欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3239-3249.doi: 10.3724/SP.J.1006.2023.24256

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析

赵冬兰*(), 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河   

  1. 江苏徐淮地区徐州农业科学研究所 / 农业农村部甘薯生物学与遗传育种重点实验室, 江苏徐州 221131
  • 收稿日期:2022-11-18 接受日期:2023-05-24 出版日期:2023-12-12 网络出版日期:2023-06-14
  • 通讯作者: * 赵冬兰, E-mail: 19991006@jaas.ac.cn* E-mail: 19991006@jaas.ac.cn
  • 基金资助:
    徐州市科技局自然科学基金项目(KC21072);财政部和农业农村部国家现代农业产业技术体系建设专项(Sweetpotato, CARS-10)

Relative expression profile of the related genes with carotenoids metabolism in sweetpotato (Ipomoea batatas) based on RNA-seq data

ZHAO Dong-Lan*(), ZHAO Ling-Xiao, LIU Yang, ZHANG An, DAI Xi-Bin, ZHOU Zhi-Lin, CAO Qing-He   

  1. Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu, China
  • Received:2022-11-18 Accepted:2023-05-24 Published:2023-12-12 Published online:2023-06-14
  • Supported by:
    Natural Fund Project of Xuzhou Science and Technology Bureau(KC21072);China Agriculture Research System of MOF and MARA(Sweetpotato, CARS-10)

摘要:

为研究甘薯类胡萝卜素代谢的分子机制, 本研究以浙薯81及其芽变系为材料, 利用RNA-seq技术研究了浙薯81及其芽变系的薯皮(红色变黄色)和脉基(紫色变绿色)类胡萝卜素代谢相关基因。经过生物信息学分析, 在薯皮和脉基分别筛选出24个和10个差异表达基因(DEGs), 其中有4个DEGs同时存在于薯皮和脉基中。类胡萝卜合成代谢上游途径中, 与浙薯81相比, 芽变系薯皮中的牻牛儿基牻牛儿基焦磷酸合酶基因GGDPS (g29773g38646)、番茄红素合成酶基因PSY (g11630)和ζ-胡萝卜素异构酶基因Z-ISO (g42608)均显著上调, GGDPS (g29773)仅在突变系中有表达; 脉基部在类胡萝卜素上游代谢途径中没有筛选到DEGs。番茄红素环化分支点后, 在薯皮中检测到2个β-胡萝卜素羟化酶基因CHYB (g33351g953), 与浙薯81相比, 芽变系中g33351下调表达, g953则上调表达。在薯皮和脉基分别检测到一个玉米黄质环氧化酶基因ZEP, 薯皮中的ZEP (g41700)显著下调, 脉基部的ZEP (g1103)显著上调。类胡萝卜素分解代谢中突变体薯皮中类胡萝卜素裂解双加氧酶基因CCD8 (g21348)下调表达; 2个9-顺式环氧类胡萝卜素加氧酶基因NCED (g30636g43412)在突变系的薯皮和脉基中均下调表达; 此外在薯皮和脉基分别检测出5个黄氧素脱氢酶基因ABA2, 薯皮中有4个上调表达, 而脉基中的则全部下调表达。利用实时定量PCR (qRT-PCR)验证了部分基因的表达模式, 与RNA-seq分析结果一致。该研究对甘薯类胡萝卜素代谢的分子机制及解析甘薯薯皮和脉基不同颜色突变具有重要参考价值。

关键词: 甘薯, 转录组测序, 类胡萝卜素, 差异基因, 颜色变异

Abstract:

The objective of this study is to explore the molecular mechanism of carotenoid metabolism and color mutation of sweetpotato and to study the carotenoid metabolism related genes by RNA-seq technology. Zheshu 81 and its mutant line with color mutation in root skin (from red to yellow) and leaf vein base (from purple to green) were used as the experimental materials. Bioinformatics analysis showed that the carotenoid biosynthesis (ko00906) pathway was significantly enriched in root skin and leaf vein base. The 24 differentially expressed genes (DEGs) and 10 DEGs in the ko00906 were screened from root skin and vein base, among which four were screened in both two parts, respectively. In the upstream pathway of carotenoid anabolism, compared with Zheshu 81, the geranylgeranyl pyrophosphate synthase gene GGDPS (g29773, g38646), lycopene synthase gene PSY (g11630) and ζ-carotene isomerase gene Z-ISO (g42608) were significantly up-regulated in mutant line, and GGDPS (g29773) was only expressed in mutant lines. DEGs were not screened in the upstream metabolic pathway of carotenoids in vein base. After the branching point of lycopene cyclization, two β-carotene hydroxylase genes CHYB (g33351, g953) were screened in root skin, one up-regulated and the other down-regulated. Two zeaxanthin epoxidase gene ZEP (g41700, g1103) were detected in root skin and vein base, respectively. And g41700 in root skin was significantly down-regulated, and g1103 in vein base was significantly up-regulated. In carotenoid catabolism, CCD8 (g21348), a carotenoid cleavage dioxygenase gene, was significantly up-regulated in root skin of mutant line. Two 9-cis epoxide carotenoid oxygenase genes NCED (g30636, g43412) were down-regulated in root skin and vein base of the mutant line. In addition, ten xanthoxin dehydrogenase ABA2 genes were detected in root skin and vein base, and nine of them were up-regulated. The relative expression levels of some genes by qRT-PCR were highly consistent with those of RNA-seq data. This study provides an important reference for the molecular mechanism of carotenoid metabolism and the analysis of different color mutations in root skin and vein base of sweetpotato.

Key words: sweetpotato, carotenoid, RNA-seq, differentially expressed gene, color variation

图1

浙薯81及其芽变体颜色变异 A, B: 浙薯81和芽变系叶脉基部颜色对比, A为浙薯81, B为芽变系。C: 浙薯81与芽变系薯块膨大初期薯皮对比。D: 浙薯81芽变体薯块。标尺为5 cm。"

图2

浙薯81及其芽变系类胡萝卜素含量"

图3

浙薯81及其突变系差异基因KEGG通路富集散点图 A: 叶脉基部差异基因KEGG富集前20条通路; B: 薯皮差异基因KEGG富集前20条通路。红色方框内是本研究重点关注通路。"

图4

浙薯81及其芽变系类胡萝卜素代谢转录热图 图中基因名称后(LVB)表示该基因是叶脉基部的差异基因, (RS)表示该基因是薯皮的差异基因。"

图5

浙薯81及其突变系薯皮类胡萝卜素相关基因的差异表达 A: 浙薯81及其芽变系薯皮中类胡萝卜素相关DEGs RNA-seq和qRT-PCR表达量的相关性分析; B: 芽变系薯皮中类胡萝卜素相关基因相对于浙薯81的差异表达。*表示在P < 0.05水平差异显著, **表示在P < 0.01水平差异显著。"

[1] Nisar N, Li L, Lu S, Khin N C, Pogson B J. Carotenoid metabolism in plants. Mol Plant, 2015, 8: 68-82.
doi: 10.1016/j.molp.2014.12.007 pmid: 25578273
[2] 何静娟, 范燕萍. 观赏植物花色相关的类胡萝卜素组成及代谢调控研究进展. 园艺学报, 2022, 49: 1162-1172.
doi: 10.16420/j.issn.0513-353x.2021-0623
He J J, Fan Y P. Progress in Composition and metabolic regulation of carotenoids related to floral color. Acta Hortic Sin, 2022, 49: 1162-1172. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2021-0623
[3] Frank H A, Brudvig G W. Redox functions of carotenoids in photosynthesis. Biochemistry, 2004, 43: 8607-8615.
pmid: 15236568
[4] Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. The path from β-Carotene to carlactone, a strigolactone-Like plant hormone. Science, 2012, 335: 1348-1351.
doi: 10.1126/science.1218094 pmid: 22422982
[5] Yang F W, Feng X Q. Abscisic acid biosynthesis and catabolism and their regulation roles in fruit ripening. Phyton, 2015, 84: 444-453.
doi: 10.32604/phyton.2015.84.444
[6] Eggersdorfer M, Wyss A. Carotenoids in human nutrition and health. Arch Biochem Biophys, 2018, 652: 18-26.
doi: S0003-9861(18)30165-6 pmid: 29885291
[7] 张冠华, 刁倩楠. 类胡萝卜素研究进展. 现代农业, 2021, (4): 46-49.
Zhang G H, Diao Q N. Research progress of carotenoids. Mod Agric, 2021, (4): 46-49. (in Chinese)
[8] 谢一芝, 邱瑞镰, 戴起伟, 吴纪中, 张黎玉, 徐品莲. 甘薯胡萝卜素含量的变化及高胡萝卜素育种. 国外农学——杂粮作物, 1998, 18(4): 44-47.
Xie Y Z, Qiu R L, Dai Q W, Wu J Z, Zhang L Y, Xu P L. Changes of carotene content in sweet potato and breeding for high carotene content. Foreign Agron: Miscellaneous Crops, 1998, 18(4): 44-47. (in Chinese)
[9] 后猛, 张允刚, 王欣, 唐维, 刘亚菊, 唐忠厚, 靳容, 闫会, 马代夫, 李强. 橘红肉甘薯块根类胡萝卜素的变化规律及其与主要经济性状的相关性. 中国农业科学, 2013, 46: 3988-3996.
doi: 10.3864/j.issn.0578-1752.2013.19.004
Hou M, Zhang Y G, Wang X, Tang W, Liu Y J, Tang Z H, Jin R, Yan H, Ma D F, Li Q. Variationlaws of carotenoids content in storage root of orange-fleshed sweetpotato and its relationships with major economic traits. Sci Agric Sin, 2013, 46: 3988-3996. (in Chinese with English abstract)
[10] 陈永水. 甘薯品种β-胡萝卜素含量的HPLC测定及其与色值的关系. 国外农学: 杂粮作物, 1995, (3): 36-39.
Chen Y S. Determination of β-carotene content in sweet potato cultivars by HPLC and its relationship with color value. Foreign Agron: Miscellaneous Crops, 1995, (3): 36-39. (in Chinese)
[11] 李帑洛, 蒋进勇, 何伟国. 甘薯类胡萝卜素提取工艺的优化. 湖南农业科学, 2016, (8): 93-95.
Li T L, Jiang J Y, He W G. Optimization of extraction technology of carotenoids from sweet potato. Hunan Agric Sci, 2016, (8): 93-95. (in Chinese with English abstract)
[12] Rodriguez-Amaya B D, Nutti M R, Carvalho L V. Flour and Breads and Their Fortification in Health & Disease Prevention. San Diego: Academic Press, 2011. pp 301-311.
[13] 陆国权, 黄华宏, 何腾弟. 甘薯维生素C和胡萝卜素含量的基因型, 环境及基因型与环境互作效应的分析. 中国农业科学, 2002, 35: 482-486.
Lu G Q, Huang H H, He T D. Genotype and environmental effects on vitamin C and carotene contents in sweetpotato. Sci Agric Sin, 2002, 35: 482-486. (in Chinese with English abstract)
[14] Waramboi J G, Gidley M J, Sopade P A. Carotenoid contents of extruded and non-extruded sweetpotato flours from Papua New Guinea and Australia. Food Chem, 2013, 141: 1740-1746.
doi: 10.1016/j.foodchem.2013.04.070 pmid: 23870886
[15] Vimala B, Nambisan B, Hariprakash B. Retention of carotenoids in orange-fleshed sweet potato during processing. J Food Sci Technol, 2011, 48: 520-524.
doi: 10.1007/s13197-011-0323-2 pmid: 23572783
[16] 程洁, 赵腾飞, 廖志华, 杨春贤. 甘薯八氢番茄红素合成酶基因的克隆与功能验证. 植物生理学报, 2017, 53: 865-872.
Cheng J, Zhao T F, Liao Z H, Yang C X. Cloning and functional identification of phytoene synthase gene from sweetpotat. J Plant Physiol, 2017, 53: 865-872. (in Chinese with English abstract)
[17] Chen K, Hong Z, Xue L, Zhao N, He S, Liu Q. A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. Plant Sci, 2018, 272: 243-254.
doi: S0168-9452(18)30157-2 pmid: 29807598
[18] Park S C, Kang L, Park W S, Ahn M J, Kwak S S, Kim H S. Carotenoid cleavage dioxygenase 4 (CCD4) cleaves β-carotene and interacts with IbOr in sweetpotato. Plant Biotechnol Rep, 2020, 14: 737-742.
doi: 10.1007/s11816-020-00649-y
[19] 江苏省农业科学院、 山东省农业科学院. 中国甘薯栽培学. 上海: 上海科学技术出版社, 1984. pp 175-177.
Jiangsu Academy of Agricultural Sciences, Shandong Academy of Agricultural Sciences. Chinese Sweet Potato Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1984. pp 175-177.
[20] 张小贝, 王光俊. 芽变育种在甘薯品种选育种的应用. 园艺与育苗, 2019, 39(1): 44-45.
Zhang X B, Wang G J. Application of bud mutation in the breeding of sweetpotato. Hortic Seed, 2019, 39(1): 44-45. (in Chinese with English abstract)
[21] Ma D, Li Q, Li X, Li H, Tang Z. Selection of parents for breeding edible varieties of sweetpotato with high carotene content. Agric Sci China, 2009, 10: 20-27.
[22] Yang J, Moeinzadeh M, Kuhl H, Helmuth J, Xiao P, Liu G, Zheng J, Sun Z, Fan W, Deng G. The haplotype-resolved genome sequence of hexaploid Ipomoea batatas reveals its evolutionary history. Nat Plants, 2017, 3: 696-703.
doi: 10.1038/s41477-017-0002-z pmid: 28827752
[23] Zhao D, Zhao L, Liu Y, Zhang A, Xiao S, Dai X, Yuan R, Zhou Z, Cao Q. Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway for the accumulation of anthocyanins and other flavonoids in sweetpotato root skin and leaf vein base. J Agric Food Chem, 2022, 70: 2574-2588.
doi: 10.1021/acs.jafc.1c05388
[24] Park S C, Kim Y H, Ji C Y, Park S, Jeong J C, Lee H S, Kwak S S. Stable internal reference genes for the normalization of real-time pcr in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One, 2012, 7: e51502.
doi: 10.1371/journal.pone.0051502
[25] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] Minoru K, Michihiro A, Susumu G, Masahiro H, Mika H, Masumi I, Toshiaki K, Shuichi K, Shujiro O, Toshiaki T. KEGG for linking genomes to life and the environment. Nucleic Acids Res, 2008, 36: 480-484.
pmid: 18077471
[27] Fraser P D, Bramley P M. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res, 2004, 43: 228-265.
doi: 10.1016/j.plipres.2003.10.002 pmid: 15003396
[28] Sandmann G, Rmer S, Fraser P D. Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng, 2006, 8: 291-302.
pmid: 16621640
[29] 潘鹤立, 潘腾飞, 佘文琴, 徐世荣, 李小婷, 黄汉唐, 陈源, 吴少华, 潘东明. 柚芽变株系类胡萝卜素代谢差异基因的转录组学分析. 热带作物学报, 2020, 41: 2165-2175.
Pan H L, Pan T F, She W Q, Xu S R, Li X R, Huang H T, Chen Y, Wu S H, Pan D M. Transcriptome analysis of carotenoid metabolism differential genes in pomelo bud strain. Chin J Trop Crops, 2020, 41: 2165-2175. (in Chinese with English abstract)
[30] 陆晨飞, 高月霞, 黄河, 戴思兰. 植物类胡萝卜素代谢及调控研究进展. 园艺学报, 2022, 49: 2559-2578.
doi: 10.16420/j.issn.0513-353x.2021-0531
Lu C F, Gao Y X, Huang H, Dai S L. Carotenoid metabolism and regulation in plants. Acta Hortic Sin, 2022, 49: 2559-2578. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2021-0531
[31] Wisutiamonkul A, Ampomah-Dwamena C, Allan A C, Ketsa S. Carotenoid accumulation in durian (Durio zibethinus) fruit is affected by ethylene via modulation of carotenoid pathway gene expression. Plant Physiol Biochem, 2017, 115: 308-319.
doi: 10.1016/j.plaphy.2017.03.021
[32] Rahimi S, Kim Y J, Devi B S R, Khorolragchaa A, Sukweenadhi J, Yang D C. Isolation and characterization of Panax ginseng geranylgeranyl-diphosphate synthase genes responding to drought stress. Eur J Plant Pathol, 2015, 142: 747-758.
doi: 10.1007/s10658-015-0648-1
[33] Kuntz M, Romer S, Suire C, Hugueney P, Weil J H, Schantz R, Camara B. Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Cap sicumannuum: correlative increase in enzyme activity and transcript level during fruit ripening. Plant J, 2002, 2: 25-34.
doi: 10.1111/tpj.1992.2.issue-1
[34] Oh S K, Jeong K, Dong H S, Yang J, Han K H. Cloning, characterization, and heterologous expression of a functional geranylgeranyl pyrophosphate synthase from sunflower (Helianthus annuus L.). J Plant Physiol, 2000, 157: 535-542.
[35] Ma X W, Zheng B, Ma Y L, Xu W T, Wu H X, Wang S B. Carotenoid accumulation and expression of carotenoid biosynthesis genes in mango flesh during fruit development and ripening. Sci Hortic, 2018, 237: 201-206.
doi: 10.1016/j.scienta.2018.04.009
[36] Liu L H, Shao Z Y, Zhang M, Wang Q M. Regulation of carotenoid metabolism in tomato. Mol Plant, 2015, 8: 28-39.
doi: 10.1016/j.molp.2014.11.006 pmid: 25578270
[37] 汤雨晴, 万水林, 闫承璞, 王雨亭, 胡钟东. 朱红橘果实成熟过程中类胡萝卜素的积累及相关基因的表达分析. 核农学报, 2022, 36: 567-577.
doi: 10.11869/j.issn.100-8551.2022.03.0567
Tang Y Q, Wan S L, Yan C P, Wang Y T, Hu Z D. Carotenoids accumalation and relative genes expression during the maturation of Zhuhong mandarin. J Nucl Agric Sci, 2022, 36: 567-577. (in Chinese with English abstract)
[38] 周徐子鑫, 杨威, 毛美琴, 薛彦斌, 马均. 金边红苞凤梨叶色突变体色素鉴定及类胡萝卜素合成限速基因筛选. 园艺学报, 2022, 49: 1081-109.
doi: 10.16420/j.issn.0513-353x.2021-0355
Zhou X Z X, Yang W, Mao M Q, Xue Y B, Ma J. Identification of pigment components and key genes in carotenoid pathway in mutants of chimeric Ananas comosus var. bracteatus. Acta Hortic Sin, 2022, 49: 1081-109. (in Chinese with English abstract)
[39] Hirschberg J. Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol, 2001, 4: 210-218.
doi: 10.1016/s1369-5266(00)00163-1 pmid: 11312131
[40] Yagiz A, Pranjali N, Namraj D, Cazzonelli C. Cis-carotene biosynthesis, evolution and regulation in plants: the emergence of novel signaling metabolites. Arch Biochem Biophys, 2018, 654: 172-184.
doi: S0003-9861(18)30171-1 pmid: 30030998
[41] Al-Babili S, Bouwmeester H J. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol, 2015, 66: 161-186.
doi: 10.1146/annurev-arplant-043014-114759 pmid: 25621512
[42] Stange J. Apocarotenoids: a new carotenoid-derived pathway. Sub-cellular Biochem, 2016, 79: 239-272.
[43] 安奕霖, 尹克林. 独脚金内酯合成路径及抗逆性研究进展. 现代农业科技, 2019, (9): 120-122.
An Y L, Yin K L. Research progress of synthetic pathway and stress resistance of strigolactone. Mod Agric Sci Technol, 2019, (9): 120-122. (in Chinese)
[44] Leila R, Nejia Z, Alexis D, Valerie L, Ahmed M, Patrice T. Molecular characterization and evolutionary pattern of the 9-cis-epoxycarotenoid dioxygenase NCED1 gene in grapevine. Mol Breed, 2013, 32: 253-266.
doi: 10.1007/s11032-013-9866-4
[45] Rose I M, Vasanthakaalam H. Comparison of the nutrient composition of four sweet potato varieties cultivated in Rwanda. Am J Food Nutr, 2011, 1: 34-38.
doi: 10.5251/ajfn.2011.1.1.34.38
[46] Park S C, Kim S H, Park S, Lee H U, Lee J S, Park W S, Ahn M J, Kim Y H, Jeong J C, Lee H S, Kwak S S. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar. Plant Physiol Biochem, 2015, 86: 82-90.
doi: 10.1016/j.plaphy.2014.11.017
[47] 万东璞, 于卓, 吴燕民, 丁梦琦, 李金博, 周美亮. 花青素代谢调控植物彩叶研究进展. 中国农业科技导报, 2020, 22(2): 30-38.
doi: 10.13304/j.nykjdb.2018.0233
Wan D P, Yu Z, Wu Y M, Ding M Q, Li J B, Zhou M L. Regulation of anthocyanin metabolism on colored leaves of plants. J Agric Sci Technol, 2020, 22(2): 30-38 (in Chinese with English abstract).
[48] 唐俊. 甘薯GGPPS基因的克隆分析及抗草甘膦半夏的获得. 西南大学硕士学位论文, 重庆, 2008.
Tang J. Molecular Characterization of Geranylgeranyl Diphosphate Synthase Gene from Ipomoea batatas and Obtaining of Anti-glyphosate Pinellia Ternate. MS Thesis of Southwest University, Chongqing, China, 2008. (in Chinese with English abstract)
[49] 王飞. 甘薯类胡萝卜素合成酶基因pds全长cDNA的克隆. 安徽理工大学学报(自然科学版), 2007, 27(1): 55-58.
Wang F. Clone of full-length cDNA of phytoene desaturase (gene pds) gene in sweet potato (Ipomoea batatas L.). J Anhui Univ Sci Technol (Nat Sci Edn)l, 2007, 27(1): 55-58. (in Chinese with English abstract)
[50] Yang Y, Shi D, Wang Y, Zhang L, Shi A. Transcript profiling for regulation of sweet potato skin color in Sushu 8 and its mutant Zhengshu 20. Plant Physiol Biochem, 2019, 148: 1-9.
doi: 10.1016/j.plaphy.2019.12.035
[51] Berman J, Sheng Y, Gómez L G, Veiga T, Ni X, Farré G, Capell T, Guitián J, Guitián P, Sandmann G, Christou P, Zhu C. Red anthocyanins and yellow carotenoids form the color of orange-flower gentian (Gentiana lutea L. var. aurantiaca). PLoS One, 2016, 11: e0162410.
doi: 10.1371/journal.pone.0162410
[52] Yang Y X, Wang J J, Ma Z H, Sun G S, Zhang C W. De novo sequencing and comparative transcriptome analysis of white petals and red labella in Phalaenopsis for discovery of genes related to flower color and floral differentation. Acta Soc Bot Polon, 2014, 83: 191-199.
doi: 10.5586/asbp.2014.023
[53] Ohmiya A, Kishimoto S, Aida R, Yoshioka S. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol, 2006, 142: 1193-1201.
pmid: 16980560
[54] Stanley L, Yuan Y W. Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus. Front Plant Sci, 2019, 10: 1017.
doi: 10.3389/fpls.2019.01017 pmid: 31447877
[55] Sagawa J M, Stanley L E, LaFountain A M, Frank H A, Liu C, Yuan Y W. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytol, 2015, 209: 1049-1057.
doi: 10.1111/nph.2016.209.issue-3
[56] Liu G Y, Thornburg R W. Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. Plant J, 2012, 72: 377-388.
[57] Rodriguez-Concepcion M, Lee K P, Johansson H, Toledo-Ortiz G, Steel G, Stewart K, Halliday K, Bou-Torren J. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet, 2014, 10: e1004416.
doi: 10.1371/journal.pgen.1004416
[58] 王霞, 李恩广, 玄曼霖, 燕宝会, 王晶珊, 隋炯明. 基于转录组测序的紫色甘薯突变体中花青素合成相关基因的分析. 青岛农业大学学报(自然科学版), 2018, 35(1): 27-31.
Wang X, Li E G, Xuan M L, Yan B H, Wang J S, Sui J M. Gene analysis of anthocyanin biosynthesis in purple sweet potato mutant based otranscriptome sequencing. J Qingdao Agric Univ (Nat Sci Edn), 2018, 35(1): 27-31. (in Chinese with English abstract)
[1] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[2] 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593.
[3] 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274.
[4] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[5] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[6] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[7] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[8] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价[J]. 作物学报, 2023, 49(4): 926-937.
[9] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[10] 靖小菁, 杨新笋, 靳晓杰, 刘意, 雷剑, 王连军, 柴沙沙, 张文英, 焦春海. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析[J]. 作物学报, 2023, 49(12): 3289-3301.
[11] 邱杰, 王泰, 蔡博伟, 段圣省, 徐林珊, 陈晓迪, 王晶, 葛贤宏, 李再云. 芸薹属同源异源六倍体(BcBcCcCcCoCo)染色体片段缺失的鉴定及其在色泽形成基因定位中的应用[J]. 作物学报, 2023, 49(11): 2902-2912.
[12] 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究[J]. 作物学报, 2023, 49(1): 129-139.
[13] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[14] 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087.
[15] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .