作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1902-1909.doi: 10.3724/SP.J.1006.2010.01902

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 1 华中农业大学植物科技学院, 湖北武汉 430070; 2 中国农业科学院棉花研究所 / 农业部棉花遗传改良重点实验室, 河南安阳 455000
  • 收稿日期:2010-03-04 修回日期:2010-05-23 出版日期:2010-11-12 网络出版日期:2010-08-10
  • 通讯作者: 王坤波, E-mail:wkbcri@cricaas.com.cn; wkbcri@hotmail.com
  • 基金资助:

Analysis of Genetic Diversity of Allotetraploid Cotton Based on SSR

GAO  Wei1,LIU  Fang2,LI  Shao-Hui2,WANG  Chun-Ying2,ZHANG  Xiang-Di2,WANG  Yu-Hong2,WANG  Kun-Bo12*   

  1. 1 College of Plant Science&Technology, Huazhong Agricultural University, Wuhan 430070, China; 2 Cotton Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China
  • Received:2010-03-04 Revised:2010-05-23 Published:2010-11-12 Published online:2010-08-10
  • Contact: WANG Kun-Bo,E-mail:wkbcri@cricaas.com.cn;wkbcri@hotmail.com

摘要: 利用SSR标记对60份四倍体棉种材料进行遗传多样性分析,其中包括42份陆地棉野生种系。结果显示, 从1 050对SSR引物筛选出的95对SSR引物均能在60份材料间扩增出稳定明显的多态性条带,共检测出660个片段,其中多态性片段584个,占88.5%。每个位点的等位基因为2~12个,平均每对引物6.1个。UPGMA聚类分析显示, 42份材料的相似性系数(GS)在0.306~1.000之间,平均成对相似系数为0.493。95对引物的多态信息含量(PIC)的变幅为0.278~0.905,基因多样性(H¢)的变幅为0.451~2.451, 有效等位基因数(Ne)在1.385~10.490之间变动。SSR标记在陆地棉野生种系及四倍体棉种间均可反映丰富的遗传多样性信息,其中陆地棉与陆地棉野生种系中阔叶棉的亲缘关系最近,海岛棉和达尔文棉的亲缘关系非常相近,黄褐棉和毛棉相对较近,陆地棉与其他4个棉种的亲缘关系最远。

关键词: 野生种系, 四倍体棉种, 遗传多样性, SSR标记

Abstract:  There are five allotetraploid cotton species including two cultivated varieties, G. hirsutum and G. barbadense, and three wild species, G. darwinii watt, G. mustelinum Miers ex Watt and G. tomentosum. Wild cotton contains not only wild species but also wild types of cultivated varieties, such as G. hirsutum L. races. Research on genetic diversity relationships among cultivated and wild cotton species is necessary for better understanding of cotton evolution and good use of wild resources. The aim of this study was to evaluate the genetic diversity of five allotetraploid cotton species and 42 wild types of upland cotton using SSR markers. A total of 95 from 1050 pairs of SSR primers were used to amplify the 60 accessions of germplasm, which could produce steady and clear polymorphic bands. Six hundred and sixty DNA fragments were scored among all materials, 584 polymorphic bands were obtained, accounting for 88.5% of the total bands. The allele number (NA) per SSR locus was 2–12, with the average of 6.1. UPGMA Cluster analysis based on SSR data showed that the genetic similarity (GS) coefficient among 42 accessions of germplasm ranged from 0.306 to 1.000, the mean genetic similarity (GS) coefficient was 0.493. For 95 primers, the polymorphism information content (PIC) was from 0.278 to 0.905. The Shannon-Weaver diversity index (H¢) ranged from 0.451 to 2.451, and effective number of alleles (Ne) varied from 1.385 to 10.490. The results showed that there is a wide genetic variation in wild types of upland cotton and allotetraploid cotton tested by SSR markers. The genetic relationship is nearest between upland cotton and G. hirsutum var. latifolium, very close Gossypium barbadense L. and G. darwinii watt, G. mustelinum Miers ex Watt and G. tomentosum L. Nuttall ex Seeman a bit close and farthest between upland cotton and others.

Key words: Wild races, Allotetraploid cotton species, Genetic diversity, SSR marker

[1]Wang K-B(王坤波), Du X-M(杜雄明), Song G-L(宋国立). Current situation and development of cotton germplasm enhancement. J Plant Genet Resour (植物遗传资源学报), 2004, 5(suppl): 23– 38 (in Chinese)
[2]Wang K-B(王坤波). Introduction and conservation of wild cotton in China. Cotton Sci (棉花学报), 2007, 19(5): 354–361 (in Chinese with English abstract)
[3]Wang K-B(王坤波), Fu H-Q(付怀勤), Li S-H(黎绍惠), Yu S-J(于绍杰), Xiang X-L(项显林), Hu S-A(胡绍安). Classification of agricultural traits about wild races of upland cotton. Crop Genet Resour (作物品种资源), 1990, (4): 17–19 (in Chinese)
[4]Hu Z-A(胡志昂), Wang H-X(王洪新). Basic principles and methodsfor genetic diversity research. In: Qian Y-Q(钱迎倩), Ma K-P(马克平), eds. Principles and Methodologies of Biodiversity Studies (生物多样性研究的原理与方法). Beijing: Science Press, 1994. pp 117–123 (in Chinese)
[5]Ge S(葛颂), Hong D-Y(洪德元). Genetic diversity and its detection. In: Qian Y-Q(钱迎倩), Ma K-P(马克平), eds. Principles and Methodologies of Biodiversity Studies (生物多样性研究的原理与方法). Beijing: Science Press, 1994. pp 123–141 (in Chinese)
[6]Zhu S-Y(朱四元), Chen J-X(陈金湘), Liu A-Y(刘爱玉), Li R-L(李瑞莲), Yan Y-W(严跃文), Tang H-M(唐海明). Genetic diversity analysis and identification of insect-resistant cottons based upon SSR markers. J Hunan Agric Univ (Nat Sci)(湖南农业大学学报·自然科学版), 2006, 32(5): 469–472(in Chinese with English abstract)
[7]Chen G(陈光), Du X-M(杜雄明). Genetic diversity of source germplasm of upland cotton in China as determined by SSR marker analysis. Acta Genet Sin (遗传学报), 2006, 33(8): 733–745 (in Chinese with English abstract)
[8]Wu Y-T(武耀廷), Zhang T-Z(张天真), Yin J-M(殷剑美). Genetic diversity detected by DNA markers and phenotypes in upland cotton. Acta Genet Sin (遗传学报), 2001, 28(11): 1040– 1050 (in Chinese with English abstract)
[9]Liu D Q, Guo X P, Lin Z X. Genetic diversity of Asian cotton (Gossypium arboreum L.) in China evaluated by microsatellite analysis. Genetic Resour Crop Evol, 2006, 53: 1145–1152
[10]Song G-L(宋国立), Cui R-X(崔荣霞), Wang K-B(王坤波), Guo L-P(郭立平), Li S-H(黎绍惠), Wang C-Y(王春英), Zhang X-D(张香娣). A rapid improved CTAB method for extraction of cotton genomic DNA. Acta Gossypii Sin (棉花学报), 1998, 10(5): 273–275 (in Chinese with English abstract)
[11]Nei M, Li W H. Probability of identical monomorphism in related species. Genet Res, 1975, 26: 31–43
[12]Jin Y, Zhang W J, Fu D X, Lu B R. Sampling strategy within a wild soybean population based on its genetic variation detected by ISSR markers. Acta Bot Sin (植物学报), 2003, 45: 995–1002 (in Chinese with English abstract)
[13]Tian Q-Z(田清震). AFLP Fingerprint Analysis and Genetic Relationship among Eco-Types of G. soja and G. max in China. PhD Dissertation of Nanjing Agricultural University, 2000. pp 58–62 (in Chinese with English abstract)
[14]Xie H(谢华). Genetic Diversity on Representative Samples from Primary Core Collection of Soybean (G. max) in China. PhD Dissertation of Chinese Academy of Agricultural Sciences, 2002. pp 41–60 (in Chinese with English abstract)
[15]Ude G N, Kenworthy W J, Costa J M, Cregan P B, Jennie A. Genetic diversity of soybean cultivars from China, Japan, North America, and North American ancestral lines determined by  amplified fragment length polymorphism. Crop Sci, 2003, 43: 1858–1867
[16]Hu S-A(胡绍安), Cui R-X(崔荣霞), Wang C-Y(王春英), Yao C-B(姚长兵), Wang K-B(王坤波), Li S-H(黎绍惠). Utilization and studies on upland cotton races. Acta Gossypii Sin (棉花学报), 1994, 6: 1518 (in Chinese)
[17]Guo L-A(郭灵安), Nie R-Z(聂汝芝), Yu X-S(于锡绍). Analysis of esterase in three cultivated species and seven semi-wild species of G. hirsutum. Southwest China J Agric Sci (西南农业学报), 1989, 2(1): 90–91 (in Chinese)
[18]Zheng S-J(郑泗军), Ji D-F(季道藩), Xu F-H(许复华). Study of the biological characteristics about upland cotton races. J Zhe- jiang Agric Sci (浙江农业科学), 1989, (1): 27–30 (in Chinese)
[19]Hutchinson J B. New evidence on the origin of the old world cottons. Heredity, 1954, 8: 225–241
[20]Fryxell P A. A nomenclator of Gossypium: the botanical names of cotton. US Department of Agriculture Technical Bulletin, 1976, 1491: 1–114
[21]Johnson B L, Thein M M. Assessment of evolutionary affinities in Gossypium by protein electrophoresis. Am J Bot, 1970, 57: 1081–1092
[22]Song G-L(宋国立). Studies on Relationships among Gossypium Species. MS Dissertation of Huazhong Agricultural University, 1998. pp 31–43 (in Chinese with English abstract)
[23]Wendel J F, Cronn R C. Polyploidy and the evolutionary history of cotton. Adv Agron, 2003, 78: 139–186
[24]Ma K-P(马克平), Liu Y-M(刘玉明). The methods of measuring community diversity. Biodiversity Sci (生物多样性), 1994, 24(4): 231–239 (in Chinese)
[25]Ma K-P(马克平), Qian Y-Q(钱迎倩). Biodiversity conservation and its research progress. Chin Appl Environ Biol (应用与环境生物学报), 1998, 4(1): 95–99(in Chinese with English abstract)
[26]Guan Y(关媛), E W-D(鄂文弟), Wang L-X(王丽侠), Guan R-X(关荣霞), Liu Z-X(刘章雄), Chang R-Z(常汝镇), Qu Y-Y(曲延英), Qiu L-J(邱丽娟). Analysis of factors influencing the genetic diversity evaluation using two soybean (Glycine max L. Merr.) collections from Hunan and Hubei. Acta Agron Sin (作物学报), 2007, 33(3): 461–468 (in Chinese with English abstract)
[27]Xiao X-Y(肖小余), Wang Y-P(王玉平), Zhang J-Y(张建勇), Li S-G(李仕贵), Rong T-Z(荣廷昭). SSR marker-based genetic diversity fingerprinting of hybrid rice in Sichuan, China. Chin J Rice Sci (中国水稻科学), 2006, 20(1), 1–7 (in Chinese with English abstract)
[28]Wang G-L(王桂玲), Qin Z-W(秦智伟), Zhou X-Y(周秀艳), Zhao Z-Y(赵咫云). Genetic analysis and SSR markers of tubercuiate trait in Cucumis sativus. Chin Bull Bot (植物学通报), 2007, 24(2): 168–172 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[4] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[5] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[6] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[7] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[8] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[9] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[10] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[11] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[12] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[13] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[14] 刘洪,徐振江,饶得花,鲁清,李少雄,刘海燕,陈小平,梁炫强,洪彦彬. 基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定[J]. 作物学报, 2019, 45(1): 26-36.
[15] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
Full text



No Suggested Reading articles found!