[1] 张振文, 李开绵, 叶剑秋, 许瑞丽. 木薯光合作用特性研究 云南大学学报自然科学版, 2007, 29: 628–632
Zhang Z W, Li K M, Ye J Q, Xu R L. The study on photosynthetic characteristic of cassava. J Yunnan Univ (Nat Sci), 2007, 29: 628–632 (in Chinese with English abstract)
[2] 陈冠喜, 李开绵, 叶剑秋, 许瑞丽. 6个木薯品种生长发育及产量性状的初步研究. 热带农业科学, 2009, 29: 26–29
Chen G X, Li K M, Ye J Q, Xu R L. Growth and yield of 6 cassava varieties. J Trop Agric , 2009, 29: 26–29 (in Chinese with English abstract)
[3] Li K, Zhu W, Zeng K, Zhang Z, Zhang Z W, Ye J Q, Ou W J, Rehman S, Heuer B, Chen S B. Proteome Characterization of cassava (Manihot esculenta Crantz) somatic embryos, plantlets and tuberous roots. Proteome Sci, 2010, 8: 10
[4] Nassar N M A, Junior O P, Sousa M V, Ortiz R. Improving carotenoids and amino-acids in cassava. Nutr Agric, 2009, 1: 32–38
[5] Cazzonelli C, Pogson B. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci, 2010, 15: 266–274
[6] Kris G. Joel V. Protein identification methods in proteomics. Electrophoresis, 2000, 21: 1145–1154
[7] Thierry R. Two-dimensional gel electrophoresis in proteomics: old. old fashioned, but it still climbs up the mountains. Proteomics, 2002, 2: 3–10
[8] Fan P X, Wang X C, Kuang T Y, Li Y X. An efficient method for the extraction of chloroplast proteins compatible for 2-DE and MS analysis. Electrophoresis, 2009, 30: 3024–3033
[9] 王金辉. 水稻、玉米叶绿体蛋白质组学的研究和玉米叶绿体转化体系的建立. 中国农业科学院硕士学位论文, 北京, 2011
Wang J H. Proteomic Analysis of Rice and Maize Chloroplast and Construction of Maize Chloroplast Transformation System. Chin Acad Agri Sci, 2011 (in Chinese with English abstract)
[10] THIELLEMENT H. Plant proteomics methods and protocols. Totowa: Humana Press Inc, 2007. pp 43–48
[11] Tanka N, Fujita M, Handa H, Murayama S, Uemura M, Kawamura Y, Mitsui T, Mikami S. Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments. Mol Genet Genom, 2004, 271: 566–576
[12] Huang S B, Nicolas L T, Reena N, Holger E, James W, Harvey M. Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity. Plant Physiol, 2009, 149:719–734
[13] Taise S, Miwa O, Takashi S, Naoto M. Ikuko H, Kenichior S, Masayoshi M, Akiho Y, Kenichi T, Tetsuro M. Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension- cultured cells of Arabidopsis thaliana. Plant Cell Physiol, 2004, 45: 672–683
[14] Barsan C, Sanchez-Bel P, Rombaldi C, Egea I, Rossignol M, Kuntz M, Zouine M, Latche A, Bouzayen M, Pech J C. Characteristics of the tomato chromoplast revealed by proteomic analysis. J Exp Bot, 2010, 61: 2413–2431
[15] Siddique M A, Grossmann J, Gruissem W, Baginsky S. Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts. Plant Cell Physiol, 2006, 47: 1663–1673
[16] Zeng Y, Pan Z, Ding Y, Zhu A, Cao H, Xu Q, Deng X X. A proteomic analysis of the chromoplasts isolated from sweet orange fruits (Citrus sinensis L. Osbeck). J Exp Bot, 2011, 62, 5297–5309
[17] Wang Y Q, Yong Y, Fei Z J, Hui Y, Tara F, Theodre W, Michael M, Leao V, Wang X W, Li L. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplasts function and development. J Exp Bot, 2013, 64, 949–961
[18] 安飞飞, 凡杰, 李庚虎, 间纯平, 李开绵. 华南8号木薯及其四倍体诱导株系叶片蛋白质组叶绿素荧光差异分析. 中国农业科学, 2013, 46: 3978–3987
An F F, Fan J, Li G H, Jian C P, Li K M. Comparison of leaves proteome and chlorophyll fluorescence of cassva cv. SC8 and Its tetraploid mutants. Sci Agric Sin, 2013, 46: 3978–3987 (in Chineses with English abstract)
[19] 宋雁超, 安飞飞, 薛晶晶, 秦于玲, 李开绵, 陈松笔. 木薯栽培种ZM-Seaside和花叶变种木薯块根蛋白质组学分析. 生物技术通报, 2017, 33(3): 78–85
Song Y C, An F F, Xue J J, Qin Y L, Li K M, Chen S B. Protemic analysis on tuberous roots of cassava cultivar ZM-Seaside and Mosaic-leaf mutantion. Boll Biol, 2017, 33(3): 78–85 (in Chineses with English abstract)
[20] Sánchez T, Salcedo E, Ceballos H, Dufour D, Mafla G, Morante N, Calle F, Pérez J C, Debouck D, Jaramillo G, Moreno I X. Screening of starch quality traits in cassava (Manihot esculenta Crantz). Starch/St?rke, 2009, 61, 12–19
[21] An F F, Jie F, Jun L, Li K M, Zhu W L, Wen F, Luzi J C B, Songbi C. Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes. PLoS One, 2014, 9(4): e85991
[22] Cristina M S, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010, 61: 621–649
[23] Neuhaus H E, Emes M J. Nonphotosynthetic metabolism in plastid. Plant Physiol, 2000, 51: 111–140
[24] Eage I, Brasan C, Bian W, Purgatto E, Purgatto E, Latche A, Chervin C, Bouzayen M, Pech J C. Chromoplast differentiation: current status and perspectives. Plant Cell Physiol, 2010, 51: 1601–1611
[25] Reiser J, Linka N, Lemke L, Jeblick W, Neuhaus H E. Molecular physiological analysis of the two plastidic ATP/ADP transporters from Arabidopsis. Plant Physiol, 2004, 136: 3524–3536
[26] Li L, Van Eck J. Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgen Res, 2007, 16: 581–585
[27] Pojidaeva E, Zinchenko V, Shestakov S, Sokolenko A. Involvement of the SppAl peptidase in acclimation to saturating light intensities in Synechocystis sp. strain PCC 6803. J Bacteriol, 2004. 186: 3991–3999
[28] Jarvis P. Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol, 2008, 179: 257–285
[29] Sun W, Montagu M W, Verbruggen N. Small heat shock protein and stress tolerance in plants. Biochim Biophys Acta 2002, 1577: 1–9
[30] Wang W X, Vinocur B, Shoseyov O. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Altman, Trends Plant Sci, 2004, 9: 244–252
[31] Sakamoto W. Protein degradation machineries in plastids. Annu Rev Plant Biol, 2006, 57: 599–621
[32] Peltier J-B, Ripon D R, Friso G, Rudella A, Cai Y, Ytterberg J, Giacomelli L, Pillardy J, van Wijk K J. Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J Biol Chem, 2004, 279: 4768–4781
[33] Veronica A, Ingenfeld A, Klaus A. Characterization of the snow cotyledon 1mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol Biol, 2006, 60: 507–518 |