169@qq.com
  • 基金资助:
    国家自然科学基金NSFC-CG联合基金重点项目(3181101517);国家重点研发计划项目(2018YFD1000500);海南省高校研究生创新科研课题(Qhys2022-82)

Preliminary study on the regulation of cassava plant type by MeLAZY1c gene

WANG Jia-Xiang1(), YU Xue-Ting1, LI Meng-Tao1, MAI Wei-Tao1, CHEN Xin2,3,*(), WANG Wen-Quan1,*()   

  1. 1College of Tropical Agriculture and Forestry / Sanya Nanfan Research Institute, Hainan University, Sanya 572000, Hainan, China
    2Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Conservation and Utilization of Tropical Agricultural Biological Resources, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, Hainan, China
    3Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, Hainan, China
  • Received:2023-09-12 Accepted:2024-01-12 Published:2024-06-12 Published online:2024-02-09
  • Contact: * E-mail: chenxin@itbb.org.cn;E-mail: wangwenquan@itbb.org.cn
  • Supported by:
    National Natural Science Foundation of China NSFC-CG Joint Fund Key Project(3181101517);National Key Research and Development Program of China(2018YFD1000500);Innovation Research Project for Graduate Students in Hainan Province(Qhys2022-82)

摘要:

IGT基因家族参与作物株型的调控, LAZY属于IGT的亚家族。以拟南芥6个LAZY成员氨基酸序列为“种子”在木薯基因组中进行比对, 在木薯中共鉴定到8个LAZY基因, 其中MeLAZY1c与调控分枝角度的AtLAZY1高度同源。基于此, 本研究以MeLAZY1c为研究对象, 利用qRT-PCR分析发现MeLAZY1c在茎中转录水平最高, GUS染色显示pMeLAZY1c在维管束中染色较深。在MeLAZY1c启动子中发现8个光响应/调节元件, 随后发现黑暗能显著抑制其表达水平。同时对MeLAZY1c进行基因编辑, 获得纯合编辑株系19个, 炼苗移栽后观测表型, 发现melazy1c突变体植株与SC8野生型相比, 其主茎呈现匍匐生长, 并且弯曲部位茎外皮细胞形态扭曲变形且大小不一致, 近地侧1 mm处细胞数目约是远地侧细胞数量的1.5倍, 表明MeLAZY1c在木薯直立/匍匐生长建成方面发挥着重要作用。

关键词: 木薯, 株型调控, LAZY, 光响应, 匍匐, 基因编辑

Abstract:

The IGT gene family is involved in the regulation of crop plant type, and LAZY belongs to the IGT subfamily. By comparing the amino acid sequences of six Arabidopsis LAZY members as ‘seeds’ in the cassava genome, a total of 8 LAZY genes were identified in cassava, among which MeLAZY1c is highly homologous to AtLAZY1, which regulates branching angles. Based on this, MeLAZY1c had the highest transcription level in the stem by qRT-PCR and pMeLAZY1c was deeply stained in the vascular bundle by GUS staining, using MeLAZY1c as the experimental materials in this study. Eight photoresponsive/regulatory elements were found in the MeLAZY1c promoter, and we subsequently found that darkness significantly inhibited the relative expression level of MeLAZY1c. At the same time, gene editing of MeLAZY1c was performed and 19 homozygous edited lineages. The phenotype of MeLAZY1c mutants was observed after seedling transplantation, compared to the SC8 wild-type, the main stems of MeLAZY1c mutants had crawing growth, and the stem skin cells at the curved part were distorted and deformed with different sizes. The number of cells at 1 mm near the ground was about 1.5 times that of cells at the far ground. In conclusion, these results indicates that MeLAZY1c plays an important role in the establishment of upright/creeping growth of cassava.

Key words: cassava, plant type regulation, LAZY, light response, crawling, gene editing

表1

试验所用引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Purpose
MeLAZY1c-cas9-F GATTATAGCAGAAGAGAATTCTGG 基因编辑
CRISPR-Cas9
MeLAZY1c-cas9-R AAACCCAGAATTCTCTTCTGCTAT
Tubulin-F GTGGAGGAACTGGTTCTGGA 实时荧光定量PCR
RT-qPCR
Tubulin-R TGCACTCATCTGCATTCTCC
MeLAZY1c-QPCR-F ATGCTGAAGAAAAAAATGTCCCA 实时荧光定量PCR
RT-qPCR
MeLAZY1c-QPCR-R TTCTTTTGGGGTTTATCTGCCTT
MeLAZY1c Hi-TOM-F ATAGAACATCCCTTGGCGAGC Hi-TOM 测序
Hi-TOM sequencing
MeLAZY1c Hi-TOM-R GCAGCAGAGCTCCTAGAAGAA
MeLAZY1c-Psl1p-F ACGCGTCGACATGAAGTTACTAGGTTGGATGC 亚细胞定位
Subcellular localization
MeLAZY1c-Psl1p-R CGGGATCCCAGCTCCAACACAAGGTAGT
MeLAZY1c-GUS-F AATTCGAGCTCGGTACCCGGGGATCCCCACAAGGAACATCAACTCAA GUS 载体连接
GUS carrier connection
MeLAZY1c-GUS-R CTCCTTTACTAGTCAGATCTACCATGGTTGACCAATAGCCTGTGTGATA

图1

LAZY家族进化树和MeLAZY表达水平 A: LAZY家族进化树; B: MeLAZY表达水平热图。"

图2

MeLAZY1c在不同品种组织的转录水平 不同小写字母代表显著性差异(P < 0.05)。"

图3

pMeLAZY1c转基因拟南芥不同组织的GUS染色 A, E: 子叶、腋芽和叶柄; B, F: 叶柄和下胚轴; C, G: 下胚轴; D, H: 根和根尖。A~D标尺为100 μm; E~F标尺为200 μm; G~H标尺为100 μm。"

图4

MeLAZY1c启动子顺式作用元件分析和不同时期光处理表达量检测 A: MeLAZY1c启动子顺式作用元件分布图; B: MeLAZY1c不同时期光处理表达量检测。不同小写字母代表显著性差异(P < 0.05)。"

图5

MeLAZY1c亚细胞定位 标尺为30 μm。"

图6

melazy1c突变体编辑类型及数量统计 A: Hi-Tom高通量测序检测melazy1c突变体编辑类型; B: 木薯melazy1c突变体编辑类型数量统计。"

图7

SC8与melazy1c突变体的表型比较 A: SC8与melazy1c突变体表型观察; B: melazy1c突变体和SC8的叶柄与主茎之间的角度; C: melazy1c突变体弯曲高度。*代表显著性差异(***, P < 0.001; ****, P < 0.0001)。"

图8

SC8和melazy1c突变体叶柄细胞形态观察"

图9

SC8和melazy1c突变体茎外皮细胞形态观察 A: SC8主茎横切面; B: melazy1c突变体主茎横切面; C: SC8主茎横切面放大图; D: melazy1c突变体主茎横切面放大图; E, G: SC8主茎近/远地侧纵切放大图; F, H: melazy1c突变体弯曲近/远地侧纵切放大图; I: SC8纵切; J: melazy1c突变体纵切; K~L: 1 mm近/远地侧细胞数量统计。"

[1] 严华兵, 叶剑秋, 李开绵. 中国木薯育种研究进展. 中国农学通报, 2015, 31(15): 63-70.
doi: 10.11924/j.issn.1000-6850.casb14110159
Yan H B, Ye J Q, Li K M. Research progress in cassava breeding in China. Chin Agric Sci Bull, 2015, 31(15): 63-70. (in Chinese with English abstract)
[2] 蒋和平, 倪印峰, 朱福守. 中国木薯产业发展模式及对策建议. 农业展望, 2014, 10(8): 41-48.
Jiang H P, Ni Y F, Zhu F S. Development model and countermeasures for China’s cassava industry. Agric Outlook, 2014, 10(8): 41-48. (in Chinese with English abstract)
[3] 李军, 田益农, 盘欢, 罗燕春, 郑华. 木薯品种桂热4号的选育及栽培要点. 南方农业学报, 2014, 45: 1183-1187.
Li J, Tian Y N, Pan H, Luo Y C, Zheng H. Breeding and cultivation key points of cassava variety Guire 4. J Southern Agric, 2014, 45: 1183-1187. (in Chinese with English abstract)
[4] 李旭娟, 李纯佳, 徐超华, 刘洪博, 吴转娣, 林秀琴. 甘蔗MOC1基因(ScMOC1)的克隆与表达分析. 植物遗传资源学报, 2017, 18: 734-746.
doi: 10.13430/j.cnki.jpgr.2017.04.017
Li X J, Li C J, Xu C H, Liu H B, Wu Z D, Lin X Q. Cloning and expression analysis of sugarcane MOC1 gene (ScMOC1). J Plant Genet Resour, 2017, 18: 734-746 (in Chinese with English abstract).
[5] Li X, Qian Q, Fu Z. Control of tillering in rice. Nature, 2003, 422: 618-621.
[6] Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386: 485-488.
[7] Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007, 52: 891-898.
doi: 10.1111/j.1365-313X.2007.03284.x pmid: 17908158
[8] Dardick C, Callahan A, Horn R, Ruiz K B, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved family found in diverse plants species. Plant J, 2013, 75: 618-630.
[9] Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication. Nat Genet, 2008, 40: 1365-1369.
doi: 10.1038/ng.247 pmid: 18820696
[10] Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet, 2008, 40: 1360-1364.
doi: 10.1038/ng.197 pmid: 18820699
[11] Yu X L, Ruan M B, Wang B, Yang Y L, Wang S C, Peng M. A homeodomain-leucine zipper I transcription factor, MeHDZ14, regulates internode elongation and leaf rolling in cassava (Manihot esculenta Crantz). Crop J, 2023, 11: 1419-1430.
[12] 雷宁. 木薯TCP转录因子家族的鉴定及MeTCP4的抗逆功能研究. 海南大学硕士学位论文,海南海口, 2018.
Lei N. Identification of Cassava TCP Transcription Factor Family and Study on the Anti Stress Function of MeTCP4. MS Thesis of Hainan University, Haikou, Hainan, China, 2018. (in Chinese with English abstract)
[13] 耿沙, 张建禹, 王晓彤, 任思杨, 毋志浩, 姚远, 李瑞梅, 郭建春, 刘姣, 罗丽娟. 基于CRISPR/Cas9技术创制木薯MeSTP7和MeSTP15双基因突变体. 热带作物学报, 2022, 43: 463-472.
doi: 10.3969/j.issn.1000-2561.2022.03.004
Geng S, Zhang J Y, Wang X D, Ren S Y, Wu Z H, Yao Y, Li R M, Guo J C, Liu J, Luo L H. Creation of cassava MeSTP7 and MeSTP15 dual gene mutants based on CRISPR/Cas9 technology. Chin J Trop Crops, 2022, 43: 463-472 (in Chinese with English abstract).
[14] 徐崟海, 刘佳. IGT基因家族调控作物株型研究进展. 生物技术进展, 2022, 12: 673-682.
doi: 10.19586/j.2095-2341.2022.0103
Xu Y H, Liu J. Research progress in IGT gene family regulation of crop plant type. Curr Biotechnol, 2022, 12: 673-682. (in Chinese with English abstract)
[15] 尚小文, 秦昊, 段玉. 茶树(Camellia sinensis)分枝相关基因家族IGT的鉴定与表达分析. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220412.1805.028.html.
Shang X W, Qin H, Duan Y. Identification and expression analysis of the IGT family of branching related genes in Camellia sinensis. Mol Plant Breed, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220412.1805.028.html (in Chinese with English abstract).
[16] Yoshihara T, Spalding E P. LAZY genes mediate the effects of gravity on auxin gradients and plant architecture. Plant Physiol, 2017, 175: 959-969.
doi: 10.1104/pp.17.00942 pmid: 28821594
[17] Yan H, Yong F S, Xiao B Z. Identification of a gravitropism-deficient mutant in rice. Rice Sci, 2017, 24: 109-118.
doi: 10.1016/j.rsci.2016.06.009
[18] Li P, Wang Y, Qian Q. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402-410.
doi: 10.1038/cr.2007.38 pmid: 17468779
[19] Dong Z B, Jiang C, Chen X Y. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol, 2013, 163: 1306-1322.
doi: 10.1104/pp.113.227314 pmid: 24089437
[20] Yu G C, David S, Zhu H C, Guan Y. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Meth Ecol Evol, 2017, 8: 28-36.
[21] Wilson M C, Mutka A M. Gene expression atlas for the food security crop cassava. New Phytol, 2017, 213: 1632-1641.
doi: 10.1111/nph.14443 pmid: 28116755
[22] 魏胜华, 孟娜. 改良CTAB法提取大戟属药用植物叶片总DNA试验. 湖北农业科学, 2011, 50: 3418-3420.
Wei S H, Meng N. Improved CTAB method for extracting total DNA from leaves of euphorbia medicinal plants. Hubei Agric Sci, 2011, 50: 3418-3420. (in Chinese with English abstract)
[23] Utsumi Y, Utsumi C, Tanaka M. Agrobacterium-mediated cassava transformation for the asian elite variety KU50. Plant Mol Biol, 2021, 109: 271-282.
doi: 10.1007/s11103-021-01212-1 pmid: 34825349
[24] Yoshihara T, Moritoshi I. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J, 2013, 74: 267-279.
[25] Zhang H, Li X, Sang D. PROG1 acts upstream of LAZY1 to regulate rice tiller angle as a repressor. Crop J, 2023, 11: 386-393.
doi: 10.1016/j.cj.2022.11.008
[26] Xia X B, Mi X Z, Jin L, Guo R. CsLAZY1 mediates shoot gravitropism and branch angle in tea plants (Camellia sinensis). BMC Plant Biol, 2021, 21: 243.
doi: 10.1186/s12870-021-03044-z pmid: 34049485
[27] 黄小龙, 孙贵连, 马丹丹. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选. 生物技术通报, 2023, 39(9): 126-135.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0001
Huang X L, Sun G L, Ma D D. Construction of rice seedling yeast monohybrid library and screening of LAZY1 upstream regulatory factors. Biotechnol Bull, 2023, 39(9): 126-135. (in Chinese with English abstract)
[28] Yoshihara T, Iino M. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and- independent gravity signaling pathways. Plant Cell Physiol, 2007, 48: 678-688.
doi: 10.1093/pcp/pcm042 pmid: 17412736
[29] Xu D, Qi X, Li J. PzTAC and PzLAZY from a narrow-crown poplar contribute to regulation of branch angles. Plant Physiol Biochem, 2017, 118: 571-578.
[30] Van Overbeek J. Growth substance curvatures of avena in light and dark. J Gene Physiol, 1936, 20: 283-309.
[31] Li P, Wang Y, Qian Q. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402-410.
doi: 10.1038/cr.2007.38 pmid: 17468779
[32] Li Z, Liang Y, Yuan Y D, Wang L. OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Mol Plant, 2019, 12: 1143-1156.
doi: S1674-2052(19)30200-X pmid: 31200078
[1] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[2] 郁雪婷, 李可, 李梦桃, 鲍茹雪, 陈新, 王文泉. 木薯蛋白激酶MeSnRK2.12与转录因子MebHLH1的互作鉴定及其表达分析[J]. 作物学报, 2023, 49(9): 2594-2600.
[3] 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159.
[4] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
[5] 雷建峰, 李月, 代培红, 赵燚, 尤扬子, 贾建国, 赵帅, 曲延英, 刘晓东. 棉花中不同植物病毒介导的VIGE体系的研究[J]. 作物学报, 2023, 49(4): 978-987.
[6] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[7] 牛志远, 秦超, 刘军, 王海泽, 李宏宇. 不同Cas9启动子对大豆CRISPR/Cas9系统效率的作用分析[J]. 作物学报, 2023, 49(12): 3227-3238.
[8] 陈会鲜, 梁振华, 黄珍玲, 韦婉羚, 张秀芬, 杨海霞, 李恒锐, 何文, 李天元, 兰秀, 阮丽霞, 蔡兆琴, 农君鑫. 木薯花性别分化关键时期的转录组分析及雌花分化相关候选基因的筛选[J]. 作物学报, 2023, 49(12): 3250-3260.
[9] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[10] 李相辰, 沈旭, 周新成, 陈新, 王海燕, 王文泉. 木薯PEPC基因家族成员鉴定及表达分析[J]. 作物学报, 2022, 48(12): 3108-3119.
[11] 陈向前, 姜奇彦, 孙现军, 牛风娟, 张慧媛, 胡正, 张辉. 大豆多基因编辑表达载体的构建及应用[J]. 作物学报, 2022, 48(11): 2706-2714.
[12] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[13] 黄忠明,周延彪,唐晓丹,赵新辉,周在为,符星学,王凯,史江伟,李艳锋,符辰建,杨远柱. 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建[J]. 作物学报, 2018, 44(6): 844-851.
[14] 张晓琼,王晓雯,田维江,张孝波,孙莹,李杨羊,谢佳,何光华,桑贤春. LAZY1通过BR途径调控水稻叶夹角的发育[J]. 作物学报, 2017, 43(12): 1767-1773.
[15] 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .