欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3250-3260.doi: 10.3724/SP.J.1006.2023.34002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

木薯花性别分化关键时期的转录组分析及雌花分化相关候选基因的筛选

陈会鲜(), 梁振华, 黄珍玲, 韦婉羚, 张秀芬, 杨海霞, 李恒锐*(), 何文*(), 李天元, 兰秀, 阮丽霞, 蔡兆琴, 农君鑫   

  1. 广西南亚热带农业科学研究所, 广西龙州 532415
  • 收稿日期:2023-01-05 接受日期:2023-05-24 出版日期:2023-12-12 网络出版日期:2023-06-06
  • 通讯作者: * 李恒锐, E-mail: lihengrui88@163.com; 何文, E-mail: 675559090@qq.com
  • 作者简介:E-mail: 798555436@qq.com
  • 基金资助:
    国家重点研发计划项目(2020YFD1000603-10);广西青年科学基金项目(2023GXNSFBA026150);广西农业科学院科技发展基金项目(Guinongke 2022JM96);崇左市科技计划项目(Chongkegong 2021ZC18);广西农业科学院基本科研业务专项(Guinongke 2023YM44)

Transcriptomic profile of key stages of sex differentiation in cassava flowers and discovery of candidate genes related to female flower differentiation

CHEN Hui-Xian(), LIANG Zhen-Hua, HUANG Zhen-Ling, WEI Wan-Ling, ZHANG Xiu-Fen, YANG Hai-Xia, LI Heng-Rui*(), HE Wen*(), LI Tian-Yuan, LAN Xiu, RUAN Li-Xia, CAI Zhao-Qin, NONG Jun-Xin   

  1. Guangxi Institute of Sub-tropical Agricultural Sciences, Longzhou 532415, Guangxi, China
  • Received:2023-01-05 Accepted:2023-05-24 Published:2023-12-12 Published online:2023-06-06
  • Contact: * E-mail: lihengrui88@163.com; E-mail: 675559090@qq.com
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000603-10);Guangxi Youth Science Foundation Project(2023GXNSFBA026150);Guangxi Academy of Agricultural Sciences Development Fund Project(Guinongke 2022JM96);Science and Technology Plan Project of Special Project for Basic Scientific Research of Chongzuo(Chongkegong 2021ZC18);Guangxi Academy of Agricultural Sciences(Guinongke 2023YM44)

摘要:

针对木薯雌花数量严重缺乏的育种难题, 本试验以木薯品种‘新选048’为试材, 测定木薯花性别分化关键时期雌花和雄花的转录组数据, 分析差异表达基因的功能及其可能参与的调控通路, 揭示木薯雌花分化的分子机制, 挖掘木薯雌花分化的相关候选基因, 并采用qRT-PCR方法对测序结果进行验证。结果表明: 在木薯花性别分化关键时期, 雌花和雄花共有545个差异基因, 其中48.63%的差异基因富集到花器官的形态建成及发育的GO途径, 且富集到植物苯丙素生物合成、植物激素信号传导2个代谢通路的基因最多, 4个花性别分化基因AGL11YABBY4CRCSUP在雌花中显著上调表达, 4个细胞分裂素信号通路基因HK4HPt4ARR8ARR12在雌花中显著上调表达, 生长素的早期响应基因IAA14GH3SAUR22SAURR20在雌花中显著下调表达。因此, 木薯花性别分化主要涉及花粉、配子体、花器官的形态建成及发育的生物途径和植物苯丙素生物合成、植物激素信号传导2个代谢通路, 细胞分裂素和生长素可能参与了木薯雌花分化过程, AGL11YABBY4CRCSUPHK4HPt4ARR8ARR12可能是木薯雌花分化的正调控基因。

关键词: 木薯, 分化关键时期, 转录组, 雌花, 基因

Abstract:

To solve the breeding problem of the serious shortage of female cassava flowers, cassava variety ‘Xinxianxuan 048’ was used as the experimental material. Transcriptional sequencing technology was used to analyze the biological information of differentially expressed genes in female and male flowers during the critical period of cassava flower sex differentiation, explore the functions of differentially expressed genes and possible regulatory pathways involved, excavate candidate genes related to female differentiation, and verify the sequencing results by qRT-PCR method. The results showed that: There were 545 differentially expressed genes between male and female cassava flowers at the critical stage of gender differentiation. Among them, 48.63% of the differential genes were enriched in GO pathway of floral organ morphogenesis and development, and the genes enriched in plant phenylpropanol biosynthesis and plant hormone signal transduction were the most. AGL11, YABBY4, CRC, SUP, and other flower sex differentiation genes were significantly up-regulated in female flowers. Four genes of the cytokinin signaling pathway, including HK4, HPt4, ARR8, and ARR12, were significantly up-regulated in female flowers, while IAA14, GH3, SAUR22, and SAURR20, the early auxin response genes, were significantly down-regulated in female flowers. Therefore, the sexual differentiation of cassava flowers mainly involved the biological pathways of pollen, gametophyte, floral organ morphogenesis and development, and two metabolic pathways of plant phenylpropanoid biosynthesis and plant hormone signal transduction. Cytokinin and auxin might be the main hormones in cassava female flower differentiation. AGL11, YABBY4, CRC, SUP, HK4, HPt4, ARR8, and ARR12 may be positive regulators of cassava female flower differentiation.

Key words: cassava, key stages of sex differentiation, transcriptome, female flowers, gene

表1

荧光定量PCR引物设计"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
基因登录号
Gene ID
AGL11 TATGAATTGTCAGTCCTTTGTG TCTAACAGGCATCTAATGGGT LOC110616214
CRC CACAGTTCTTGCGGTTGG TTGGCCTTGAAAAGGAGGT LOC110615357
YABBY4 CAGATTTGCTACGTCCAATGTG AATGGCACGGTTCACTGGG LOC110627391
MADS9 CACCTGAAAGGGGAGGAT TGACGAACACTGGCAAGG LOC110607164
TM6 TTAGCCCTACCATAACGA ATAATGCGTGCTCCACAG LOC110630551
ARR12 TGCCGAGGTTGAGAAATC TGCTCCTGCCGTTTGATC LOC110631158
HPt4 GCAGGGCAGGAAATGGAG CTTGGGGCGACATGCAGT LOC110627048
HK4 GCGGAGTAGCCTATGCAC TTCCCGGTAGCTCTAGCC LOC110603154
TGA9 CTTCACCAACTTCGCCGGATAC AGGACGGGATGCCCAGAGG LOC110626841
TGA10 GCTTATGACTTGGGAGAA CATGGACGGCTGATTTGA LOC110620640

表2

碱基信息统计表"

样本
Sample
干净序列读数(个)
Read number
碱基数
Base number (G)
Q20 (%) Q30 (%)
A1-1 50,981,844 7.25 95.680 87.990
A1-2 35,421,366 4.83 97.975 93.795
A1-3 39,490,380 5.40 97.780 93.375
A2-1 33,138,892 4.48 97.765 93.350
A2-2 31,980,834 4.38 96.455 89.915
A2-3 42,204,558 5.79 98.130 94.145

图1

差异基因的统计图(雌花)"

图2

差异基因的维恩图图"

图3

雄花 vs 雌花的火山图 红色区域表示雄花上调, 蓝色区域表示雄花下调基因。"

图4

前30条显著富集到的GO条目"

图5

差异基因显著富集的GO条目"

图6

前20条显著富集到的KEEG通路"

图7

花性别分化相关候选基因热图 颜色代表响应的的FPKM值, 数值越大, 颜色越红, 从左至右样本依次为雌花-1 (A1-1)、雌花-2 (A1-2)、雌花-3 (A1-3)、雄花-1 (A2-1)、雄花-2 (A2-2)、雄花-3 (A2-3)。"

图8

细胞分裂素信号通路基因表达模式分析 颜色代表响应的的FPKM值, 从左至右样本标号参照图7。"

图9

生长素响应基因的表达模式分析 颜色代表响应的的FPKM值, 从左至右样本标号参照图7。"

图10

差异表达基因qRT-PCR验证的相对表达量 柱状图上小写字母表示雌花、雄花之间10个候选基因的表达量差异达显著水平(P < 0.05)。"

[1] Zhang J, Boualem A, Bendahmane A, Ming R. Genomics of sex determination. Curr Opin Plant Biol, 2014, 18: 110-116.
doi: 10.1016/j.pbi.2014.02.012 pmid: 24682067
[2] Adnane B, Christelle T, Céline C, Afef L, Halima M, Marie A S, Rina F Z, Irina K, Catherine D, Rafael P T, Abdelhafid B. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science, 2015, 350: 688-691.
doi: 10.1126/science.aac8370 pmid: 26542573
[3] Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari M, Fraenkel Z R, Kovalski I, Dogimont C, Perl T R, Bendahmane A. A Ho H, Low J Z, Gudimella R, Tammi M T, Harikrishna J A. Expression patterns of inflorescence and sex-specific transcripts in male and female inflorescences of African oil palm (Elaeis guineensis). Ann Appl Biol, 2016, 168: 274-289.
doi: 10.1111/aab.2016.168.issue-2
[4] Akagi T, Henry I M, Tao R, Comai L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science, 2014, 346: 646-650.
doi: 10.1126/science.1257225
[5] Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001, 4: 75-85.
doi: 10.1016/s1369-5266(00)00139-4 pmid: 11163172
[6] 王宗宜. 木薯塊根生长和开花结实习性的初步观察. 广西农业科学, 1964, (6): 18-20.
Wang Z Y. Preliminary observation on growth, flowering and fruiting habit of cassava root. Guangxi Agric Sci, 1964, (6): 18-20. (in Chinese with English abstract)
[7] Deborah O, Olayemisi E, Peter T H, Peter K, Tim L S. Flower development in cassava is feminized by cytokinin, while proliferation is stimulated by anti-ethylene and pruning: transcriptome responses. Front Plant Sci, 2021, 28: 543-548.
[8] Ceballos H, Iglesias C A, Perez J C, Dixon A G. Cassava breeding: opportunities and challenges. Plant Mol Biol, 2004, 56: 503-516.
doi: 10.1007/s11103-004-5010-5 pmid: 15630615
[9] Ceballos H, Perez J C, Joaqui-barandica O, Lenis J I, Morante N, Calle F, Pino L, Hershey C H. Cassava breeding I: the value of breeding value. Front Plant Sci, 2016, 29: 1227-1229.
[10] Hyde P T, Guan X, Abreu V, Settert L. The anti-ethylene growth regulator silver thiosulfate (STS) increases flower production and longevity in cassava (Manihot esculenta Crantz). Plant Growth Regul, 2020, 90, 441-453.
[11] 韦本辉, 甘秀芹, 陆柳英, 何虎翼, 唐秀桦, 胡泊, 吴延勇, 宁秀呈, 韦广泼. 广西木薯诱导开花结实及发芽试验研究初报. 广西农业科学, 2009, 40: 982-986.
Wei B H, Gan X Q, Lu L Y, He H Y, Tang X H, Hu P, Wu Y Y, Ning X C, Wei G P. Experiment on induction of seed germination, flowering and seed setting in cassava. Guangxi Agric Sci, 2009, 90: 441-453. (in Chinese with English abstract)
[12] 韦丽君, 俞奔驰, 卢赛清, 雷开文, 郑华, 文峰, 付海天, 罗燕春. 一种促进木薯雄花转性的调节剂及其制备方法. 中国专利: CN106614593A, 2017.
Wei L J, Yu B C, Lu S Q, Lei K W, Zheng H, Wen F, Fu H T, Luo Y C. The Regulator and preparation method of promoting cassava male flower rotation. Chinese patent: CN106614593A, 2017. (in Chinese)
[13] 陆柳英, 曹升, 严华兵, 谢向誉, 曾文丹, 尚小红, 肖亮. 一种诱导木薯开花的方法. 中国专利: CN108464144A, 2018.
Lu L Y, Cao S, Yan H B, Xie X Y, Zeng W D, Shang X H, Xiao L. The method to induce cassava flowering. Chinese patent: CN106614593A, 2018. (in Chinese)
[14] Froschle M, Horn H, Spring O. Effects of the cytokinins 6-benzyladenine and forchlorfenuron on fruit-, seed-and yield parameters according to developmental stages of flowers of the biofuel plant Jatropha curcas L. (Euphorbiaceae). Plant Growth Regul, 2017, 81: 293-303.
doi: 10.1007/s10725-016-0206-7
[15] Luo Y, Pan B Z, Li L, Yang C X, Xu Z F. Developmental basis for flower sex determination and effects of cytokinin on sex determination in Plukenetia volubilis (Euphorbiaceae). Plant Reprod, 2020, 33: 21-34.
doi: 10.1007/s00497-019-00382-9 pmid: 31907610
[16] 丛汉卿, 龙娅丽, 王荣香, 孙化鹏, 乔飞. 木薯中开花相关miRNA对phasiRNA的调控. 分子植物育种, 2019, 17: 1438-1445.
Cong H Q, Long Y L, Wang R X, Sun H P, Qiao F. Regulation of phasiRNA by flowering related miRNA in Manihot esculenta Crantz. Mol Plant Breed, 2019, 17: 1438-1445. (in Chinese with English abstract)
[17] 韦丽君, 俞奔驰, 宋恩亮, 郑华, 卢赛清, 付海天. 基于转录组测序的木薯性别决定相关基因挖掘. 南方农业学报, 2020, 51: 1785-1796.
Wei L J, Yu B C, Song E L, Zheng H, Lu S Q, Fu H T. Gene mining for sex determination in cassava (Manihot esculenta Crantz) based on transcriptome sequencing. J Southern Agric, 2020, 51: 1785-1796. (in Chinese with English abstract)
[18] 李恒锐, 张秀芬, 陈会鲜, 杨海霞, 梁振华, 兰秀, 黄珍玲, 莫周美, 何文, 郭素云. 木薯雌雄花分化形态结构观察及生理调控研究. 植物遗传资源学报, 2022, 23: 255-262.
doi: 10.13430/j.cnki.jpgr.20210516001
Li H R, Zhang X F, Chen H X, Yang H X, Liang Z H, Lan X, Huang Z L, Mo Z M, He W, Guo S Y. Study on morphological structure and physiological regulation of female and male flowers differentiation in cassava. J Plant Genet Res, 2022, 23: 255-262. (in Chinese with English abstract)
[19] Tanurdzic M, Banks J A. Sex-determining mechanisms in land plants. Plant Cell, 2004, 16: S61-S71.
doi: 10.1105/tpc.016667
[20] 杜改改. 柿花性别分化调控的关键基因筛选及表达模式分析. 中国林业科学研究院硕士学位论文, 北京, 2017.
Du G G. Selection and Expression Pattern Analysis of Relative Genes Regulating Flower Sex Differentiation in Persimmon (Diospyros kaki Thunb). MS Thesis of Chinese Academy of Forestry, Beijing, China, 2017. (in Chinese with English abstract)
[21] 平阿敏. 普通白菜花器官发育相关基因筛选及BrcSOC1和BrcSPL8克隆与表达分析. 山西农业大学硕士学位论文, 山西太原, 2017.
Ping A M. Identification of Genes Related to Floral Organ Development by Expression Profile and Cloning and Expression Analysis of BrcSOCl and BrcSPL8 in Pak Choi. MS Thesis of Shanxi Agricultural University, Taiyuan, Shanxi, China, 2017. (in Chinese with English abstract)
[22] Sablowski R W, Moyano E, Culianez-maci F A, Schuch W, Martin C, Bevan M. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J, 1994, 13: 128-137.
doi: 10.1002/j.1460-2075.1994.tb06242.x pmid: 8306956
[23] Airoldi C A. Determination of sexual organ development. Sex Plant Reprod, 2010, 23: 53-62.
doi: 10.1007/s00497-009-0126-z pmid: 20033226
[24] Ma H. The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Dev, 1994, 8: 745-756.
doi: 10.1101/gad.8.7.745
[25] Yanofsky M F, Ma H, Bowman J L, Drewa G N, Feldmann K A, Meyerowitz E M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346: 35-39.
doi: 10.1038/346035a0
[26] Busi M V, Bustamante C D, Angelo C, Hidalgo C M, Boggio S B, Valle E M, Zabalete E. MADS-box genes expressed during tomato seed and fruit development. Plant Mol Biol, 2003, 52: 801-815.
doi: 10.1023/a:1025001402838 pmid: 13677468
[27] Atikur R M, Subramani P B, Sheikh M B. Molecular characterization and phylogenetic analysis of MADS-Box gene VroAGL11 associated with stenospermocarpic seedlessness in muscadine grapes. Genes (Basel), 2021, 12: 232.
doi: 10.3390/genes12020232
[28] Nallatt O, Nilo M. Suppression of the D-class MADS-box AGL11 gene triggers seedlessness in fleshy fruits. Plant Cell Rep, 2016, 35: 239-254.
doi: 10.1007/s00299-015-1882-x pmid: 26563346
[29] Dreni L, Osnato M, Kater M M. The ins and outs of the rice AGAMOUS subfamily. Mol Plant, 2013, 6: 650-664.
doi: 10.1093/mp/sst019 pmid: 23371932
[30] 陈利娜, 张杰, 牛娟, 李好先, 薛辉, 刘贝贝, 夏小丛, 张富红, 赵弟广, 曹尚银. 石榴花发育相关基因PgAGL11的克隆及功能验证. 园艺学报, 2017, 44: 2089-2098.
doi: 10.16420/j.issn.0513-353x.2017-0151
Chen L N, Zhang J, Niu J, Li H X, Xue H, Liu B B, Xia X C, Zhang F H, Zhao D G, Cao S Y. Cloning and functional verification of gene PgAGL11associated with the development of flower organs in pomegranate plant. Acta Hortic Sin, 2017, 44: 2089-2098. (in Chinese with English abstract)
[31] Yang Z E, Gong Q, Wang L L, Jin Y Y, Xi J P, Li Z, Qin W Q, Yang Z R, Lu L L, Chen Q J, Li F G. Genome-wide study of YABBY genes in upland cotton and their expression patterns under different stresses. Front Genet, 2018, 9: 33.
doi: 10.3389/fgene.2018.00033 pmid: 29467795
[32] Zhang S L, Wang L, Sun X M, Li Y D, Yao J, Nocker V S, Wang X P. Genome-wide analysis of the YABBY gene family in grapevine and functional characterization of VvYABBY4. Front Plant Sci, 2019, 10: 1207.
doi: 10.3389/fpls.2019.01207 pmid: 31649691
[33] Bowman J L, Smyth D R. CRABS CLAW, A gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development, 1999, 126: 2387-2396.
doi: 10.1242/dev.126.11.2387 pmid: 10225998
[34] Thoma G, Suvi B, Annette B. CRABS CLAW acts as a bifunctional transcription factor in flower development. Front Plant Sci, 2018, 20: 835.
[35] 刁志娟. 水稻三个花器官发育关键基因和一个SUPERMAN- Like基因的功能和表达分析. 福建农林大学博士学位论文, 福建福州, 2011.
Diao Z J. Functional and Expressional Analysis of Three Pivotal Genes for Floral Organ Development and a SUPERMAN-like Gene in Rice (Oryza sativa L.). PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2011. (in Chinese with English abstract)
[36] 胡若琳, 袁超, 牛义, 汤青林, 魏大勇, 王志敏. 植物MYB转录因子在花药发育中的调控作用. 生物工程学报, 2020, 36: 2277-2286.
Hu R L, Yuan C, Niu Y, Tang Q L, Wei D Y, Wang Z M. Regulation of plant MYB transcription factors in anther development. Chin J Biotechnol, 2020, 36: 2277-2286. (in Chinese with English abstract)
[37] 田义, 张彩霞, 康国栋, 李武兴, 张利益, 丛佩华. 植物 TGA 转录因子研究进展. 中国农业科学, 2016, 49: 632-642.
doi: 10.3864/j.issn.0578-1752.2016.04.003
Tian Y, Zhang C X, Kang G D, Li W X, Zhang L Y, Cong P H. Progress on TGA transcription factors in plant. Sci Agric Sin, 2016, 49: 632-642. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.04.003
[38] Murmu J, Bush M J, Delong C, Li S, Xu M, Khan M, Malcomson C, Fobert P R, Zachgo S, Hepworth S R. Arabidopsis basic leucinezipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol, 2010, 154: 1492-1504.
doi: 10.1104/pp.110.159111
[39] Zhu J, Lou Y, Xu X F, Yang Z N. A genetic pathway for tapetum development and function in Arabidopsis. J Integr Plant Biol, 2011, 53: 892-900.
doi: 10.1111/jipb.2011.53.issue-11
[40] Li D D, Xue J S, Zhu J, Yang Z N. Gene regulatory network for tapetum development in Arabidopsis thaliana. Front Plant Sci, 2017, 8: 1559.
doi: 10.3389/fpls.2017.01559
[41] Zhu E G, You C J, Wang S S, Cui J, Niu B X, Wang Y X, Qi J, Ma H, Chang F. The DYT 1 interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Plant J, 2015, 83: 976-990.
doi: 10.1111/tpj.2015.83.issue-6
[42] 张计育, 莫正海, 李永荣, 王刚, 宣继萍, 贾晓东, 郭忠仁. 薄壳山核桃MADS-box基因CiMADS9的克隆与功能分析. 园艺学报, 2015, 42: 1049-1056.
doi: 10.16420/j.issn.0513-353x.2014-1094
Zhang J Y, Mo Z H, Li Y R, Wang G, Xuan J P, Jia X D, Guo Z Y. Cloning and functional analysis of MADS-box CiMADS9 gene from Carya illinoinensis. Acta Hortic Sin, 2015, 42: 1049-1056. (in Chinese with English abstract)
[43] Xiong S X, Lu J Y, Lou Y, Xiao D T, Jing N G, Cheng Z, Qiang S S, Zhong N Y, Yang J Z. The transcription factor MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana. Plant J, 2016, 88: 936-946.
doi: 10.1111/tpj.2016.88.issue-6
[44] Ma H H, Wu Y L, Lv R L, Chi H B, Zhao Y L, Li Y L, Liu H B, Ma Y Z, Zhu L F, Guo X P, Kong J, Wu J Y, Xing C Z, Zhang X L, Min L. Cytochrome P450 mono-oxygenase CYP703A2 plays a central role in sporopollenin formation and ms5ms6 fertility in cotton. J Integr Plant Biol, 2022, 64: 2009-2025.
doi: 10.1111/jipb.v64.10
[45] 陈磊, 翟笑雨, 徐启江. B类MADS-Box基因的系统发育与功能演化. 植物生理学报, 2015, 51: 1359-1372.
Chen L, Zhai X Y, Xu Q J. The phylogeny and functional evolution of B-Class MADS-box genes. Plant Physiol J, 2015, 51: 1359-1372. (in Chinese with English abstract)
[46] Zhang S Y, Wang J, Chen G H, Ye X Y, Zhang L, Zhu S D, Yuan L Y, Hou J F, Wang C G. Functional analysis of a MYB transcription factor BrTDF1 in the tapetum development of Wucai (Brassica rapa ssp.). Sci Hortic, 2019, 257: 108728.
doi: 10.1016/j.scienta.2019.108728
[1] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[2] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[3] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[4] 王恒波, 冯春燕, 张以星, 谢婉婕, 杜翠翠, 吴明星, 张积森. 甘蔗割手密种转录因子NAP亚家族的鉴定及SsNAP2a参与叶片衰老的功能分析[J]. 作物学报, 2024, 50(1): 110-125.
[5] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[6] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[7] 刘颖超, 方敦煌, 徐海明, 童治军, 肖炳光. 烟草生物碱性状的QTL定位[J]. 作物学报, 2024, 50(1): 42-54.
[8] 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31.
[9] 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198.
[10] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[11] 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析[J]. 作物学报, 2023, 49(9): 2385-2397.
[12] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[13] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[14] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[15] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .