欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1384-1393.doi: 10.3724/SP.J.1006.2024.34159

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用野生种Solanum boliviense创制马铃薯抗寒种质

刘园园1(), 董建科1, 应静文1, 梅文祥1, 程刚2, 郭晶晶1, 焦文标3,*(), 宋波涛1,*()   

  1. 1华中农业大学园艺林学学院 / 农业农村部马铃薯生物学与生物技术重点实验室 / 果蔬园艺作物种质创新与利用全国重点实验室, 湖北武汉 430070
    2鄂州市农产品质量安全检验检测所, 湖北鄂州 436099
    3华中农业大学信息学院, 湖北武汉 430070
  • 收稿日期:2023-10-02 接受日期:2024-01-31 出版日期:2024-06-12 网络出版日期:2024-02-21
  • 通讯作者: * 宋波涛, E-mail: songbotao@mail.hzau.edu.cn; 焦文标, E-mail: jiao@mail.hzau.edu.cn
  • 作者简介:E-mail: liu1967588426@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFD1100201);财政部和农业农村部国家现代农业产业技术体系建设专项(Potato, CARS-09)

Creating cold resistant germplasm of potato using Solanum boliviense

LIU Yuan-Yuan1(), DONG Jian-Ke1, YING Jing-Wen1, MEI Wen-Xiang1, CHENG Gang2, GUO Jing-Jing1, JIAO Wen-Biao3,*(), SONG Bo-Tao1,*()   

  1. 1National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops / Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Institute of Detection for Agricultural Products of Ezhou, Ezhou 436099, Hubei, China
    3College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2023-10-02 Accepted:2024-01-31 Published:2024-06-12 Published online:2024-02-21
  • Contact: * E-mail: songbotao@mail.hzau.edu.cn;E-mail: jiao@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1100201);China Agriculture Research System of MOF and MARA(Potato, CARS-09)

摘要:

马铃薯栽培种不耐低温霜冻, 低温直接影响植株和块茎的生长和发育, 进而影响马铃薯的产量。马铃薯野生种抗性资源丰富, S. boliviense等野生种存在丰富的低温霜冻抗性, 它们是改良马铃薯栽培种的重要资源。本研究在对野生种S. boliviense不同株系进行抗寒性鉴定的基础上, 筛选得到综合性状优良的株系BLV29-2 (S. boliviense)并与二倍体栽培种ED25进行杂交和回交, 获得了抗寒性较强的种间杂种材料; 再利用秋水仙素处理部分抗寒性明显改良的种间杂种株系, 对这些加倍株系进行抗寒性和农艺性状鉴定, 结果表明所有加倍材料在株高、花粉粒直径和单个薯重等方面均有显著增加, 大部分材料加倍前后抗寒性无显著变化, 但较栽培种对照显著提升。将加倍株系T-FT073-4-7与优良四倍体栽培种华薯13号进行杂交, 杂交后代自然霜冻评级结果出现抗感分离, 47%材料的抗寒性偏向母本T-FT073-4-7, 显著高于父本栽培种, 进一步结合田间农艺性状筛选出了部分综合性状优良且抗寒性显著改良的育种材料。本研究已成功将二倍体野生种S. boliviense的优良抗寒性导入四倍体栽培种中, 改良了现有栽培种对低温敏感的不足, 为抗寒遗传育种材料的选育和进一步改良奠定了重要基础。

关键词: 马铃薯, 抗寒, 农艺性状, 染色体加倍, 遗传改良

Abstract:

Potato cultivars are not tolerant to low temperatures and frost, which directly affects the growth and development of plants and tubers, thus affecting potato yield. Wild potato species, such as S. boliviense, have abundant resources for cold frost resistance, which are important resources for improving cultivated potato varieties. Based on cold resistance identification of different S. boliviense strains, we screened and obtained the excellent strain BLV29-2 (S. boliviense) with comprehensive traits. It was then crossed and backcrossed with the diploid cultivar ED25, resulting in interspecific hybrids with stronger cold resistance. Inter-specific hybrid strains that had shown significant improvement in cold tolerance were treated with recycled colchicine. Cold tolerance and agronomic traits were assessed in some of the strains, and the results showed that all the doubled materials had significant increases in plant height, pollen grain diameter, and individual potato weight. Most of the materials showed there was no significant change in cold tolerance before and after doubling, but significantly improved compared to the cultivated species control. By crossing the treated strain T-FT073-4-7 with the superior tetraploid cultivar Huashu 13, we observed segregation of cold resistance in the offspring, with the 47% of the materials showing a preference towards the maternal parent T-FT073-4-7 and significantly higher cold resistance compared to the paternal cultivar. Through further field evaluations of agronomic traits, we identified selected breeding materials with the improved overall traits and the significantly enhanced cold resistance. This study successfully introduced the excellent cold resistance of the diploid wild species S. boliviense into the tetraploid cultivar, thus addressing the deficiency of the existing cultivar in terms of low-temperature sensitivity. These findings provide an important foundation for the selection and further improvement of cold-resistant genetic breeding materials.

Key words: potato, cold resistance, agronomic traits, chromosome doubling, genetic improvement

表1

野生种S. boliviense的10个材料共25个株系"

株系
Line
材料
Accession
株系
Line
材料
Accession
株系
Line
材料
Accession
BLV29-1 PI 472806 BLV33-1 PI 498362 BLV36-3 PI 545999
BLV29-2 PI 472806 BLV33-2 PI 498362 BLV37-1 PI 546000
BLV29-3 PI 472806 BLV33-3 PI 498362 BLV37-2 PI 546000
BLV30-1 PI 473131 BLV34-1 PI 498383 BLV37-3 PI 546000
BLV30-2 PI 473131 BLV34-2 PI 498383 BLV38-1 PI 546010
BLV31-1 PI 473134 BLV34-3 PI 498383 BLV38-2 PI 546010
BLV32-1 PI 473135 BLV35-2 PI 500031 BLV38-3 PI 546010
BLV32-2 PI 473135 BLV36-1 PI 545999
BLV32-3 PI 473135 BLV36-2 PI 545999

图1

S. boliviense抗寒性和农艺性状鉴定 FT为直接抗寒能力, CA为驯化抗寒能力。A: S. boliviense抗寒性鉴定; B: S. boliviense株高统计; C: S. boliviense花粉活力鉴定; D: BLV29-2花粉; E: BLV37-2花粉; F: BLV29-2植株; G: BLV33-3植株。数值为平均值±SD (n = 3)。标尺为20 μm。"

图2

FT051农艺性状鉴定 A: BLV29-2植株; B: ED25植株; C: FT051-2植株; D: FT051-3植株; E: BLV29-2花; F: ED25花; G: FT051-3花; H: FT051-9花。"

图3

FT073抗寒性鉴定 FT为直接抗寒能力, CA为驯化抗寒能力。白色和黑色的柱子分别表示直接抗寒性和驯化抗寒性。数值为平均值±SD (n = 3)。"

图4

FT073农艺性状鉴定 A: FT073-19植株; B: FT073株高; C: FT073茎粗; D: FT073主茎数; E: FT073-16植株; F: FT073茎色; G: FT073叶形指数; H: FT073叶面积。数值为平均值±SD (n = 3)。"

图5

加倍处理材料倍性鉴定 A~F为染色体计数倍性鉴定。A: AC142; B: E3; C: FT073-15; D~F: T-FT073-15。标尺为5 μm。"

图6

材料加倍前后抗寒性鉴定 FT为直接抗寒能力, CA为驯化抗寒能力。黑色和灰色的柱子分别表示加倍前和加倍后材料的抗寒性。数值为平均值±SD (n = 3)。星号表示加倍前后有显著差异(*P < 0.05), 分析方法为Student’s t检验。"

图7

材料加倍前后农艺性状鉴定 A: FT073-15植株; B: T-FT073-15-1植株; C: FT073-15花; D: T-FT073-15-1花; E: FT073-15花粉; F: T-FT073-15-1花粉; G: FT073-15块茎; H: T-FT073-15-1块茎。数值为平均值±SD (n = 3)。"

图8

FT123霜冻后表型 A: T-FT073-4-7; B: 华薯13号; C: FT123-2; D: FT123-6; E: FT123-16; F: FT123-25; G: FT123-33; H: FT123-47。"

[1] 谢婷婷, 柳俊. 光周期诱导马铃薯块茎形成的分子机理研究进展. 中国农业科学, 2013, 46: 4657-4664.
doi: 10.3864/j.issn.0578-1752.2013.22.003
Xie T T, Liu J. Molecular mechanism underlying photoperiodic-induced potato tuber formation. Sci Agric Sin, 2013, 46: 4657-4664. (in Chinese with English abstract)
[2] 刘园园, 董建科, 单雅成, 吴江海, 何天久, 刘明慧, 李静文, 宋波涛. 马铃薯野生种Solanum chacoense的特征特性及其在育种中的利用. 中国马铃薯, 2023, 37: 53-61.
Liu Y Y, Dong J K, Shan Y C, Wu J H, He T J, Liu M H, Li J W, Song B T. Characteristics and application in breeding of wild species Solanum chacoense. Chin Potato J, 2023, 37: 53-61. (in Chinese with English abstract)
[3] 谢从华, 柳俊. 中国马铃薯引进与传播之辨析. 华中农业大学学报, 2021, 40(4): 1-7.
Xie C H, Liu J. Review of introduction and spread of potato in China. J Huazhong Agric Univ, 2021, 40(4): 1-7. (in Chinese with English abstract)
[4] 李飞, 刘杰, 金黎平, 段绍光, 邓宽平. 过氧化物酶同工酶与马铃薯耐冻性的关系. 贵州农业科学, 2010, 38(8): 27-29.
Li F, Liu J, Jin L P, Duan S G, Deng K P. Relationship between POD isoenzyme and freeze tolerance in potato. Guizhou Agric Sci, 2010, 38(8): 27-29. (in Chinese with English abstract)
[5] 陈国保, 夏小曼, 李永平. 两种类型的低温对广西玉林冬季免耕马铃薯的影响. 作物杂志, 2010, (1): 95-98.
Chen G B, Xia X M, Li Y P. Impact of two types of low temperature on winter no-till potato. Crops, 2010, (1): 95-98. (in Chinese with English abstract)
[6] 梅文祥. 马铃薯资源抗寒性鉴定及S. demssium × S. tuberosum杂交后代抗性鉴定. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Mei W X. Detection of Freezing Tolerance in Potato Resources and Resistance in Hybrids of S. demssium and S. tuberosum. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[7] 董建科, 涂卫, 赵庆浩, 周帅, 王俊豪, 张卓, 宋波涛. 国内主要马铃薯品种(系)抗寒性鉴定. 见: 屈冬玉, 金黎平, 陈伊里主编. 马铃薯产业与健康消费 哈尔滨: 黑龙江科学技术出版社, 2019. pp 189-195.
Dong J K, Tu W, Zhao Q H, Zhou S, Wang J H, Zhang Z, Song B T. Identification of cold resistance of major potato varieties (lines) in China. In: Qu D Y, Jin L P, Chen Y L, eds. Potato Industry and Health Consumption. Harbin: Heilongjiang Science and Technology Press, 2019. pp 189-195. (in Chinese)
[8] Vega S E, Bamberg J B. Screening the US potato collection for frost hardiness. Am J Potato Res, 1995, 72: 13-21.
[9] Hawkes J G. The Potato: Evolution, Biodiversity and Genetic Resources. Washington DC: Smithsonian Institution Press, 1990.
[10] Jansky S. Parental effects on the performance of cultivated × wild species hybrids in potato. Euphytica, 2011, 178: 273-281.
[11] Machida-Hirano R. Diversity of potato genetic resources. Breed Sci, 2015, 1: 26-40.
[12] Jansky S H, Simon R, Spooner D M. A test of taxonomic predictivity: resistance to early blight in wild relatives of cultivated potato. Phytopathology, 2008, 98: 680-687.
doi: 10.1094/PHYTO-98-6-0680 pmid: 18944292
[13] Bachmann-Pfabe S, Hammann T, Kruse J, Dehmer K J. Screening of wild potato genetic resources for combined resistance to late blight on tubers and pale potato cyst nematodes. Euphytica, 2019, 215: 48.
[14] Lynch D R, Kawchuk L M, Chen Q, Kokko M. Resistance to Fusarium sambucinum in wild and cultivated Solanum species. Am J Potato Res, 2003, 80: 353-358.
[15] Gray G R, Chauvin L P, Sarhan F, Huner N P A. Cold acclimation and freezing tolerance (a complex interaction of light and temperature). Plant Physiol, 1997, 114: 467-474.
doi: 10.1104/pp.114.2.467 pmid: 12223720
[16] Seppanen M, Majaharju M, Somersalo S. Freezing tolerance, cold acclimation and oxidative stress in potato: paraquat tolerance is related to acclimation but is a poor indicator of freezing tolerance. Plant Physiol, 1998, 102: 454-460.
[17] 董建科, 涂卫, 王海波, 应静文, 杜鹃, 赵喜娟, 赵庆浩, 黄维, 蔡兴奎, 宋波涛. 马铃薯高效染色体加倍方法建立与抗寒资源创制. 作物学报, 2020, 46: 1659-1666.
doi: 10.3724/SP.J.1006.2020.04073
Dong J K, Tu W, Wang H B, Ying J W, Du J, Zhao X J, Zhao Q H, Huang W, Cai X K, Song B T. Establishment of a high efficient method for chromosome doubling and exploration of cold-resistant resources in potato. Acta Agron Sin, 2020, 46: 1659-1666. (in Chinese with English abstract)
[18] Dpooležel J, Binarová P, Lcretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant, 1989, 31: 113-120.
[19] Zhao Z F, Wang Y H, Huang S P. Plant chromosome count. For Res, 1990, 5: 503-508.
[20] Ugborogho R E, Oyelana O A. Meiosis, pollen morphology and perianth stomata of some taxa of Amaranthus L. (Amaranthaceae) in Nigeria. Feddes Repert, 1992, 103: 363-373.
[21] 魏亮, 徐建飞, 卞春松, 段绍光, 胡军, 刘杰, 庞万福, 于卓, 金黎平. 中国主要马铃薯栽培品种抗寒性的鉴定与评价. 植物生理学报, 2017, 53: 815-823.
Wei L, Xu J F, Bian C S, Duan S G, Hu J, Liu J, Pang W F, Yu Z, Jin L P. Identification and evaluation of the freezing tolerance of major potato varieties in China. Acta Phytophysiol Sin, 2017, 53: 815-823. (in Chinese with English abstract)
[22] Li P H. Frost killing temperatures of 60 tuber-bearing Solanum species. Am J Potato Res, 1977, 54: 452-456.
[23] Stone J M, Palta J P, Bamberg J B, Weiss L S, Harbage J F. Inheritance of freezing resistance in tuber-bearing Solanum species: evidence for independent genetic control of no acclimated freezing tolerance and cold acclimation capacity. Proc Natl Acad Sci USA, 1993, 90: 7869-7873.
pmid: 11607422
[24] Vega S E, Del Rio A H, Bamberg J B, Palta J P. Marker-assisted genetic analysis of non-acclimated freezing tolerance and cold acclimation capacity in a backcross Solarium population. Am J Potato Res, 2003, 80: 359-369.
[25] Bamberg J B, Palta J P, Vega S E. Solanum commersonii cytoplasm does not improve freezing tolerance in substitution backcross hybrids with frost-sensitive potato species. Am J Potato Res, 2005, 82: 251-254.
[26] Hermundstad S, Peloquin S J. Tuber yield and tuber traits of haploid-wild species F1 hybrids. Am J Potato Res, 1986, 29: 289-297.
[27] Tu W, Dong J K, Zou Y, Zhao Q H, Wang H B, Ying J W, Wu J H, Du J, Cai X K, Song B T. Interspecific potato somatic hybrids between Solanum malmeanum and S. tuberosum provide valuable resources for freezing-tolerance breeding. Plant Cell Tissue Organ Cult, 2021, 147: 73-83.
[28] Spooner D M, Ghislain M, Simon R, Jansky S H, Gavrilenko T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev, 2014, 80: 283-383.
[29] Johnston S A, Hanneman R E. Support of the endosperm balance number hypothesis utilizing some tuber-bearing Solanum species. Am J Potato Res, 1980, 57: 7-14.
[30] Chen Y K, Palta J P, Bamberg J B. 463 understanding genetics of freezing tolerance: expression of freezing tolerance in the interspecific F1 and somatic hybrids of potatoes. J Am Soc Hortic Sci, 1999, 34: 524.
[31] Cardi T, D’Ambrosio E, Consoli D, Puite K J, Ramulu K S. Production of somatic hybrids between frost-tolerant Solanum commersonii and S. tuberosum: characterization of hybrid plants. Theor Appl Genet, 1993, 87: 193-200.
doi: 10.1007/BF00223764 pmid: 24190212
[32] Tang D, Jia Y X, Zhang J Z, Li H B, Cheng L, Wang P, Bao Z G, Liu Z H, Feng S S, Zhu X J, Li D W, Zhu G T, Wang H R, Zhou Y, Zhou Y F, Bryan G J, Buell C R, Zhang C Z, Huang S W. Genome evolution and diversity of wild and cultivated potatoes. Nature, 2022, 606: 535-541.
[1] 周洪源, 杨慧芹, 罗威, 石振明, 马玲. 马铃薯绿原酸调控因子的筛选与功能鉴定[J]. 作物学报, 2024, 50(7): 1740-1749.
[2] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[3] 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466.
[4] 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513.
[5] 王先领, 姜岳, 雷贻忠, 肖胜男, 厍惠洁, 段圣省, 黄铭, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 外源物质浸种对迟播油菜越冬期抗寒性及产量的影响[J]. 作物学报, 2024, 50(5): 1271-1286.
[6] 李航宇, 刘心诚, 贺文婷, 刘可意, 乔振华, 吕品苍, 张献华, 何玉池, 蔡得田, 宋兆建. 四倍体海稻86的诱导、鉴定及其耐盐碱特性评价分析[J]. 作物学报, 2024, 50(4): 914-931.
[7] 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化, 是偶然还是与农艺性状存在关联?——以历年国审普通品种为例[J]. 作物学报, 2024, 50(3): 771-778.
[8] 李万, 李成, 程敏, 吴芳. 磷转运蛋白StPHO1.2提高马铃薯耐热性[J]. 作物学报, 2024, 50(2): 394-402.
[9] 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471.
[10] 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001.
[11] 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870.
[12] 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196.
[13] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[14] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995.
[15] 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .