作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3289-3301.doi: 10.3724/SP.J.1006.2023.24284
靖小菁1,2(), 杨新笋2, 靳晓杰2, 刘意3, 雷剑2, 王连军2, 柴沙沙2, 张文英1,*(), 焦春海2,*()
JING Xiao-Jing1,2(), YANG Xin-Sun2, JIN Xiao-Jie2, LIU Yi3, LEI Jian2, WANG Lian-Jun2, CHAI Sha-Sha2, ZHANG Wen-Ying1,*(), JIAO Chun-Hai2,*()
摘要:
促丝裂原活化蛋白激酶(MAPK)级联是生物体内一种重要的信号转导途径, 广泛存在于植物中。MAPKKs位于该级联反应通路中间, 对信号传递起到关键作用, 目前在甘薯中少有报道。基于前期的转录组学分析, 本研究克隆出1个与甘薯抗病相关的基因IbMAPKK9。生物信息学分析表明, IbMAPKK9包含一个987 bp开放阅读框(open reading frame, ORF), 编码328个氨基酸, 具有1个蛋白激酶家族保守结构域(PF00069), IbMAPKK9蛋白以α螺旋和无规则卷曲为主, 启动子区包含多种激素(茉莉酸甲酯、乙烯、脱落酸、赤霉素、水杨酸)相关及胁迫响应元件。进化分析表明, IbMAPKK9蛋白与三叶裂薯、日本牵牛花、番茄和马铃薯亲缘关系较近。亚细胞定位显示IbMAPKK9蛋白定位于细胞核。实时荧光定量PCR发现IbMAPKK9在甘薯根、茎、叶和叶柄中均表达, 并响应甘薯蔓割病侵染。瞬时表达分析结果表明, IbMAPKK9引起5个与水杨酸合成途径及信号转导途径相关的基因在48 h内表达上调, 推测IbMAPKK9通过介导水杨酸信号途径影响植物的抗性。本研究可为进一步解析甘薯IbMAPKK9的生物学功能提供理论依据。
[1] |
王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003 |
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003 |
|
[2] | 刘中华, 林志坚, 李华伟, 邱永祥, 邱思鑫, 张鸿, 余华, 蓝春准. 甘薯蔓割病抗性相关SRAP标记的获得. 福建农业学报, 2017, 32: 639-644. |
Liu Z H, Lin Z J, Li H W, Qiu Y X, Qiu S X, Zhang H, Yu H, Lan C Z. SRAP marker associated with Fusarium-wilt resistance gene in sweet potato. Fujian J Agric Sci, 2017, 32: 639-644. (in Chinese with English abstract) | |
[3] | 方树民, 陈玉森. 福建省甘薯蔓割病现状与研究进展. 植物保护, 2004, 30(5): 19-22. |
Fang S M, Chen Y S. Advances in the research of sweet potato Fusarium wilt in Fujian province. Plant Prot, 2004, 30(5): 19-22. (in Chinese with English abstract) | |
[4] | 雷剑, 杨新笋, 郭伟伟, 苏文瑾, 王连军. 甘薯蔓割病研究进展. 湖北农业科学, 2011, 50: 4775-4777. |
Lei J, Yang X S, Guo W W, Su W J, Wang L J. Advances in research on sweet potato Fusarium wilt. Hubei Agric Sci, 2011, 50: 4775-4777. (in Chinese with English abstract) | |
[5] | 刘意, 刘泓江, 陈培茹, 杨新笋, 雷剑, 王连军, 柴沙沙, 靳晓杰, 杨圆圆, 程贤亮, 焦春海, 张文英. 甘薯响应蔓割病病原菌侵染的IbWRKY7基因克隆与表达分析. 中国农业大学学报, 2022, 27(6): 91-99. |
Liu Y, Liu H J, Chen P R, Yang X S, Lei J, Wang L J, Chai S S, Jin X J, Yang Y Y, Cheng X L, Jiao C H, Zhang W Y. Cloning and expression analysis of IbWRKY7gene in response to Fusarium oxysporum f. sp. batatas infection in sweet potato. J China Agric Univ, 2022, 27(6): 91-99. (in Chinese with English abstract) | |
[6] |
Sun T, Nitta Y, Zhang Q, Wu D, Tian H, Lee J S, Zhang Y. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Rep, 2018, 19: e45324.
doi: 10.15252/embr.201745324 |
[7] |
Zhang M, Zhang S. Mitogen-activated protein kinase cascades in plant signaling. J Integr Plant Biol, 2022, 64: 301-341.
doi: 10.1111/jipb.13215 |
[8] |
Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008, 413: 217-226.
doi: 10.1042/BJ20080625 pmid: 18570633 |
[9] |
Liu Y, Leary E, Saffaf O, Frank Baker R, Zhang S. Overlapping functions of YDA and MAPKKK3/MAPKKK5 upstream of MPK3/MPK6 in plant immunity and growth/development. J Integr Plant Biol, 2022, 64: 1531-1542.
doi: 10.1111/jipb.13309 |
[10] |
Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci, 2015, 20: 56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109 |
[11] |
Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018, 45: 1-10.
doi: S1369-5266(17)30213-3 pmid: 29753266 |
[12] |
Krysan P J, Jester P J, Gottwald J R, Sussman M R. An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell, 2002, 14: 1109-1120.
doi: 10.1105/tpc.001164 |
[13] |
Beck M, Komis G, Müller J, Menzel D, Samaj J. Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell, 2010, 22: 755-771.
doi: 10.1105/tpc.109.071746 |
[14] |
Kosetsu K, Matsunaga S, Nakagami H, Colcombet J, Sasabe M, Soyano T, Takahashi Y, Hirt H, Machida Y. The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell, 2010, 22: 3778-3790.
doi: 10.1105/tpc.110.077164 |
[15] |
Li N, Xu R, Li Y. Molecular networks of seed size control in plants. Annu Rev Plant Biol, 2019, 70: 435-463.
doi: 10.1146/annurev-arplant-050718-095851 pmid: 30795704 |
[16] | Liu Y, Zhang D, Wang L, Li D. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol, 2013, 31: 1446-1460. |
[17] |
Kong X, Pan J, Zhang D, Jiang S, Cai G, Wang L, Li D. Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize. Biochem Biophys Res Commun, 2013, 441: 964-969.
doi: 10.1016/j.bbrc.2013.11.008 |
[18] |
Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis B E. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci, 2006, 11: 192-198.
doi: 10.1016/j.tplants.2006.02.007 |
[19] |
Zhan H, Yue H, Zhao X, Wang M, Song W, Nie X. Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.). Genes, 2017, 8: 284.
doi: 10.3390/genes8100284 |
[20] |
Chen L, Hu W, Tan S, Wang M, Ma Z, Zhou S, Deng X, Zhang Y, Huang C, Yang G, He G. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon. PLoS One, 2012, 7: e46744.
doi: 10.1371/journal.pone.0046744 |
[21] |
Gao M, Liu J, Bi D, Zhang Z, Cheng F, Chen S, Zhang Y. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res, 2008, 18: 1190-1198.
doi: 10.1038/cr.2008.300 pmid: 18982020 |
[22] |
Qiu J L, Zhou L, Yun B W, Nielsen H B, Fiil B K, Petersen K, Mackinlay J, Loake G J, Mundy J, Morris P C. Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol, 2008, 148: 212-222.
doi: 10.1104/pp.108.120006 |
[23] |
Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell, 2004, 15: 141-152.
doi: 10.1016/j.molcel.2004.06.023 |
[24] |
Sethi V, Raghuram B, Sinha A K, Chattopadhyay S. A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell, 2014, 26: 3343-3357.
doi: 10.1105/tpc.114.128702 |
[25] |
Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell, 2007, 19: 805-818.
doi: 10.1105/tpc.106.046581 pmid: 17369371 |
[26] |
Bi G, Zhou Z, Wang W, Li L, Rao S, Wu Y, Zhang X, Menke F L H, Chen S, Zhou J M. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell, 2018, 30: 1543-1561.
doi: 10.1105/tpc.17.00981 |
[27] |
Shao Y, Yu X, Xu X, Li Y, Yuan W, Xu Y, Mao C, Zhang S, Xu J. The YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the RGF1-RGI ligand-receptor pair in regulating mitotic activity in root apical meristem. Mol Plant, 2020, 13: 1608-1623.
doi: 10.1016/j.molp.2020.09.004 pmid: 32916336 |
[28] |
Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S. Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell, 2017, 29: 526-542.
doi: 10.1105/tpc.16.00577 |
[29] |
Thulasi Devendrakumar K, Li X, Zhang Y. MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cell Mol Life Sci, 2018, 75: 2981-2989.
doi: 10.1007/s00018-018-2839-3 pmid: 29789867 |
[30] |
Kong X, Sun L, Zhou Y, Zhang M, Liu Y, Pan J, Li D. ZmMKK4 regulates osmotic stress through reactive oxygen species scavenging in transgenic tobacco. Plant Cell Rep, 2011, 30: 2097-2104.
doi: 10.1007/s00299-011-1116-9 pmid: 21735232 |
[31] |
Wu D, Ji J, Wang G, Guan W, Guan C, Jin C, Tian X. LcMKK, a novel group A mitogen-activated protein kinase kinase gene in Lycium chinense, confers dehydration and drought tolerance in transgenic tobacco via scavenging ROS and modulating expression of stress-responsive genes. Plant Growth Regul, 2015, 76: 269-279.
doi: 10.1007/s10725-014-9998-5 |
[32] |
Cardinale F, Meskiene I, Ouaked F, Hirt H. Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell, 2002, 14: 703-711.
pmid: 11910015 |
[33] | 雷剑, 杨新笋, 苏文瑾, 王连军, 柴沙沙. 十个甘薯品种对蔓割病的抗性鉴定. 湖北农业科学, 2014, 53: 5422-5423. |
Lei J, Yang X S, Su W J, Wang L J, Chai S S. Resistance identification of 10 sweetpotato varieties against Fusarium wilt. Hubei Agric Sci, 2014, 53: 5422-5423. (in Chinese with English abstract) | |
[34] | 陈选阳, 林羽立, 张招娟, 邹为坤. 一种快速检测甘薯蔓割病抗性的方法. 福建: CN105075823A, 2015-11-25. |
Chen X Y, Lin Y L, Zhang Z J, Zou W K. A rapid method for detecting the resistance of sweet potato to Fusarium wilt. Fujian: CN105075823A, 2015-11-25 (in Chinese with English abstract) | |
[35] |
濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定. 作物学报, 2023, 49: 36-45.
doi: 10.3724/SP.J.1006.2023.24006 |
Pu X, Wang K T, Zhang N, Si H J. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.). Acta Agron Sin, 2023, 49: 36-45. (in Chinese with English abstract) | |
[36] |
Sun T, Zhang Y. MAP kinase cascades in plant development and immune signaling. EMBO Rep, 2022, 23: e53817.
doi: 10.15252/embr.202153817 |
[37] |
Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklöf S, Till S, Bögre L, Hirt H, Meskiene I. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 2000, 12: 2247-2258.
pmid: 11090222 |
[38] |
Xing Y, Jia W, Zhang J.AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J, 2008, 54: 440-451.
doi: 10.1111/tpj.2008.54.issue-3 |
[39] |
Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem, 2008, 283: 26996-27006.
doi: 10.1074/jbc.M801392200 |
[40] |
Zhang L, Li Y, Lu W, Meng F, Wu C A, Guo X. Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J Exp Bot, 2012, 63: 3935-3951.
doi: 10.1093/jxb/ers086 |
[41] |
Wang C, Lu W, He X, Wang F, Zhou Y, Guo X, Guo X. The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol, 2016, 57: 1629-1942.
doi: 10.1093/pcp/pcw090 pmid: 27335349 |
[42] |
Ma H, Chen J, Zhang Z, Ma L, Yang Z, Zhang Q, Li X, Xiao J, Wang S. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J, 2017, 92: 557-570.
doi: 10.1111/tpj.2017.92.issue-4 |
[43] |
Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle I D, De Luca V, Després C. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep, 2012, 1: 639-647.
doi: 10.1016/j.celrep.2012.05.008 |
[44] |
Zhou Y, Park S H, Chua N H. UBP12/UBP13-mediated deubiquitination of salicylic acid receptor NPR3 suppresses plant immunity. Mol Plant, 2023, 16: 232-244.
doi: 10.1016/j.molp.2022.11.008 |
[45] |
Wildermuth M C, Dewdney J, Wu G, Ausubel F M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001, 414: 562-565.
doi: 10.1038/35107108 |
[46] |
Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y H, Yu J Q, Chen Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol, 2010, 153: 1526-1538.
doi: 10.1104/pp.110.157370 |
[47] |
Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature, 2008, 451: 789-795.
doi: 10.1038/nature06543 |
[48] |
Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J, 2007, 52: 1066-1079.
doi: 10.1111/tpj.2007.52.issue-6 |
[1] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[2] | 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527. |
[3] | 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593. |
[4] | 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274. |
[5] | 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798. |
[6] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[7] | 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444. |
[8] | 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261. |
[9] | 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价[J]. 作物学报, 2023, 49(4): 926-937. |
[10] | 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101. |
[11] | 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249. |
[12] | 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45. |
[13] | 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究[J]. 作物学报, 2023, 49(1): 129-139. |
[14] | 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241. |
[15] | 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937. |
|