欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 914-931.doi: 10.3724/SP.J.1006.2024.32035

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

四倍体海稻86的诱导、鉴定及其耐盐碱特性评价分析

李航宇1(), 刘心诚1, 贺文婷1, 刘可意1, 乔振华1, 吕品苍1, 张献华1, 何玉池1, 蔡得田1,2, 宋兆建1,*()   

  1. 1湖北大学生命科学学院, 湖北武汉 430062
    2武汉多倍体生物科技有限公司, 湖北武汉 430345
  • 收稿日期:2023-08-29 接受日期:2023-10-23 出版日期:2024-04-12 网络出版日期:2023-11-13
  • 通讯作者: * 宋兆建, E-mail: zjsong99@126.com
  • 作者简介:E-mail: 782115250@qq.com
  • 基金资助:
    武汉市重大科技专项和武汉市品牌农业发展计划项目

Induction, identification and salt-alkali tolerance evaluation of tetraploid Haidao 86

LI Hang-Yu1(), LIU Xin-Cheng1, HE Wen-Ting1, LIU Ke-Yi1, QIAO Zhen-Hua1, LYU Pin-Cang1, ZHANG Xian-Hua1, HE Yu-Chi1, CAI De-Tian1,2, SONG Zhao-Jian1,*()   

  1. 1School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
    2Wuhan Polyploid Biotechnology Co., Ltd., Wuhan 430345, Hubei, China
  • Received:2023-08-29 Accepted:2023-10-23 Published:2024-04-12 Published online:2023-11-13
  • Contact: * E-mail: zjsong99@126.com
  • Supported by:
    Major Science and Technology Project of Wuhan and the Brand Agriculture Development Plan of Wuhan

摘要:

多倍体化是植物进化的重要趋势之一。与二倍体植物相比, 多倍体植物往往具有更强的抗耐性。海稻86是具有强耐盐碱能力的水稻种质资源, 在盐碱地开发应用和粮食增产研究中具有重要利用价值。为充分利用多倍体植物抗逆性增强的优势, 选育耐盐碱能力更强的四倍体水稻新品种, 本研究以海稻86为基础, 对其进行离体染色体加倍获得海稻86同源四倍体; 以海稻86-4x和海稻86-2x发芽期和幼苗期NaCl、Na2CO3和PEG-6000胁迫处理的表型指标及生理生化指标鉴定, 检测两者的耐盐碱特性及差异。结果表明: (1) 通过离体染色体加倍可高效诱导获得四倍体植株, 加倍率达27.63%。 (2) 与海稻86-2x相比, 海稻86-4x的细胞核DNA含量及根尖染色体数目增加一倍; 形态及农艺性状发生明显变化, 如植株变矮、茎秆变粗、单株有效穗数减少、籽粒及千粒重增大、每穗总粒数及每穗实粒数减少、结实率降低等。(3) 在发芽期, 海稻86-4x的发芽势、发芽率、芽长、根长、根数、含水量最高, 海稻86-2x次之, 对照黄华占最低; 海稻86-4x的盐碱害率最小、盐碱害等级最低, 海稻86-2x次之, 对照黄华占的盐碱害率最大、盐碱害等级最高。(4) 在幼苗期, 海稻86-4x的脯氨酸和叶绿素含量最高、丙二醛含量和相对电导率最低, 超氧化物歧化酶和过氧化物酶活性最高, 海稻86-2x次之, 而对照黄华占的脯氨酸和叶绿素含量最低、丙二醛含量和相对电导率最高、超氧化物歧化酶和过氧化物酶活性最低。综上可知, 与海稻86-2x相比, 海稻86-4x在表型指标和生理生化指标上均表现出明显的耐盐碱性优势, 具有更强的耐盐碱能力。该研究结果为深入解析海稻86的耐盐碱机制奠定基础, 也为耐盐碱四倍体水稻新品种的选育提供了材料基础和理论依据。

关键词: 海稻86, 离体染色体加倍, 四倍体, 耐盐碱性, 发芽势, 发芽率, 生理生化指标

Abstract:

Polyploidization is an important trend in plant evolution. Polyploid plants often have stronger resistance to stress than diploid ones. Haidao 86 is a rice germplasm resource with strong salt-alkali tolerance, which has important utilization value for the application of saline-alkaline land and the increase of grain yield. To make full use of the advantages of enhanced stress resistance in polyploid plants and breed new tetraploid rice varieties with stronger salt-alkali tolerance, diploid Haidao 86 was submitted for in vitro chromosome doubling to create autotetraploid Haidao 86 in this study. After stress treatment with NaCl, Na2CO3, and PEG-6000, the phenotypic indexes, physiological and biochemical indexes of tetraploid and diploid Haidao86 at germination and seedling stages were detected to understand the salt-alkali tolerance characteristics and differences between them. The results showed as follows: (1) By in vitro chromosome doubling, tetraploid plants can be efficiently induced, with a doubling rate of 27.63%. (2) Compared with diploid Haidao 86, the nuclear DNA content and root tip chromosome number of tetraploid Haidao 86 was doubled. There were significant changes in morphology and agronomic traits, such as plants becoming shorter, stems becoming thicker, effective panicles per plant decreasing, grain and thousand grain weight increasing, total grains per panicle, and filled grains per panicle decreasing, and seed setting rate decreasing. (3) At germination stage, the germination energy, germination rate, shoot length, root length, root number, and water content of tetraploid Haidao 86 were the highest, followed by diploid Haidao 86, and the control Huanghuazhan was the lowest. Tetraploid Haidao 86 had the lowest salt alkali damage rate and grade, followed by diploid Haidao 86, and the control Huanghuazhan had the highest salt alkali damage rate and grade. (4) At seedling stage, tetraploid Haidao 86 had the highest proline and chlorophyll content, the lowest malondialdehyde content and relative electrical conductivity, the highest superoxide dismutase and peroxidase activity, followed by diploid Haidao 86, and the control Huanghuazhan had the lowest proline and chlorophyll content, the highest malondialdehyde content and relative electrical conductivity, and the lowest superoxide dismutase and peroxidase activity. So tetraploid Haidao 86 had significant advantages in salt-alkali tolerance in both phenotypic indexes, and physiological and biochemical indexes, and had stronger salt-alkali tolerance than diploid Haidao 86. The results lay the foundation for in-depth research on the salt-alkali tolerance mechanism of Haidao 86, and provide the material and theoretical basis for the breeding of new salt-alkali resistant tetraploid rice varieties.

Key words: Haidao 86, in vitro chromosome doubling, tetraploid, salt-alkali tolerance, germination energy, germination rate, physiological and biochemical indexes

表1

海稻86的染色体加倍数据统计"

批次
Batch
种胚数
NE
愈伤
组织数
NC
诱导率
IR
(%)
加倍
存活数
NSC
加倍存活率
SR
(%)
分化愈伤
组织数
NDC
分化率
DR
(%)
总成
苗数
TSN
四倍体
苗数
PSN
加倍率CDR
(%)
1 80 70 87.50 70 100 39 55.71 16 5 31.25
2 75 64 85.33 64 100 47 73.44 21 6 28.57
3 75 54 72.00 46 85.19 29 63.04 13 3 23.08
均值
Mean ± SD
76.67
±2.89
62.67
±8.08
81.61
±8.39
60.00
±12.49
95.06
±8.55
38.33
±9.02
64.06
±8.91
16.67
±4.04
4.67
±1.53
27.63
±4.16

图1

海稻86-2x与海稻86-4x的细胞核DNA含量分析"

图2

海稻86-2x与海稻86-4x的根尖染色体数目分析 A: 海稻86-2x (2n=2x=24); B: 海稻86-4x (2n=4x=48)。"

表2

海稻86-2x与海稻86-4x的主要农艺性状"

材料
Material
株高
PH (cm)
单株有效穗数
EP
穗长
PL (cm)
粒长
GL (mm)
粒宽
GW (mm)
HD86-2x 181.96±3.34 15.40±1.14 26.79±1.87 7.01±0.04 3.03±0.04
HD86-4x 152.40±4.18** 10.20±1.30** 23.36±1.85* 9.04±0.06** 4.02±0.03**
材料
Material
芒长
AL (cm)
每穗总粒数
TG
每穗实粒数
FG
结实率
SSR (%)
千粒重
TGW (g)
HD86-2x 0.10-6.60 162.72±5.96 147.16±7.66 90.41±2.29 24.90±1.05
HD86-4x 0.10-7.20 86.60±9.44** 28.34±4.25** 32.74±3.41** 33.94±1.37**

图3

海稻86-2x与海稻86-4x的形态比较 A: 植株; B: 穗部; C: 粒长; D: 粒宽。"

图4

盐碱及渗透胁迫处理下种子的相对发芽势(A, B, C)和相对发芽率(D, E, F) A, D: NaCl胁迫; B, E: Na2CO3胁迫; C, F: PEG-6000胁迫。"

表3

盐碱及渗透胁迫下的盐碱害率和盐碱害等级"

胁迫物质及浓度
Stress substance and
concentration (mmol L-1)
HD86-2x HD86-4x HHZ
盐碱害率
Damage rate (%)
等级Grade 盐碱害率
Damage rate (%)
等级Grade 盐碱害率
Damage rate (%)
等级Grade
0 (CK) 0±0.00 1 0±0.00 1 0±0.00 1
NaCl 50 0±0.00 b 1 0±0.00 b 1 14.43±1.96 a 1
NaCl 100 1.47±1.68 b 1 1.37±1.72 b 1 17.63±2.06 a 1
NaCl 150 13.97±1.15 a 1 3.17±3.37 b 1 22.07±7.13 a 3
NaCl 200 17.97±1.78 ab 1 9.10±2.10 b 1 29.43±10.86 a 3
NaCl 250 23.70±3.92 b 3 11.73±1.66 b 1 42.60±10.10 a 5
Na2CO3 10 7.80±1.91 b 1 7.80±1.91 b 1 16.67±3.35 a 1
Na2CO3 20 18.90±1.91 ab 1 7.80±1.91 b 1 28.90±15.76 a 3
Na2CO3 30 26.67±8.84 ab 3 15.57±7.68 b 1 38.90±11.69 a 3
Na2CO3 40 35.53±3.87 b 3 26.67±3.35c 3 60.00±3.30 a 5
Na2CO3 50 54.43±1.96 b 5 32.23±3.87 c 3 73.33±3.35 a 7
PEG 10 11.10±1.91 b 1 0±0.00 c 1 20.00±3.30 a 1
PEG 20 37.80±1.91 b 3 21.10±1.91c 3 55.57±5.10 a 5
PEG 30 47.77±7.74 b 5 44.43±9.64 b 5 77.77±3.87 a 7
PEG 40 81.13±7.68 ab 7 72.20±1.91 b 5 88.90±1.91 a 9
PEG 50 100±0.00 a 9 90.43±2.68 b 9 100.00±0.00 a 9

表4

盐碱及渗透胁迫下的相对芽长、根长和根数"

胁迫物质及浓度Stress substance and concentration (mmol L-1) 相对芽长Relative shoot length 相对根长Relative root length 相对根数Relative root number
HD86-2x HD86-4x HHZ HD86-2x HD86-4x HHZ HD86-2x HD86-4x HHZ
NaCl 50 86.86±3.00 a 93.75±6.10 a 59.60±12.04 b 76.58±5.58 a 96.65±14.38 a 51.23±13.49 b 89.17±13.46 a 89.44±11.11 a 56.71±3.93 b
NaCl 100 81.01±4.86 a b 88.98±11.51 a 50.92±23.88 b 80.30±2.22 a 93.28±9.37 a 36.86±12.37 b 81.22±10.28 a 87.10±12.67 a 52.46±0.98 b
NaCl 150 83.24±20.63 a 74.64±4.74 a 25.35±9.40 b 62.80±3.28 a 89.83±22.34 a 32.45±5.34 b 78.25±6.34 a 66.51±8.85 a 37.84±1.85 b
NaCl 200 49.98±9.74 ab 61.45±12.82 a 32.58±12.31 b 48.64±4.19 b 78.50±6.70 a 21.31±5.91 c 59.33±13.05 57.06±12.83 37.92±2.33
NaCl 250 64.94±9.10 a 57.09±6.16 a 22.22±5.35 b 43.65±9.55 ab 59.70±18.43 a 18.90±4.82 b 51.09±12.33 a 43.03±5.50 ab 21.23±15.89 b
Na2CO3 10 97.12±2.47 96.80±9.56 96.62±5.14 79.52±3.85 95.11±12.89 80.23±21.33 90.42±8.66 a 86.63±5.80 ab 77.05±4.87 b
Na2CO3 20 66.32±14.34 b 88.97±7.24 a 67.70±5.40 b 57.47±9.61 70.37±3.71 60.30±10.03 83.43±19.51 a 87.11±9.09 a 51.48±7.93 b
Na2CO3 30 63.50±9.61 ab 82.51±18.61 a 36.88±11.40 b 42.63±4.53 ab 58.80±15.00 a 35.17±3.55 b 51.81±17.25 a 68.47±10.08 a 25.73±4.09 b
Na2CO3 40 55.97±15.93 a 69.39±21.32 a 16.39±.9.28 b 28.19±8.24 41.77±17.01 21.36±7.12 48.44±8.87 a 39.28±5.38 a 20.64±5.12 b
Na2CO3 50 39.07±5.72 a 29.11±9.60 a 11.03±1.78 b 30.71±2.87 a 36.08±5.34 a 11.67±3.02 b 25.71±4.32 21.22±7.14 16.64±5.09
PEG 10 80.68±8.24 b 99.01±10.10 a 70.82±3.40 b 53.87±2.20 b 87.56±12.83 a 67.79±6.70 b 58.56±11.38 b 81.18±7.26 a 63.69±4.84 b
PEG 20 76.05±2.56 ab 90.24±19.11 a 58.52±4.83 b 37.31±3.74 51.96±15.36 31.34±18.60 46.48±8.52 45.22±3.21 57.01±1.65
PEG 30 30.35±3.86 b 84.38±16.76 a 55.23±13.28 b 30.80±5.95 ab 38.83±4.71 a 19.17±7.68 b 28.56±11.12 35.46±5.00 28.00±3.28
PEG 40 17.46±4.03 b 37.99±3.66 a 22.05±4.50 b 13.98±2.12 21.13±4.22 25.47±12.35 17.01±5.59 20.34±4.12 13.41±2.99
PEG 50 0±0.00 b 24.44±2.88 a 0±0.00 b 0±0.00 b 29.06±12.64 a 0±0.00 b 0±0.00 b 9.73±1.55 a 0±0.00 b

图5

盐碱及渗透胁迫下幼苗的相对水含量 A: NaCl胁迫; B: Na2CO3胁迫; C: PEG-6000胁迫。同一处理标不同小写字母表示在0.05概率水平差异显著。"

图6

盐碱胁迫处理后材料的脯氨酸(A, B)、叶绿素(C, D)、丙二醛(E, F)含量及相对电导率(G, H) A, C, E, G: NaCl胁迫; B, D, F, H: Na2CO3胁迫。同一处理标不同小写字母表示在0.05概率水平差异显著。"

图7

盐碱胁迫处理后材料的SOD (A, B)和POD (C, D)活性 A, C: NaCl胁迫; B, D: Na2CO3胁迫。同一处理标不同小写字母表示在0.05概率水平差异显著。"

[1] Liang W J, Ma X L, Wan P, Liu L Y. Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun, 2018, 495: 286-291.
doi: 10.1016/j.bbrc.2017.11.043
[2] Sun H, Meng M H, Yan Z H, Lin Z X, Nie X H, Yang X Y. Genome-wide association mapping of stress tolerance traits in cotton. Crop J, 2019, 7: 77-88.
doi: 10.1016/j.cj.2018.11.002
[3] 巫明明, 曾维, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 水稻耐盐分子机制与育种研究进展. 中国水稻科学, 2022, 36: 551-561.
doi: 10.16819/j.1001-7216.2022.211111
Wu M M, Zeng W, Zhai R R, Ye J, Zhu G F, Yu F M, Zhang X M, Ye S H. Research progress in molecular mechanism and breeding status of salt tolerance in rice. Chin J Rice Sci, 2022, 36: 551-561. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2022.211111
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制. 作物学报, 2022, 48: 1463-1475.
doi: 10.3724/SP.J.1006.2022.12027
Yan J Q, Gu Y B, Xue Z Y, Zhou T Y, Ge Q Q, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C, Zhou Z L, Xu D Y. Different responses of rice cultivars to salt stress and the underlying mechanisms. Acta Agron Sin, 2022, 48: 1463-1475. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12027
[5] 孙平勇, 张武汉, 舒服, 何强, 张莉, 阳祝红, 彭志荣, 谢芸, 邓华凤. 水稻资源芽期和苗期耐盐碱性综合评价及耐盐基因分析. 生物工程学报, 2022, 38: 252-263.
Sun P Y, Zhang W H, Shu F, He Q, Zhang L, Yang Z H, Peng Z R, Xie Y, Deng H F. Comprehensive evaluation of salt-alkali tolerance of rice germplasms at germination and seedling stages and analysis of salt-tolerant genes. Chin J Biotech, 2022, 38: 252-263. (in Chinese with English abstract)
[6] Foolad M R, Jones R A. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet, 1993, 87: 184-192.
doi: 10.1007/BF00223763 pmid: 24190211
[7] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价. 作物学报, 2020, 46: 1591-1604.
doi: 10.3724/SP.J.1006.2020.04064
Chen E Y, Wang R F, Qin L, Yang Y B, Li F F, Zhang H W, Wang H L, Liu B, Kong Q H, Guan Y A. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination. Acta Agron Sin, 2020, 46: 1591-1604. (in Chinese with English abstract)
[8] 徐婷, 柳延涛, 王海江, 李强, 王鹏, 董红业. 盐碱胁迫对花生种子发芽特性影响及盐害综合鉴定评价. 中国油料作物学报, 2022, 44: 1037-1047.
doi: 10.19802/j.issn.1007-9084.2021245
Xu T, Liu Y T, Wang H J, Li Q, Wang P, Dong H Y. Effects of saline-alkali stress on germination characteristics of peanut seeds and comprehensive identification and evaluation of salt damage. Chin J Oil Crop Sci, 2022, 44: 1037-1047. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2021245
[9] Lee S Y, Ahn J H, Cha Y S, Yun D W, Lee M C, Ko J C, Lee K S, Eun M Y. Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed, 2007, 126: 43-46.
doi: 10.1111/pbr.2007.126.issue-1
[10] 程海涛, 姜华, 薛大伟, 郭龙彪, 曾大力, 张光恒, 钱前. 水稻芽期与幼苗前期耐碱性状QTL定位. 作物学报, 2008, 34: 1719-1727.
doi: 10.3724/SP.J.1006.2008.01719
Cheng H T, Jiang H, Xue D W, Guo L B, Zeng D L, Zhang G H, Qian Q. Mapping of QTLs underlying tolerance to alkali at germination and early seedling stages in rice. Acta Agron Sin, 2008, 34: 1719-1727. (in Chinese with English abstract)
[11] Wang H, Wu Z, Chen Y, Yang C, Shi D. Effects of salt and alkali stresses on growth and ion balance in rice (Oryza sativa L.). Plant Soil Environ, 2011, 57: 286-294.
doi: 10.17221/36/2011-PSE
[12] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选. 作物学报, 2023, 49: 1551-1561.
Zhang J, Gao W B, Yan L, Zhang Z W, Zhou H T, Wu B. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.). Acta Agron Sin, 2023, 49: 1551-1561. (in Chinese with English abstract)
[13] 程海涛, 姜华, 颜美仙, 董国军, 钱前, 郭龙彪. 两个水稻DH群体发芽期和幼苗前期耐碱性状QTL定位比较. 分子植物育种, 2008, 6: 439-450.
Cheng H T, Jiang H, Yan M X, Dong G J, Qian Q, Guo L B. QTL-mapping comparison of tolerance to alkali at germination period and early seeding stage between two different double haploid populations in rice. Mol Plant Breed, 2008, 6: 439-450. (in Chinese with English abstract)
[14] 祁栋灵, 郭桂珍, 李明哲, 杨春刚, 张俊国, 曹桂兰, 张三元, 徐锡哲, 周庆阳, 韩龙植. 碱胁迫下粳稻幼苗前期耐碱性的数量性状基因座检测. 作物学报, 2009, 35: 301-308.
doi: 10.3724/SP.J.1006.2009.00301
Qi D L, Guo G Z, Lee M C, Yang C G, Zhang J G, Cao G L, Zhang S Y, Suh S C, Zhou Q Y, Han L Z. Identification of quantitative trait loci for alkaline tolerance at early seedling stage under alkaline stress in japonica rice. Acta Agron Sin, 2009, 35: 301-308. (in Chinese with English abstract)
[15] Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot, 2002, 47: 39-50.
doi: 10.1016/S0098-8472(01)00109-5
[16] 武永军, 何国强, 史艳茹, 梁宗锁. 不同pH值缓冲液处理下蚕豆叶片相对含水量、脯氨酸及丙二醛含量的变化. 干旱地区农业研究, 2009, 27(6): 169-172.
Wu Y J, He G Q, Shi Y R, Liang Z S. Change of relative water content, proline content and malondialdehyde content of Vicia faba leaves under different pH buffer treatments. Agric Res Arid Areas, 2009, 27(6): 169-172. (in Chinese with English abstract)
[17] 孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响. 植物生理学报, 2017, 53: 470-476.
Sun C C, Zhao H Y, Zheng C X. Effects of NaCl stress on osmolyte and proline metabolism in Ginkgo biloba seedling. Plant Physiol J, 2017, 53: 470-476. (in Chinese with English abstract)
[18] Xu S, Li J L, Zhang X Q, Wei H, Cui L J. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot, 2006, 56: 274-285.
doi: 10.1016/j.envexpbot.2005.03.002
[19] 杨升, 张华新, 张丽. 植物耐盐生理生化指标及耐盐植物筛选综述. 西北林学院学报, 2010, 25(3): 59-65.
Yang S, Zhang H X, Zhang L. Physiological and biochemical indices of salt tolerance and scanning of salt-tolerance plants: a review. J Northwest For Univ, 2010, 25(3): 59-65. (in Chinese with English abstract)
[20] 徐涵, 郭容芳, 张玉苗, 李蓉, 肖学宸, 曹子谊, 王姗姗, 张可轩, 陈晓慧, 陈晓东, 陈裕坤, 叶炜, 叶开温, 林玉玲, 赖钟雄. 植物耐盐性: 演化和盐基因组学. 热带作物学报, 2020, 41: 1979-1989.
doi: 10.3969/j.issn.1000-2561.2020.10.005
Xu H, Guo R F, Zhang Y M, Li R, Xiao X C, Cao Z Y, Wang S S, Zhang K X, Chen X H, Chen X D, Chen Y K, Ye W, Ye K W, Lin Y L, Lai Z X. Plant halotolerance: evolution and halogenomics. Chin J Trop Crops, 2020, 41: 1979-1989. (in Chinese with English abstract)
[21] Li Q, Yang A, Zhang W H. Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress. BMC Plant Bio, 2017, 17: 141.
[22] 张晓婷, 王雪松, 贾文飞, 徐振彪, 王颖, 吴林. 植物在盐处理下的研究进展. 北方园艺, 2021, (6): 137-143.
Zhang X T, Wang X S, Jia W F, Xu Z B, Wang Y, Wu L. Research progress of plants under salt treatment. Northern Hortic, 2021, (6): 137-143. (in Chinese with English abstract)
[23] 王宝山. 生物自由基与植物膜伤害. 植物生理学通讯, 1988, (2): 12-16.
Wang B S. Biological free radicals and membrane damage of plants. Plant Physiol Commun, 1988, (2): 12-16. (in Chinese)
[24] Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics, 2014, 2014: 701596.
[25] 彭振, 何守朴, 孙君灵, 许菲菲, 贾银华, 潘兆娥, 王立如, 杜雄明. 陆地棉苗期耐盐性的高效鉴定方法. 作物学报, 2014, 40: 476-486.
Peng Z, He S P, Sun J L, Xu F F, Jia Y H, Pan Z E, Wang L R, Du X M. An efficient approach to identify salt tolerance of upland cotton at seedling stage. Acta Agron Sin, 2014, 40: 476-486. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00476
[26] 凌云鹤, 周瑶, 景兵, 李春莲, 肖恩时, 王中华. 盐胁迫对向日葵幼苗生长及生理特性的影响. 干旱地区农业研究, 2019, 37(4): 139-145.
Ling Y H, Zhou Y, Jing B, Li C L, Xiao E S, Wang Z H. Effects of salt stress on growth and physiological characteristics of sunflower at seedling stage. Agric Res Arid Areas, 2019, 37(4): 139-145. (in Chinese with English abstract)
[27] Chen R S, Cheng Y F, Han S Y, Van Handel B, Dong L, Li X M, Xie X Q. Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar-sea rice 86. BMC Genomics, 2017, 18: 655.
doi: 10.1186/s12864-017-4037-3
[28] Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet, 2005, 6: 836-846.
doi: 10.1038/nrg1711 pmid: 16304599
[29] Fang Z, Morrell P L. Domestication: polyploidy boosts domestication. Nat Plants, 2016, 2: 16116.
doi: 10.1038/nplants.2016.116 pmid: 28221341
[30] Yu H, Lin T, Meng X B, Du H L, Zhang J K, Liu G F, Chen M J, Jing Y H, Kou L Q, Li X X, Gao Q, Liang Y, Liu X D, Fan Z L, Liang Y T, Cheng Z K, Chen M S, Tian Z X, Wang Y H, Chu C C, Zuo J R, Wan J M, Qian Q, Han B, Zuccolo A, Wing R A, Gao C X, Liang C Z, Li J Y. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184: 1-15.
doi: 10.1016/j.cell.2020.12.019
[31] Cao Y, Zhao K L, Xu J X, Wu L, Hao F Y, Sun M P, Dong J, Chao G T, Zhang H, Gong X F, Chen Y G, Chen C L, Qian W, Pires J C, Edger P P, Xiong Z Y. Genome balance and dosage effect drive allopolyploid formation in Brassica. Proc Natl Acad Sci USA, 2023, 120: e2217672120.
doi: 10.1073/pnas.2217672120
[32] Sattler M C, Carvalho C R, Clarindo W R. The polyploidy and its key role in plant breeding. Planta, 2016, 243: 281-296.
doi: 10.1007/s00425-015-2450-x pmid: 26715561
[33] Svacina R, Sourdille P, Kopecky D, Bartos J. Chromosome pairing in polyploid grasses. Front Plant Sci, 2020, 11: 1056.
doi: 10.3389/fpls.2020.01056 pmid: 32733528
[34] 张静昆, 曾鹏, 余泓, 孟祥兵, 李家洋. 多倍体水稻从头驯化: 育种策略与展望. 中国科学: 生命科学, 2021, 51: 1467-1476.
Zhang J K, Zeng P, Yu H, Meng X B, Li J Y. De novo domestication of polyploid rice: a novel breeding strategy and future prospects. Sci Sin (Vitae), 2021, 51: 1467-1476. (in Chinese with English abstract)
[35] Shi Q H, Guo X R, Su H D, Zhang Y X, Hu Z M, Zhang J, Han F P. Autoploid origin and rapid diploidization of the tetraploid Thinopyrum elongatum revealed by genome differentiation and chromosome pairing in meiosis. Plant J, 2023, 113: 536-545.
doi: 10.1111/tpj.v113.3
[36] Cai D T, Chen J G, Chen D L, Dai B C, Zhang W, Song Z J, Yang Z F, Du C Q, Tang Z Q, He Y C, Zhang D S, He G C, Zhu Y G. The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability. Sci China (Ser C, Life Sci Edn), 2007, 50: 356-366.
[37] 李懋学, 张赞平. 作物染色体及其研究技术. 北京: 中国农业出版社, 1996. pp 23-39.
Li M X, Zhang Z P. Crop Chromosome and Research Techniques. Beijing: China Agriculture Press, 1996. pp 23-39. (in Chinese)
[38] 盖钧镒. 作物育种学各论(第2版). 北京: 中国农业出版社, 2006. pp 47-49.
Gai J Y. Crop Breeding, 2nd edn. Beijing: China Agriculture Press, 2006. pp 47-49. (in Chinese)
[39] 祁栋灵, 韩龙植, 张三元. 水稻耐盐/碱性鉴定评价方法. 植物遗传资源学报, 2005, 6: 226-231.
Qi D L, Han L Z, Zhang S Y. Methods of characterization and evaluation of salt or alkaline tolerance in rice. J Plant Genet Resour, 2005, 6: 226-231. (in Chinese with English abstract)
[40] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 134-137.
Li H S. Principles and Techniques of Plant Physiology and Biochemistry Experiments. Beijing: Higher Education Press, 2000. pp 134-137. (in Chinese)
[41] 汪洪艳. 海稻86耐盐机理及基因定位的研究. 湖南师范大学硕士学位论文, 湖南长沙, 2019.
Wang H Y. Physiological and Gene Mapping for Salt Tolerance of Sea Rice 86. MS Thesis of Hunan Normal University, Changsha, Hunan, China, 2019 (in Chinese with English abstract)
[42] 宋文昌, 张玉华. 水稻四倍化及其对农艺性状和营养成分的影响. 作物学报, 1992, 18: 138-144.
Song W C, Zhang Y H. Rice tetraploid and its effect on agronomic traits and nutritional constituents. Acta Agron Sin, 1992, 18: 137-144. (in Chinese with English abstract)
[43] McKay H M, Mason W L. Physiological indicators of tolerance to cold storage in Sitka spruce and Douglas-fir seedlings. Can J For Res, 1991, 21: 890-901.
doi: 10.1139/x91-124
[44] 蔡得田, 袁隆平, 卢兴桂. 二十一世纪水稻育种的新战略: II.利用远缘杂交和多倍体双重优势进行超级稻育种. 作物学报, 2001, 27: 110-116.
Cai D T, Yuan L P, Lu X G. A new strategy of rice breeding in the 21st century: II. Searching a new pathway of rice breeding by utilization of double heterosis of wide cross and polyploidization. Acta Agron Sin, 2001, 27: 110-116. (in Chinese with English abstract)
[45] Jiang A M, Gan L, Tu Y, Ma H X, Zhang J M, Song Z J, He Y C, Cai D T, Xue X Q. The effect of genome duplication on seed germination and seedling growth of rice under salt stress. Aust J Crop Sci, 2013, 7: 1814-1821.
[46] Tu Y, Jiang A M, Gan L, Hossain M, Zhang J M, Peng B, Xiong Y G, Song Z J, Cai D T, Xu W F, Zhang J H, He Y C. Genome duplication improves rice root resistance to salt stress. Rice, 2014, 7: 15.
doi: 10.1186/s12284-014-0015-4 pmid: 25184027
[47] Yang P M, Huang Q C, Qin G Y, Zhao S P, Zhou J G. Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica, 2014, 52: 193-202.
doi: 10.1007/s11099-014-0020-2
[48] 刘向东, 吴锦文, Shahid M Q. 新型四倍体水稻创制及其杂种优势利用研究进展. 生物技术通报, 2022, 38(1): 44-50.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0406
Liu X D, Wu J W, Shahid M Q. Development of neo-tetraploid rice and research progress on its heterosis mechanism. Biotechnol Bul, 2022, 38(1): 44-50. (in Chinese with English abstract)
[49] Nakamori E. On the occurrence of the tetraploid plant of rice, Oryza sativa L. Proc Imperial Acad, 1933, 9: 340-341.
doi: 10.2183/pjab1912.9.340
[50] Nayar N M.顾铭洪译. 水稻的起源和细胞遗传. 北京: 农业出版社, 1981. p 4.
Nayar N M. Gu M H, trans trans. Origin and Cytogenetics of Rice. Beijing: Agriculture Press, 1981. p 4. (in Chinese)
[51] 鲍文奎, 严育瑞. 几种禾谷类作物的同源多倍体和双二倍体的研究初报. 植物学报, 1956, 5: 297-316.
Bao W K, Yan Y R. A preliminary report on investigations of auto-polyploids and amphidiploids in some cereal crops. Acta Bot Sin, 1956, 5: 297-316. (in Chinese with English abstract)
[52] 鲍文奎, 秦瑞珍, 吴德瑜, 陈志勇, 宋文昌, 张玉华. 高产四倍体水稻无性系. 中国农业科学, 1985, 18(6): 64-66.
Bao W K, Qin R Z, Wu D Y, Chen Z Y, Song W C, Zhang Y H. High yielding tetraploid rice clones. Sci Agric Sin, 1985, 18(6): 64-66. (in Chinese with English abstract)
[53] 秦瑞珍, 吴德瑜, 陈志勇, 宋文昌, 张玉华, 鲍文奎. 四倍体水稻杂种选株无性系的研究. 作物学报, 1986, 12: 63-65.
Qin R Z, Wu D Y, Chen Z Y, Song W C, Zhang Y H, Bao W K. Investigation on the autotetraploid rice clones derived from elite plants of hybrid progenies. Acta Agron Sin, 1986, 12: 63-65. (in Chinese)
[54] 秦瑞珍, 程治军, 郭秀平. 利用同源四倍体花培途径创建水稻突变体群的研究. 作物学报, 2005, 31: 392-394.
Qin R Z, Cheng Z J, Guo X P. The establishment of mutant pool using anther culture of autotetrapolyploid rice. Acta Agron Sin, 2005, 31: 392-394. (in Chinese with English abstract)
[55] 陈志勇, 吴德瑜, 宋文昌, 张玉华, 秦瑞珍, 鲍文奎. 同源四倍体水稻育种研究的近期进展. 中国农业科学, 1987, 20: 20-24.
Chen Z Y, Wu D Y, Song W C, Zhang Y H, Qin R Z, Bao W K. Recent advanced in the autotetraploid rice breeding. Sci Agric Sin, 1987, 20: 20-24. (in Chinese with English abstract)
[56] 蔡得田, 陈冬玲, 陈建国, 刘幼琪. 组织培养和化学诱导相结合培育水稻多倍体的方法. 中国专利: ZL01133529.7, (2004-05-19).
Cai D T, Chen D L, Chen J G, Liu Y Q. A method of inducing polyploid rice through tissue culture together with chemical agent. Chinese Patent: ZL01133529.7, (2004-05-19). (in Chinese)
[57] Chen R R, Feng Z Y, Zhang X H, Song Z J, Cai D T. A new way of rice breeding: polyploid rice breeding. Plants, 2021, 10: 422.
doi: 10.3390/plants10030422
[58] 黄群策, 孙敬三, 白素兰. 同源四倍体水稻的生殖特性研究. 中国农业科学, 1999, 32(2): 14-18.
Huang Q C, Sun J S, Bai S L. Study on reproductive characters of autotetraploid rice. Sci Agric Sin, 1999, 32(2): 14-18. (in Chinese with English abstract)
[59] 黄春梅, 黄群策, 李志真. 同源四倍体水稻雌雄配子体的多态性. 福建农业大学学报, 1999, 28(1): 18-21.
Huang C M, Huang Q C, Li Z Z. Polymorphism of male and female gametophytes in autotetraploidy rice. J Fujian Agric Univ, 1999, 28(1): 18-21. (in Chinese with English abstract)
[60] 何金华, 程杏安, 陈志雄, 郭海滨, 刘向东, 卢永根. 同源四倍体水稻花粉母细胞减数分裂期间微管骨架组织和结构变化. 作物学报, 2010, 36: 1777-1785.
doi: 10.3724/SP.J.1006.2010.01777
He J H, Cheng X A, Chen Z X, Guo H B, Liu X D, Lu Y G. Changes in the pattern of organization of microtubules during meiosis in pollen mother cell of autotetraploid rice. Acta Agron Sin, 2010, 36: 1777-1785. (in Chinese with English abstract)
doi: 10.1016/S1875-2780(09)60080-8
[61] 张华华, 冯九焕, 卢永根, 杨秉耀, 刘向东. 利用激光扫描共聚焦显微镜观察同源四倍体水稻胚囊的形成与发育. 电子显微学报, 2003, 22: 380-384.
Zhang H H, Feng J H, Lu Y G, Yang B Y, Liu X D. Observation on formation and development of autotetraploid rice embryo sac using laser scanning confocal microscope. J Chin Electr Microscopy Soc, 2003, 22: 380-384. (in Chinese with English abstract)
[62] 郭海滨, 刘向东, 卢永根, 冯九焕. 同源四倍体水稻成熟胚囊的结构及异常现象. 中国水稻科学, 2006, 20: 283-289.
Guo H B, Liu X D, Lu Y G, Feng J H. Structure of mature embryo sac and its abnormal phenomena in autotetraploid rice. Chin J Rice Sci, 2006, 20: 283-289. (in Chinese with English abstract)
[63] 王兰, 刘向东, 卢永根, 冯九焕, 徐雪宾, 徐是雄. 同源四倍体水稻胚乳发育: 极核融合和胚乳细胞化. 中国水稻科学, 2004, 18: 281-289.
Wang L, Liu X D, Lu Y G, Feng J H, Xu X B, Xu S X. Endosperm development in autotetraploid rice: the fusion of polar nuclei and the formation of endosperm cell wall. Chin J Rice Sci, 2004, 18: 281-289. (in Chinese with English abstract)
[64] 张华华, 刘向东, 卢永根, 冯九焕. 同源四倍体水稻受精与胚胎形成过程的观察. 激光生物学报, 2006, 15(1): 9-14.
Zhang H H, Liu X D, Lu Y G, Feng J H. Observation on the double fertilization and embryogenesis in autotetraploid rice. Acta Laser Biol Sini, 2006, 15(1): 9-14 (in Chinese with English abstract).
[65] He Y C, Ge J, Wei Q, Jiang A M, Gan L, Song Z J, Cai D T. Using a polyploid meiosis stability (PMeS) line as a parent improves embryo development and the seed set rate of a tetraploid rice hybrid. Can J Plant Sci, 2011, 91: 325-335.
doi: 10.4141/CJPS09190
[66] Wu J W, Shahid M Q, Guo H B, Yin W, Chen Z X, Wang L, Liu X D, Lu Y G. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice. Plant Reprod, 2014, 27: 181-196.
doi: 10.1007/s00497-014-0250-2 pmid: 25262386
[67] Li X, Shahid M Q, Xia J, Lu Z J, Fang N, Wang L, Wu J W, Chen Z X, Liu X D. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice. BMC Genomics, 2017, 18: 129.
doi: 10.1186/s12864-017-3526-8 pmid: 28166742
[68] Li X, Yu H, Jiao Y M, Shahid M Q, Wu J W, Liu X D. Genome-wide analysis of DNA polymorphisms, the methylome and transcriptome revealed that multiple factors are associated with low pollen fertility in autotetraploid rice. PLoS One, 2018, 13: e201854.
[69] Chen L, Shahid M Q, Wu J, Chen Z X, Wang L, Liu X D. Cytological and transcriptome analyses reveal abrupt gene expression for meiosis and saccharide metabolisms that associated with pollen abortion in autotetraploid rice. Mol Genet Genomics, 2018, 293: 1407-1420.
doi: 10.1007/s00438-018-1471-0 pmid: 29974305
[70] Li X, Shahid M Q, Wen M S, Chen S L, Yu H, Jiao Y M, Lu Z J, Li Y J, Liu X D. Global identification and analysis revealed differentially expressed lncRNAs associated with meiosis and low fertility in autotetraploid rice. BMC Plant Biol, 2020, 20: 82.
doi: 10.1186/s12870-020-2290-0 pmid: 32075588
[71] 涂升斌, 孔繁伦, 徐琼芳, 何涛. 水稻同源四倍体杂种优势利用技术新体系的研究. 中国科学院院刊, 2003, 18: 426-428.
Tu S B, Kong F L, Xu Q F, He T. Breakthrough in hybrid rice breeding with autotetraploid. Bull Chin Acad Sci, 2003, 18: 426-428. (in Chinese with English abstract)
[72] Tu S B, Luan L, Liu Y H, Long W B, Kong F L, He T, Xu Q F, Yan W G, Yu M Q. Production and heterosis analysis of rice autotetraploid hybrids. Crop Sci, 2007, 47: 2356-2363.
doi: 10.2135/cropsci2007.01.0058
[73] Guo H B, Mendrikahy J N, Xie L, Deng J F, Lu Z J, Wu J W, Li X, Shahid M Q, Liu X D. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis. Sci Rep, 2017, 7: 40139.
doi: 10.1038/srep40139 pmid: 28071676
[74] Yu H, Shahid M Q, Li Q H, Li Y D, Li C, Lu Z J, Wu J W, Zhang Z M, Liu X D. Production assessment and genome comparison revealed high yield potential and novel specific alleles associated with fertility and yield in neo-tetraploid rice. Rice, 2020, 13: 32.
doi: 10.1186/s12284-020-00387-3 pmid: 32494867
[75] Koide Y, Kuniyoshi D, Kishima Y. Fertile tetraploids: New resources for future rice breeding? Front in Plant Sci, 2020, 11: 1231.
doi: 10.3389/fpls.2020.01231
[76] 刘向东, 吴锦文, 陆紫君, Shahid M Q. 同源四倍体水稻: 低育性机理、改良与育种展望. 遗传, 2023, 45: 781-792.
Liu X D, Wu J W, Lu Z J, Shahid M Q. Autotetraploid rice: challenges and opportunities. Hereditas (Beijing), 2023, 45: 781-792. (in Chinese with English abstract)
[77] 谭禄宾, 孙传清. 四倍体野生稻快速驯化: 启动人类新农业文明. 植物学报, 2021, 56(2): 1-4.
Tan L B, Sun C Q. Rapid domestication of wild allotetraploid rice: starting a new era of human agricultural civilization. Chin Bull Bot, 2021, 56(2): 1-4. (in Chinese with English abstract)
[78] 朱英国. 杂交水稻研究50年. 科学通报, 2016, 61: 3740-3747.
Zhu Y G. Fifty years of hybrid rice research in China. Chin Sci Bull, 2016, 61: 3740-3747. (in Chinese with English abstract)
doi: 10.1360/N972016-01043
[79] 宋兆建, 杜超群, 戴兵成, 陈冬玲, 陈建国, 蔡得田. 两个强优势多倍体籼粳亚种杂交稻生长习性研究. 中国农业科学, 2006, 39: 1-9.
Song Z J, Du C Q, Dai B C, Chen D L, Chen J G, Cai D T. Studies on the growth habits and characteristics of two polyploid indica-japonica hybrid rice with powerful heterosis. Sci Agric Sin, 2006, 39: 1-9. (in Chinese with English abstract)
[80] 刘建新, 陈建国, 陈冬玲, 宋兆建, 戴兵成, 蔡得田. 强优势多倍体杂交水稻亲本的生长特性和开花习性. 中国农业科学, 2008, 41: 3456-3464.
Liu J X, Chen J G, Chen D L, Song Z J, Dai B C, Cai D T. Studies on growth and flowering characteristics of polyploid hybrid rice parents with strong heterosis. Sci Agric Sin, 2008, 41: 3456-3464. (in Chinese with English abstract)
[81] Zhang X H, Zuo B, Song Z J, Wang W, He Y C, Liu Y H, Cai D T. Breeding and study of two new photoperiod- and thermos- sensitive genic male sterile lines of polyploid rice (Oryza sativa L.). Sci Rep, 2017, 7: 14744.
doi: 10.1038/s41598-017-15241-8
[82] Chen Y, Shahid M Q, Wu J W, Deng R L, Chen Z X, Wang L, Liu G Q, Zhou H, Liu X D. Thermo-sensitive genic male sterile lines of neo-tetraploid rice developed through gene editing technology revealed high levels of hybrid vigor. Plants, 2022, 11: 1390.
doi: 10.3390/plants11111390
[83] Gan L, Huang B S, Song Z J, Zhang Y C, Zhang Y J, Chen S, Tong L Q, Wei Z S, Yu L X, Luo X B, Zhang X H, Cai D T, He Y C. Unique glutelin expression patterns and seed endosperm structure facilitate glutelin accumulation in polyploid rice seed. Rice, 2021, 14: 61.
doi: 10.1186/s12284-021-00500-0 pmid: 34224013
[84] 湛明月. 四倍体水稻高蛋白品系的蛋白品质及其机理初步研究. 湖北大学硕士学位论文, 湖北武汉, 2023.
Zhan M Y. Preliminary Studies on the Protein Quality and Its Mechanism of High Protein Tetraploid Rice Lines. MS Thesis of Hubei University, Wuhan, Hubei, China, 2023. (in Chinese with English abstract)
[85] Ge S, Sang T, Lu B R, Hong D Y. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA, 1999, 96: 14400-14405.
doi: 10.1073/pnas.96.25.14400 pmid: 10588717
[86] Wing R A, Purugganan M D, Zhang Q F. The rice genome revolution: from an ancient grain to green super rice. Nat Rev Genet, 2018, 19: 505-517.
doi: 10.1038/s41576-018-0024-z pmid: 29872215
[87] 何光存. 细胞工程与分子生物学相结合: 野生稻优异种质资源利用的有效途径. 生物工程进展, 1998, 18(2): 41-45.
He G C. Cellular and molecular approaches in exploitation of useful genes in wild rice. Prog Biotechnol, 1998, 18(2): 41-45. (in Chinese with English abstract)
[88] Sun C Q, Wang X K, Li Z C, Yoshimura A, Iwata N. Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor Appl Genet, 2001, 102: 157-162.
doi: 10.1007/s001220051631
[89] Soltis P S. Ancient and recent polyploid in angiosperm. New Phytol, 2005, 166: 1-5.
doi: 10.1111/nph.2005.166.issue-1
[90] Otto S P. The evolutionary consequences of polyploidy. Cell, 2007, 131: 452-462.
doi: 10.1016/j.cell.2007.10.022 pmid: 17981114
[91] Jiang W K, Liu Y L, Xia E H, Gao L Z. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol, 2013, 161: 1844-1861.
doi: 10.1104/pp.112.200147
[92] Lagudah E S, Appels R. Wheat as a model system. In: Chapman G P, eds. Grass Evolution and Domestication. Cambridge: Cambridge University Press, 1992. pp 225-265.
[93] Wang A Y, Zhang X H, Yang C H, Song Z J, Du C Q, Chen D L, He Y C, Cai D T. Development and characterization of synthetic amphiploid (AABB) between Oryza sativa and Oryza punctata. Euphytica, 2013, 189: 1-8.
doi: 10.1007/s10681-012-0821-y
[94] Zhang X H, Wang W, Jin J J, Liao S R, Liu X N, Song Z J, Cai D T. Cytomorphological characterization of the backcross progeny of synthetic amphiploid rice (AABB) and tetraploid Oryza sativa (AAAA). J Agric Sci, 2013, 5(12): 30-37.
[95] Zhang X H, Wang A Y, Du C Q, Song Z J, Wang W, He Y C, Cai D T. An efficient method of developing synthetic allopolyploid rice (Oryza spp.). Genet Resour Crop Ev, 2014, 61: 809-816.
doi: 10.1007/s10722-013-0075-0
[96] 王爱云. 水稻异源多倍体的构建及其细胞遗传学研究. 湖北大学硕士学位论文, 湖北武汉, 2003.
Wang A Y. Construction and Cytogenetical Study of Rice Allopolyploid. MS Thesis of Hubei University, Wuhan, Hubei, China, 2003. (in Chinese with English abstract)
[97] 杜超群. 栽培稻/野生稻杂种及杂种多倍体的创造和研究. 湖北大学硕士学位论文, 湖北武汉, 2006.
Du C Q. Creation and Studies of Hybrids and Polyploid Hybrids between Cultivated Rice and Wild Rice. MS Thesis of Hubei University, Wuhan, Hubei, China, 2006. (in Chinese with English abstract)
[98] 祝剑峰, 刘幼琪, 王爱云, 宋兆建, 陈冬玲, 蔡得田. 异源六倍体水稻AACCDD和三倍体水稻ACD生殖特性的细胞胚胎学研究. 植物遗传资源学报, 2008, 9: 350-357.
Zhu J F, Liu Y Q, Wang A Y, Song Z J, Chen D L, Cai D T. Cellular and embryologic studies on allohexaploid rice AACCDD and triploid rice ACD. J Plant Genet Resour, 2008, 9: 350-357. (in Chinese with English abstract)
[99] 宋兆建, 杜超群, 胡亚平, 唐志强, 陈冬玲, 何玉池, 何光存, 蔡得田. 栽培稻与疣粒野生稻杂种二倍体和四倍体的鉴定及比较. 作物学报, 2010, 36: 1144-1152.
doi: 10.3724/SP.J.1006.2010.01144
Song Z J, Du C Q, Hu Y P, Tang Z Q, Chen D L, He Y C, He G C, Cai D T. Identification and comparison of diploid and tetraploid hybrids of Oryza sativa × O. meyeriana. Acta Agron Sin, 2010, 36: 1144-1152. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01144
[100] He W T, Zhang X H, Lv P C, Wang W, Wang J, He Y C, Song Z J, Cai D T. Full‑length transcriptome reconstruction reveals genetic differences in hybrids of Oryza sativa and Oryza punctata with different ploidy and genome compositions. BMC Plant Biol, 2022, 22: 131.
doi: 10.1186/s12870-022-03502-2
[101] 秦瑞珍, 宋文昌, 郭秀平. 同源四倍体水稻花药培养在育种中的应用. 中国农业科学, 1992, 25: 6-13.
Qin R Z, Song W C, Guo X P. Studies on the application of anther culture of autotetraploid rice in breeding. Sci Agric Sin, 1992, 25: 6-13. (in Chinese with English abstract)
[102] 丁乙. 水稻籼粳交四倍体回复二倍体后代的遗传效应分析. 吉林农业大学硕士学位论文, 吉林长春, 2022.
Ding Y. Analysis of Genetic Effects of Tetraploid Reverted Diploid Progenies of Indica-Japonica Rice. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2022. (in Chinese with English abstract)
[103] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探. 作物学报, 2023, 49: 2039-2050.
doi: 10.3724/SP.J.1006.2023.22057
Song Z J, Feng Z Y, Qu T G, Lyu P C, Yang X L, Zhan M Y, Zhang X H, He Y C, Liu Y H, Cai D T. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice. Acta Agron Sin, 2023, 49: 2039-2050. (in Chinese with English abstract)
[1] 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339.
[2] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[3] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[4] 罗俊杰,欧巧明,叶春雷,王方,王镛臻,陈玉梁. 重要胡麻栽培品种的抗旱性综合评价及指标筛选[J]. 作物学报, 2014, 40(07): 1259-1273.
[5] 荐红举,肖阳,李加纳,马珍珍,魏丽娟,刘列钊. 基于SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL[J]. 作物学报, 2014, 40(04): 629-635.
[6] 王臻昱,才华,柏锡,纪巍,李勇,魏正巍,朱延明. 野生大豆GsGST19基因的克隆及其转基因苜蓿的耐盐碱性分析[J]. 作物学报, 2012, 38(06): 971-979.
[7] 伍少云, 周国雁. 中期种质库贮藏下真空和非真空包装普通小麦种子的衰老特性及寿命差异[J]. 作物学报, 2011, 37(06): 1109-1115.
[8] 高伟, 刘方, 黎绍惠, 王春英, 张香娣, 王玉红, 王坤波. 利用SSR分析四倍体棉种多态性[J]. 作物学报, 2010, 36(11): 1902-1909.
[9] 何金华, 程杏安, 陈志雄, 郭海滨, 刘向东, 卢永根. 同源四倍体水稻花粉母细胞减数分裂期间微管骨架组织和结构变化[J]. 作物学报, 2010, 36(10): 1777-1785.
[10] 袁军海,陈万权. 27个二倍体和10个四倍体小麦近缘种抗叶锈性鉴定[J]. 作物学报, 2010, 36(08): 1393-1400.
[11] 位芳,张改生.
利用荧光原位杂交技术分析新合成异源四倍体拟南芥
[J]. 作物学报, 2010, 36(07): 1216-1220.
[12] 黄明丽;邓西平;周生路;赵玉宗;Shinobu INANAGA. 不同水肥条件下二倍体、四倍体和六倍体小麦养分吸收、利用效率的研究[J]. 作物学报, 2007, 33(05): 708-716.
[13] 陈红;秦瑞珍. 提高水稻同源四倍体花药培养愈伤诱导率的研究[J]. 作物学报, 2007, 33(01): 120-125.
[14] 赵明辉;刘向东;卢永根;李金泉;郭海滨. 花粉不育基因互作的同源四倍体水稻杂种染色体行为和生殖特性[J]. 作物学报, 2006, 32(10): 1472-1478.
[15] 陈洪高;吴江生;程雨贵;刘超. 萝卜-芥蓝异源四倍体的合成及GISH分析[J]. 作物学报, 2006, 32(08): 1117-1120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .