欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1393-1400.doi: 10.3724/SP.J.1006.2010.01393

• 研究简报 • 上一篇    下一篇

27个二倍体和10个四倍体小麦近缘种抗叶锈性鉴定

袁军海1,2,陈万权1,*   

  1. 1中国农业科学院植物保护研究所 / 植物病虫害生物学国家重点实验室,北京 100193;2河北北方学院农学系,河北宣化 075131
  • 收稿日期:2010-01-22 修回日期:2010-03-01 出版日期:2010-08-12 网络出版日期:2010-06-11
  • 通讯作者: 陈万权, E-mail: wqchen112@ippcaas.cn
  • 基金资助:

    本研究由国家公益性行业科研专项经费(200903035)和国家科技支撑计划项目(2006BAD02A16,2006BAD08A05)资助。

Leaf Rust Resistance in 27 Diploids and 10 Tetraploids of Wheat Relatives

 YUAN Jun-Hai1,2,CHEN Wan-Quan1*   

  1. 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests / Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; 2 Department of Agronomy, Hebei North University, Xuanhua 075131, China
  • Received:2010-01-22 Revised:2010-03-01 Published:2010-08-12 Published online:2010-06-11
  • Contact: CHEN Wan-Quan,E-mail:wqchen112@ippcaas.cn

摘要: 利用我国小麦叶锈菌5个优势致病类型的混合菌种,在田间对27个二倍体和10个四倍体小麦近缘种成株期抗病性进行了接种鉴定,发现3个粗山羊草、1个野生二粒小麦和3个硬粒小麦表现免疫,1个一粒小麦、9个粗山羊草和1个硬粒小麦表现抗病,说明目前这些材料所含抗叶锈病基因有很高的开发应用价值。选择18个有鉴别作用的小麦叶锈菌致病类型,在不同温度下进行苗期抗叶锈病基因推导,根据抗感反应模式,推定粗山羊草Y192含Lr40,Ae37和Y190含Lr41,硬粒小麦Altar 84、Doliu、Dr147和Volcani 447含Lr23和未知基因;Ae39、T96243和Y193等10个粗山羊草和野生二粒小麦不含苗期抗叶锈病基因。粗山羊草Ae39、T96243、Y193和野生二粒小麦在成株期表现免疫至抗病且严重度≤10%,说明具有成株期抗病性特点。

关键词: 小麦, 二倍体, 四倍体, 抗叶锈基因, 基因推导

Abstract: Resistance of 37 accessions of wheat relatives, including 27 accessions of diploid and 10 accessions of tetraploid, to 5 prevalent pathotypes of Puccinia triticina was identified in the field at adult plant stage. Three accessions of Triticum tauschii, one accession of T. dicoccoides, and 3 accessions of T. durum exhibited immunity and one accession of T. monococcm, nine accessions of T. tauschii, and one accession of T. durum were resistant to the pathotypes. This result suggests that the resistance genes involved in these resources are of great value. Based on infection types (ITs), leaf rust resistance gene(s) for the 37 relatives were also postulated with eighteen differential pathotypes under different temperatures at seedling stage. In T. tauschii accessions, Y192 might carry Lr40; Ae37 and Y190 might carry Lr41. Four accessions of durum wheat, i.e. Altar 84, Doliu, Dr147, and Volcani 447, might carry Lr23 and unknown Lr gene(s). There were no putative Lr genes in 10 accessions of T. tauschii, such as Ae39, T96243 and Y193, and T. dicoccoides. At adult plant stage, Ae39, T96243, and Y193 showed ITs from “I” to “R”, with the severity less than 10%. This indicates that those materials probably possess adult plant resistance (APR) against Puccinia triticina.

Key words: Wheat, Diploid, Tetraploid, Leaf rust resistance gene, Gene postulation

[1]Agricultural Research Service of United States Department of Agriculture. Wheat leaf rust resistance genes: source, genome location, low infection type and tester lines.
[2008-12-20]. http://www.ars.usda.gov/Main/docs.htm?docid=10342
[2]Chen S-A(陈尚安), Dong Y-C(董玉琛), Xu S-J(许树军), Zhou R-H(周荣华), Li X-Q(李秀全), Wang J-X(王剑雄). Gene mapping of resistance to powdery mildew in Triticum persicum-Aegilops tauschii amphidiloid Am3. Sci Agric Sin (中国农业科学), 1990, 23(4): 17-21 (in Chinese with English abstract)
[3]Kong L-R(孔令让), Dong Y-C(董玉琛). Studies on the genetic diversity for powdery mildew resistance genes form Ae. tauschii. Acta Agron Sin (作物学报), 1997, 23(2): 176-180 (in Chinese with English abstract)
[4]Hu Y-K(胡英考), Xin Z-Y(辛志勇), Chen X(陈孝), Zhang Z-Y(张增艳), Duan X-Y(段霞瑜). Genetic analysis and gene deduction of powdery mildew resistance in T. durum-Ae. squarrosa. Acta Genet Sin (遗传学报), 2001, 28(2): 152-157 (in Chinese with English abstract)
[5]Zhu Z-D(朱振东), Zhou R-H(周荣华), Dong Y-C(董玉琛), Jia J-Z(贾继增). Analysis of powdery mildew resistance genes in some tetraploid wheat-Aegilops amphidiploids and their parents. J Plant Genet Resour (植物遗传资源学报), 2003, 4(2): 137-143 (in Chinese with English abstract)
[6]Zhang H-Q(张海泉), Ma S-Q(马淑琴). Study on identification of disease resistance of powdery mildew in Aegilops tauschii & distant cross of Triticum aestivum L
[J].and Aegilops tauschii. J Northwest A&F Univ (西北农林科技大学学报.2008, 36(7):71-79
[7]Yang L(杨烈), Yang W-Y(杨武云), Zhang X-Q(张新全), Wei H-T(魏会廷), Li J(李俊). The study on the genetic regularity of the resistance to stripe rust (CYR32) in elite goatgrasses. Acta Pratacult Sin (草业学报), 2005, 14(4): 102-105 (in Chinese with English abstract)
[8]He M-Z(何名召), Wang L-M(王丽敏), Zhang Z-Y(张增艳), Xu S-C(徐世昌), Wang L-L(王丽丽), Xin Z-Y(辛志勇). Identification and molecular mapping of a novel stripe rust resistance gene in a Triticum durum-Aegilops tauschii amphidiploid CI108. Acta Agron Sin (作物学报), 2007, 33(7): 1045-1050 (in Chinese with English abstract)
[9]Zhang H-Q(张海泉), Jia J-Z(贾继增), Yang H(杨虹), Zhang B-S(张宝石). SSR mapping of stripe rust resistance gene from Ae. tauschii. Hereditas (遗传), 2008, 30(4): 491-494 (in Chinese with English abstract)
[10]Zhang H-Q(张海泉), Ma S-Q(马淑琴). Identification and genetic analysis of thirty-four Aegilops tauschii specimens with resistance to wheat powdery mildew. Plant Prot (植物保护), 2008, 34(2): 37-40 (in Chinese with English abstract)
[11]Chen S-A(陈尚安), Dong Y-C(董玉琛), Zhou R-H(周荣华), Wang J-X(王剑雄). Screening wild relatives of wheat for disease resistance. Sci Agric Sin(中国农业科学), 1990, 23(1): 54-59 (in Chinese with English abstract)
[12]Xu S-J(许树军), Dong Y-C(董玉琛), Chen S-A(陈尚安), Zhou R-H(周荣华), Li X-Q(李秀全), Li L-H(李立会). Evaluation and utilization of the resistance of amphidiploids between Triticum and Aegilops species to wheat disease. Acta Agron Sin (作物学报), 1990, 16(2): 106-111 (in Chinese with English abstract)
[13]Feng L-N(冯丽娜), Liu C-H(刘常红), Yang W-X(杨文香), Liu D-Q(刘大群), Jia J-Z(贾继增). Resistance surveying of wheat leaf rust and postulationof resistant genes in Aegilops tauschii. J Agric Univ Hebei (河北农业大学学报), 2008, 31(9): 75-80 (in Chinese with English abstract)
[14]Chen W-Q(陈万权), Qin Q-M(秦庆明), Chen Y-L(陈扬林), Yan S-B(晏思白). Virulence dynamics of Puccinia recondita f. sp. tritici in China during 1992-1996. Acta Phytopathol Sin (植物病理学报), 1998, 28(2): 101-106 (in Chinese with English abstract)
[15]Chen W-Q(陈万权), Qin Q-M(秦庆明). Studies on utilization of worldwide known genes for leaf rust resistance of wheat in China. Sci Agric Sin (中国农业科学), 2002, 35(7): 794-801 (in Chinese with English abstract)
[16]Long D L, Kolmer J A. A north American system of nomenclature for Puccinia recondite f. sp. tritici. Phytopathology, 1989, 79: 525-529
[17]Singh R P. Pathogenicity variations of Puccinia recondita f. sp. tritici and P. graminis f. sp. tritici in wheat-growing areas of Mexico during 1988 and 1989. Plant Dis, 1991, 75: 790-794
[18]Peterson R F, Campbell A B, Hannah A E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res (Section C), 1948, 26: 496-500
[19]Roelfs A P. Race specificity and methods of study. In: Bushnell W R, Roelfs A P, eds. The Cereal Rust: I. Origins, Specificity, Structure, and Physiology. New York: Academic Press, 1985. p 134
[20]Browder L E. Specificity of the Puccinia recondite f
[J].sp. tritici: Triticum aestivum ‘Bulgaria 88’ relationship. Phytopathology
[21]Dubin H J, Johnson R, Stubbs R W. Postulated genes for resistance to stripe rust in selected CIMMYT and related wheats
[J].Plant Dis
[22]Cox T S, Raupp W J, Gill B S. Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat
[J].Crop Sci
[23]McIntosh R A, Dyck P L. Cytogenetical studies in wheat: VII. Gene Lr23 for reaction to Puccinia recondita in Gabo and related cultivars. Aust J Biol Sci, 1975, 28: 201-211
[24]Nelson C J, Singh R P, Autrique J E, Sorrells M E. Mapping genes conferring and suppressing leaf rust resistance in wheat
[J].Crop Sci
[25]Ling H Q, Qiu J W, Singh R P. Identification and genetic characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1
[J].Theor Appl Genet
[26]Zhang H T, Knott D R. Inheritance of leaf rust resistance in durum wheat
[J].Crop Sci
[27]Yuan J-H(袁军海), Liu T-G(刘太国), Chen W-Q(陈万权). Postulation of leaf rust resistance genes in 47 new wheat cultivars (lines) in China. Sci Agric Sin (中国农业科学), 2007, 40(9): 1925-1935 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!