欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3289-3301.doi: 10.3724/SP.J.1006.2023.24284

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析

靖小菁1,2(), 杨新笋2, 靳晓杰2, 刘意3, 雷剑2, 王连军2, 柴沙沙2, 张文英1,*(), 焦春海2,*()   

  1. 1长江大学农学院, 湖北荆州 434025
    2湖北省农业科学院粮食作物研究所, 湖北武汉 430064
    3海南大学园艺学院 / 海南省热带园艺作物品质调控重点实验室, 海南海口 570228
  • 收稿日期:2022-12-23 接受日期:2023-05-24 出版日期:2023-12-12 网络出版日期:2023-06-04
  • 通讯作者: * 张文英, E-mail: wyzhang@yangtzeu.edu.cn; 焦春海, E-mail: jiaoch@hotmail.com
  • 作者简介:E-mail: 15172397885@163.com
  • 基金资助:
    国家重点研发计划项目(2019YFD1001300);国家重点研发计划项目(2019YFD1001305);财政部和农业农村部国家现代农业产业技术体系建设专项(Sweetpotato, CARS-10)

Cloning and characterization of IbMAPKK9 gene associated with Fusarium oxysporum f. sp. batatas in sweet potato

JING Xiao-Jing1,2(), YANG Xin-Sun2, JIN Xiao-Jie2, LIU Yi3, LEI Jian2, WANG Lian-Jun2, CHAI Sha-Sha2, ZHANG Wen-Ying1,*(), JIAO Chun-Hai2,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Food Crops institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
    3Horticulture College, Hainan University / Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Haikou 570228, Hainan, China
  • Received:2022-12-23 Accepted:2023-05-24 Published:2023-12-12 Published online:2023-06-04
  • Contact: * E-mail: wyzhang@yangtzeu.edu.cn; E-mail: jiaoch@hotmail.com
  • Supported by:
    National Key Research and Development Program of China(2019YFD1001300);National Key Research and Development Program of China(2019YFD1001305);China Agriculture Research System of MOF and MARA(Sweetpotato, CARS-10)

摘要:

促丝裂原活化蛋白激酶(MAPK)级联是生物体内一种重要的信号转导途径, 广泛存在于植物中MAPKKs位于该级联反应通路中间, 对信号传递起到关键作用, 目前在甘薯中少有报道。基于前期的转录组学分析, 本研究克隆出1个与甘薯抗病相关的基因IbMAPKK9。生物信息学分析表明, IbMAPKK9包含一个987 bp开放阅读框(open reading frame, ORF), 编码328个氨基酸, 具有1个蛋白激酶家族保守结构域(PF00069), IbMAPKK9蛋白以α螺旋和无规则卷曲为主, 启动子区包含多种激素(茉莉酸甲酯、乙烯、脱落酸、赤霉素、水杨酸)相关及胁迫响应元件。进化分析表明, IbMAPKK9蛋白与三叶裂薯、日本牵牛花、番茄和马铃薯亲缘关系较近。亚细胞定位显示IbMAPKK9蛋白定位于细胞核。实时荧光定量PCR发现IbMAPKK9在甘薯根、茎、叶和叶柄中均表达, 并响应甘薯蔓割病侵染。瞬时表达分析结果表明, IbMAPKK9引起5个与水杨酸合成途径及信号转导途径相关的基因在48 h内表达上调, 推测IbMAPKK9通过介导水杨酸信号途径影响植物的抗性。本研究可为进一步解析甘薯IbMAPKK9的生物学功能提供理论依据。

关键词: 甘薯, IbMAPKK9, 蔓割病, 基因克隆, 亚细胞定位, 瞬时表达

Abstract:

Mitogen-activated protein kinase (MAPK) cascades are important signaling modules in all organisms, which widely exist in plants. Mitogen-activated protein kinase kinase (MAPKKs) are located in the middle of the cascade reaction pathway and play the key roles in signal divergence. The disease resistance gene IbMAPKK9 was screened and cloned based on transcriptome data in sweetpotato, which contained a 987 bp open reading frame, encoding 328 amino acids and 1 domain (PF00069). Its protein mainly consisted of α-helixes and random coils. Multiple hormones (methyl jasmonate, ethylene, abscisic acid, gibberellin, and salicylic acid) and stress-related response elements were detected in the promoter region. Homologous protein comparison showed that IbMAPKK9 was closely related to ItMAPKK9-like (XP_031110493.1), InMAPKK9-like (XP_019189439.1), SlMAPKK9 (NP_001234595.1), and StMAPKK9 (XP_006363984.1). Besides, IbMAPKK9 gene encoded nuclear localization protein. The relative expression levels revealed that IbMAPKK9 was expressed in roots, stems, leaves, and petioles in response to Fusarium oxysporum f. sp batatas (Fob) infection. Transient expression analysis showed that IbMAPKK9 induced up-regulation of 5 genes related to salicylic acid synthesis pathway and signal transduction pathway within 48 hours, suggesting that IbMAPKK9 affected plant resistance by mediating salicylic acid signal pathway. This study can provide a theoretical basis for further analysis of the biological function of IbMAPKK9.

Key words: sweet potato, IbMAPKK9, Fusarium wilt, gene clone, subcellular localization, transient expression

表1

本研究所用引物"

引物名称
Primer name
序列
Primer sequence (5′-3′)
IbMAPKK9-CDS-F ATGGCACTTGTTCGTGAACGT
IbMAPKK9-CDS-R TTAATTTTGTGAATTAATTTGGGATTTG
IbMAPKK9-PRO-F CTGCCAATGTGTATCACATGTTAT
IbMAPKK9-PRO-R GATGAGAAGGTAGAAGGGGAGT
IbMAPKK9-qPCR-F GCGGTCTACGCCCTCAAAG
IbMAPKK9-qPCR-R GAATATCGGAGGTGCCGTGAC
β-Actin-F AGCAGCATGAAGATTAAGGTTGTAGCAC
β-Actin-R TGGAAAATTAGAAGCACTTCCTGTGAAC
NtPAL4-F CATTGCCACATTCAGCAACA
NtPAL4-R GGGTGGTGCTTCAACTTGTG
NtICS1-F GAGGGTGCGGAAAAAAATA
NtICS1-R CCTTGATAAGCATCGGGTT
NtNPR1-F TTCTGTATCTCTTGCTATG
NtNPR1-R ATCTACTGTTGTCCTCTGT
NtNPR3-F GGGGCTACTTACCTA
NtNPR3-R TCCCTGTCTGATTCA
NtNPR5-F AAGGATGGATGGGAT
NtNPR5-R AGTTGGGTTGTTTGC

图1

甘薯IbMAPKK9的CDS与启动子克隆 M: DL2000 marker; 1: IbMAPKK9基因CDS扩增产物; 2: IbMAPKK9启动子扩增产物。"

图2

IbMAPKK9启动子区的调控元件分布"

表2

IbMAPKK9基因启动区顺式作用元件分析"

位点名称
Site name
序列
Sequence (5′-3′)
功能
Function
ABRE ACGTG 脱落酸反应的顺式作用元件 Cis-acting element involved in abscisic acid response
ARE AAACCA 厌氧诱导反应的顺式作用调节元件 Cis-acting regulatory element essential for the anaerobic induction
ERE ATTTTAAA 乙烯响应元件 Ethylene responsive element
G-box CACGTG 参与光反应的顺式作用元件 Light responsive element
P-box CCTTTTG 赤霉素反应元件 Gibberellin-responsive element
MYB TAACCA 干旱诱导相关元件 MYB binding site involved in drought-inducibility
MYC CATGTG 逆境胁迫相关顺式调控元件 Stress related cis-regulatory elements
G-box CACGTG 茉莉酸甲酯应答元件 Cis-acting regulatory element involved in the MeJA-responsiveness

图3

甘薯IbMAPKK9蛋白保守结构域分析"

图4

甘薯IbMAPKK9蛋白质磷酸化位点预测结果"

表3

IbMAPKK9蛋白二级结构主要组成元件及比例"

名称
Name
α-螺旋
Alpha helix
β-转角
Beta turn
无规则卷曲
Random coil
延伸链
Extended strand
IbMAPKK9 33.54 5.18 46.95 14.33

图5

IbMAPKK9蛋白二级结构的预测 蓝色表示α-螺旋(Hh); 红色代表延伸链(Ee); 绿色表示β转角(Tt); 紫色表示无规则卷曲(Cc)。"

图6

IbMAPKK9蛋白三维结构预测"

图7

IbMAPKK9蛋白序列比对及亲缘关系 A: IbMAPKK9氨基酸序列比对图。橙线指示蛋白激酶家族保守结构域; B: IbMAPKK9蛋白进化树。IbMAPKK9用红星标注。Ib: 甘薯; It: 三叶裂薯(XP_031110493.1); In: 日本牵牛花(XP_019189439.1); Nb: 本氏烟草(BAE95414.1); Ds: 曼陀罗(MCD7449465.1); Na: 野生烟草(XP_019267338.1); St: 马铃薯(XP_006363984.1); Rs: 蔷薇(ALG02506.1); Cb: 风铃辣椒(PHT53658.1); Tw: 雷公藤(XP_038686910.1); Sl: 番茄(NP_001234595.1); La: 狭叶羽扇豆(XP_019431663.1)。"

图8

甘薯IbMAPKK9与拟南芥AtMAPKs的系统进化树"

图9

IbMAPKK9的蛋白质互作网络"

表4

STRING预测甘薯IbMAPKK9互作蛋白基本信息"

名称
Protein name
编号
Protein ID
注释
Protein annotation
蛋白长度
Protein length (aa)
置信度
Confidence
MPK3.0 A0A1J6KJD9 丝裂原活化蛋白激酶MAPK3
Mitogen-activated protein kinase 3
471 0.999
MPK3.1 A0A1J6IKA5 丝裂原活化蛋白激酶MAPK3
Mitogen-activated protein kinase 3
392 0.999
MPK3.2 A5H2L1 丝裂原活化蛋白激酶(Ser/Thr激酶家族)
Mitogen activated protein kinases (Ser/Thr protein kinase family)
375 0.999
NTF4.0 A0A314KXT0 丝裂原活化蛋白激酶(Ser/Thr激酶家族)
Mitogen activated protein kinases(Ser/Thr protein kinase family)
394 0.988
NTF4.1 A5H2L0 丝裂原活化蛋白激酶(Ser/Thr激酶家族)
Mitogen activated protein kinases (Ser/Thr protein kinase family)
393 0.993
MEKK1.0 A0A314L1U5 丝裂原活化蛋白激酶激酶激酶MAPKKK1
Mitogen-activated protein kinase kinase kinase 1
637 0.980
MEKK1.1 A0A1J6IHU2 丝裂原活化蛋白激酶激酶激酶MAPKKK1
Mitogen-activated protein kinase kinase kinase 1
561 0.980
NPK1.6 A0A314L7I4 丝裂原活化蛋白激酶激酶
Mitogen-activated protein kinase kinase
668 0.938
CTR1.1 A0A314KLJ0 丝氨酸蛋白激酶
Serine kinase
161 0.936
CTR1.8 A0A1J6IUT7 丝氨酸蛋白激酶
Serine kinase
827 0.936

表5

IbMAPKK9蛋白亚细胞定位预测"

网站
Software
细胞质
Chloroplast
细胞核
Nuclear
线粒体
Mitochondrion
细胞骨架
Cytoskelrtal
WoLF PSORT 9 1 3
PSORT II 4.3% 69.6% 21.7% 4.3%

图10

IbMAPKK9的亚细胞定位 A: 空GFP合并图; B: 空GFP荧光; C: IbMAPKK9-GFP合并图; D: IbMAPKK9-GFP荧光。"

图11

IbMAPKK9基因在不同组织的表达 不同大写字母代表在P < 0.01水平差异显著。"

图12

蔓割病病原菌侵染下不同时期IbMAPKK9基因的相对表达量 不同大写字母代表在P < 0.01水平差异显著。"

图13

IbMAPKK9基因在烟草表皮细胞中的瞬时表达 A: 空GFP明场; B: 空GFP荧光; C: 空GFP DAPI荧光染料; D: 空GFP合并图; E: IbMAPKK9-GFP明场; F: IbMAPKK9-GFP荧光; G: IbMAPKK9-GFP DAPI荧光染料; H: IbMAPKK9-GFP合并图。"

图14

烟草NtPAL4、NtICS1、NtNPR1、NtNPR3和NtNPR5的表达分析"

[1] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003
[2] 刘中华, 林志坚, 李华伟, 邱永祥, 邱思鑫, 张鸿, 余华, 蓝春准. 甘薯蔓割病抗性相关SRAP标记的获得. 福建农业学报, 2017, 32: 639-644.
Liu Z H, Lin Z J, Li H W, Qiu Y X, Qiu S X, Zhang H, Yu H, Lan C Z. SRAP marker associated with Fusarium-wilt resistance gene in sweet potato. Fujian J Agric Sci, 2017, 32: 639-644. (in Chinese with English abstract)
[3] 方树民, 陈玉森. 福建省甘薯蔓割病现状与研究进展. 植物保护, 2004, 30(5): 19-22.
Fang S M, Chen Y S. Advances in the research of sweet potato Fusarium wilt in Fujian province. Plant Prot, 2004, 30(5): 19-22. (in Chinese with English abstract)
[4] 雷剑, 杨新笋, 郭伟伟, 苏文瑾, 王连军. 甘薯蔓割病研究进展. 湖北农业科学, 2011, 50: 4775-4777.
Lei J, Yang X S, Guo W W, Su W J, Wang L J. Advances in research on sweet potato Fusarium wilt. Hubei Agric Sci, 2011, 50: 4775-4777. (in Chinese with English abstract)
[5] 刘意, 刘泓江, 陈培茹, 杨新笋, 雷剑, 王连军, 柴沙沙, 靳晓杰, 杨圆圆, 程贤亮, 焦春海, 张文英. 甘薯响应蔓割病病原菌侵染的IbWRKY7基因克隆与表达分析. 中国农业大学学报, 2022, 27(6): 91-99.
Liu Y, Liu H J, Chen P R, Yang X S, Lei J, Wang L J, Chai S S, Jin X J, Yang Y Y, Cheng X L, Jiao C H, Zhang W Y. Cloning and expression analysis of IbWRKY7gene in response to Fusarium oxysporum f. sp. batatas infection in sweet potato. J China Agric Univ, 2022, 27(6): 91-99. (in Chinese with English abstract)
[6] Sun T, Nitta Y, Zhang Q, Wu D, Tian H, Lee J S, Zhang Y. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Rep, 2018, 19: e45324.
doi: 10.15252/embr.201745324
[7] Zhang M, Zhang S. Mitogen-activated protein kinase cascades in plant signaling. J Integr Plant Biol, 2022, 64: 301-341.
doi: 10.1111/jipb.13215
[8] Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008, 413: 217-226.
doi: 10.1042/BJ20080625 pmid: 18570633
[9] Liu Y, Leary E, Saffaf O, Frank Baker R, Zhang S. Overlapping functions of YDA and MAPKKK3/MAPKKK5 upstream of MPK3/MPK6 in plant immunity and growth/development. J Integr Plant Biol, 2022, 64: 1531-1542.
doi: 10.1111/jipb.13309
[10] Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci, 2015, 20: 56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109
[11] Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018, 45: 1-10.
doi: S1369-5266(17)30213-3 pmid: 29753266
[12] Krysan P J, Jester P J, Gottwald J R, Sussman M R. An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell, 2002, 14: 1109-1120.
doi: 10.1105/tpc.001164
[13] Beck M, Komis G, Müller J, Menzel D, Samaj J. Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell, 2010, 22: 755-771.
doi: 10.1105/tpc.109.071746
[14] Kosetsu K, Matsunaga S, Nakagami H, Colcombet J, Sasabe M, Soyano T, Takahashi Y, Hirt H, Machida Y. The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell, 2010, 22: 3778-3790.
doi: 10.1105/tpc.110.077164
[15] Li N, Xu R, Li Y. Molecular networks of seed size control in plants. Annu Rev Plant Biol, 2019, 70: 435-463.
doi: 10.1146/annurev-arplant-050718-095851 pmid: 30795704
[16] Liu Y, Zhang D, Wang L, Li D. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol, 2013, 31: 1446-1460.
[17] Kong X, Pan J, Zhang D, Jiang S, Cai G, Wang L, Li D. Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize. Biochem Biophys Res Commun, 2013, 441: 964-969.
doi: 10.1016/j.bbrc.2013.11.008
[18] Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis B E. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci, 2006, 11: 192-198.
doi: 10.1016/j.tplants.2006.02.007
[19] Zhan H, Yue H, Zhao X, Wang M, Song W, Nie X. Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.). Genes, 2017, 8: 284.
doi: 10.3390/genes8100284
[20] Chen L, Hu W, Tan S, Wang M, Ma Z, Zhou S, Deng X, Zhang Y, Huang C, Yang G, He G. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon. PLoS One, 2012, 7: e46744.
doi: 10.1371/journal.pone.0046744
[21] Gao M, Liu J, Bi D, Zhang Z, Cheng F, Chen S, Zhang Y. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res, 2008, 18: 1190-1198.
doi: 10.1038/cr.2008.300 pmid: 18982020
[22] Qiu J L, Zhou L, Yun B W, Nielsen H B, Fiil B K, Petersen K, Mackinlay J, Loake G J, Mundy J, Morris P C. Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol, 2008, 148: 212-222.
doi: 10.1104/pp.108.120006
[23] Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell, 2004, 15: 141-152.
doi: 10.1016/j.molcel.2004.06.023
[24] Sethi V, Raghuram B, Sinha A K, Chattopadhyay S. A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell, 2014, 26: 3343-3357.
doi: 10.1105/tpc.114.128702
[25] Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell, 2007, 19: 805-818.
doi: 10.1105/tpc.106.046581 pmid: 17369371
[26] Bi G, Zhou Z, Wang W, Li L, Rao S, Wu Y, Zhang X, Menke F L H, Chen S, Zhou J M. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell, 2018, 30: 1543-1561.
doi: 10.1105/tpc.17.00981
[27] Shao Y, Yu X, Xu X, Li Y, Yuan W, Xu Y, Mao C, Zhang S, Xu J. The YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the RGF1-RGI ligand-receptor pair in regulating mitotic activity in root apical meristem. Mol Plant, 2020, 13: 1608-1623.
doi: 10.1016/j.molp.2020.09.004 pmid: 32916336
[28] Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S. Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell, 2017, 29: 526-542.
doi: 10.1105/tpc.16.00577
[29] Thulasi Devendrakumar K, Li X, Zhang Y. MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cell Mol Life Sci, 2018, 75: 2981-2989.
doi: 10.1007/s00018-018-2839-3 pmid: 29789867
[30] Kong X, Sun L, Zhou Y, Zhang M, Liu Y, Pan J, Li D. ZmMKK4 regulates osmotic stress through reactive oxygen species scavenging in transgenic tobacco. Plant Cell Rep, 2011, 30: 2097-2104.
doi: 10.1007/s00299-011-1116-9 pmid: 21735232
[31] Wu D, Ji J, Wang G, Guan W, Guan C, Jin C, Tian X. LcMKK, a novel group A mitogen-activated protein kinase kinase gene in Lycium chinense, confers dehydration and drought tolerance in transgenic tobacco via scavenging ROS and modulating expression of stress-responsive genes. Plant Growth Regul, 2015, 76: 269-279.
doi: 10.1007/s10725-014-9998-5
[32] Cardinale F, Meskiene I, Ouaked F, Hirt H. Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell, 2002, 14: 703-711.
pmid: 11910015
[33] 雷剑, 杨新笋, 苏文瑾, 王连军, 柴沙沙. 十个甘薯品种对蔓割病的抗性鉴定. 湖北农业科学, 2014, 53: 5422-5423.
Lei J, Yang X S, Su W J, Wang L J, Chai S S. Resistance identification of 10 sweetpotato varieties against Fusarium wilt. Hubei Agric Sci, 2014, 53: 5422-5423. (in Chinese with English abstract)
[34] 陈选阳, 林羽立, 张招娟, 邹为坤. 一种快速检测甘薯蔓割病抗性的方法. 福建: CN105075823A, 2015-11-25.
Chen X Y, Lin Y L, Zhang Z J, Zou W K. A rapid method for detecting the resistance of sweet potato to Fusarium wilt. Fujian: CN105075823A, 2015-11-25 (in Chinese with English abstract)
[35] 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定. 作物学报, 2023, 49: 36-45.
doi: 10.3724/SP.J.1006.2023.24006
Pu X, Wang K T, Zhang N, Si H J. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.). Acta Agron Sin, 2023, 49: 36-45. (in Chinese with English abstract)
[36] Sun T, Zhang Y. MAP kinase cascades in plant development and immune signaling. EMBO Rep, 2022, 23: e53817.
doi: 10.15252/embr.202153817
[37] Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklöf S, Till S, Bögre L, Hirt H, Meskiene I. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 2000, 12: 2247-2258.
pmid: 11090222
[38] Xing Y, Jia W, Zhang J.AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J, 2008, 54: 440-451.
doi: 10.1111/tpj.2008.54.issue-3
[39] Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem, 2008, 283: 26996-27006.
doi: 10.1074/jbc.M801392200
[40] Zhang L, Li Y, Lu W, Meng F, Wu C A, Guo X. Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J Exp Bot, 2012, 63: 3935-3951.
doi: 10.1093/jxb/ers086
[41] Wang C, Lu W, He X, Wang F, Zhou Y, Guo X, Guo X. The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol, 2016, 57: 1629-1942.
doi: 10.1093/pcp/pcw090 pmid: 27335349
[42] Ma H, Chen J, Zhang Z, Ma L, Yang Z, Zhang Q, Li X, Xiao J, Wang S. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J, 2017, 92: 557-570.
doi: 10.1111/tpj.2017.92.issue-4
[43] Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle I D, De Luca V, Després C. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep, 2012, 1: 639-647.
doi: 10.1016/j.celrep.2012.05.008
[44] Zhou Y, Park S H, Chua N H. UBP12/UBP13-mediated deubiquitination of salicylic acid receptor NPR3 suppresses plant immunity. Mol Plant, 2023, 16: 232-244.
doi: 10.1016/j.molp.2022.11.008
[45] Wildermuth M C, Dewdney J, Wu G, Ausubel F M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001, 414: 562-565.
doi: 10.1038/35107108
[46] Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y H, Yu J Q, Chen Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol, 2010, 153: 1526-1538.
doi: 10.1104/pp.110.157370
[47] Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature, 2008, 451: 789-795.
doi: 10.1038/nature06543
[48] Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J, 2007, 52: 1066-1079.
doi: 10.1111/tpj.2007.52.issue-6
[1] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[2] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[3] 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593.
[4] 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274.
[5] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[6] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[7] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[8] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[9] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价[J]. 作物学报, 2023, 49(4): 926-937.
[10] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[11] 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249.
[12] 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45.
[13] 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究[J]. 作物学报, 2023, 49(1): 129-139.
[14] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[15] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .