欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1891-1901.doi: 10.3724/SP.J.1006.2010.01891

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉纤维伸长阶段上下调基因及相关通路的分析

冷雪,贾银华,杜雄明*   

  1. 中国农业科学院棉花研究所,河南安阳 455000
  • 收稿日期:2010-03-03 修回日期:2010-05-23 出版日期:2010-11-12 网络出版日期:2010-08-10
  • 通讯作者: 杜雄明, E-mail: duxm@cricaas.com.cn, Tel: 0372-2525352
  • 基金资助:
    本研究由国家重点基础研究发展计划(973计划)项目(2004CB117301)和国家“十一五”科技支撑计划项目(2006BAD13B04)资助。

Analysis of Up and Down Regulation Genes and Relative Pathway during Cotton Fiber Elongation

LENG Xue,JIA Yin-Hua,DU Xiong-Ming*   

  1. Cotton Research Institute,Chinese Academy of Agricultural Sciences,Anyang 455000,China
  • Received:2010-03-03 Revised:2010-05-23 Published:2010-11-12 Published online:2010-08-10
  • Contact: DU Xiong-ming,E-mail:duxm@cricaas.com.cn,Tel:0372-2525352

摘要: 棉花纤维细胞是研究细胞发育机制的理想材料,陆地棉Ligon lintless(Li1)是单基因显性超短纤维突变体, 其性状表现为长纤维极度缩短,分离得到的野生型(li1)纤维发育正常。本实验通过cDNA芯片的方法对两个材料进行比较分析,采集开花前1 d到开花后7 d即–1 DPA ~ +7 DPA (day post anthesis)材料,检测到多个上调和下调基因,选择两个基因(CIPKXET)进行RT-PCR和qRT-PCR的芯片验证。应用MAS (molecular analysis system)系统进行GO功能注释和Pathway的分析表明,这些差异表达基因参与脂肪酸代谢(fatty acid metabolism),甘油脂代谢(glycerolipid metabolism)以及碳固定(reductive carboxylate cycle)等多个代谢途径。这些基因在突变体Li1中的异常表达可能导致细胞中脂肪酸和脂肪含量变化,影响棉纤维细胞的正常发育。

关键词: 基因通路图, 脂肪酸, cDNA芯片

Abstract: The fiber development is a crucial factor, influencing cotton yield and quality. The elongation period of fiber development is the key time to determine the fiber’s final length. The mechanism of fiber elongation is not known clearly now. We hope to find some information about it by using wild type and mutant microarray. It is an effective method to studying relevant genes of fiber development by comparing mutants and wild-type gene expression profiles. Cotton fiber formed by single-celled trichomes is the perfect material for studying cell elongation mechanism. Ligon lintless (Li1) is a dominant mutant of upland cotton (Gossypium hirsutum L.) and its fiber is extremely short on mature seed, about 4–6 mm in length, but the wild type (li) is normal for plant and fibers. Recently, we constructed a cDNA microarray used the ovule total RNAs of the mutant and its wild-type. The results showed that many genes expressed up- (or down-) regulated between the mutant and wild type from –1 to +7 DPA (day post anthesis), and two genes (XET, CIPK)were validated by RT-PCR and qRT-PCR analysis. These genes were analyzed via the gene ontology and pathway with Molecule Annotation System (MAS) developed by Capitalbio Co, indicating that these differential expressed genes influenced some metabolism pathways including fatty acid metabolism, glycerolipid metabolism, reductive carboxylate cycle et al. The abnormal expression of these genes in the mutant Limaybe result in the change of the fatty acids and fat content, and further influence the fiber development.

Key words: Pathway, Fatty acid, cDNA microarray

[1]Zhu Y-Q(朱勇清), Xu K-X(许可香), Chen X-Y(陈晓亚). The polarity transport of IAA in Ligon lintless mutant is weaken. J Plant Physiol Mol Biol (植物生理与分子生物学报), 2003, 29(1): 15–20 (in Chinese with English abstract)
[2]Liu X-J(刘晓杰), Zhang J(张杰), Jia Y-H(贾银华), Du X-M(杜雄明). Effects of plant hormone on the regulation of ligon lintless mutant in cotton. J Anhui Agric Sci (安徽农业科学), 2008, 36(35): 15460–15469 (in Chinese with English abstract)
[3]Cheng C-H(程超华), Wang X-D(王学德), Yao Y-L(姚艳玲). Inducement of fiber cell elongation from ovule of lintless mutant (Ligon cotton, Gossypium hirsutum L.) in vitro with IAA and GA3. Acta Agron Sin (作物学报), 2005, 31(2): 229–233 (in Chinese with English abstract)
[4]Jiang S-L(蒋淑丽), Wang X-D(王学德). The accumulation of biochemical components in ovule of cotton fiber mutants during the ovule development. J Zhejiang Univ (Agric & Life Sci) (浙江大学学报·农业与生命科学版), 2002, 28(1): 16–21 (in Chinese with English abstract)
[5]Kohel R J, Quisenberry J E, Benedict C R. Incorporation of
[14C] glucose into crystalline cellulose in aberrant fibers of a cotton mutant. Crop Sci, 1993, 33: 1036–1040
[6]Cheng C H, Wang X D, Ni X Y. Observation of fiber ultrastructure of Ligon lintless mutant in upland cotton during fiber elongation. Chin Sci Bull, 2005, 50(2): 126–130
[7]Chen J G, Du X M, Zhou X. Levels of cytokinins in the ovules of cotton mutants with altered fiber development. J Plant Growth Regul, 1997, 16: 181–185
[8]Dixon D C, Seagull R W, TriPlett B A. Changes in the acellroulation of a- and p-tubulinisotypes during cotton fiber development. Plant Physiol, 1994, 105: 1347–1353
[9]Ji S J, Lu Y C, Li J, Wei G, Liang X J, Zhu Y X. A beta-tubulin- like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Biochem Biophys Res Commun, 2002, 296: 1245–1250
[10]Ferguson D L, Turley R B, Kloth R H. Identification of a d-TIP cDNA clone and determination of related A and D genome subfamilies in Gossypium species. Plant Mol Biol, 1997, 34: 111–118
[11]Harmer S E, Orford S J, Timmis J N. Characterization of six alpha-expansin genes in Gossypium hirsutum (upland cotton). Mol Gene Genome, 2002, 268: 1–9
[12]Song P, Allen R D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display. Biochem Biophys Acta, 1997, 1351: 305–312
[13]Wilkins T A. Vacuolar H+-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum) ovules. Plant Physiol, 1993, 102: 679–680
[14]Wan C Y, Wilkins T A. Isolation of multiple cDNAs encoding the vacuolar H+-ATPase subunit B from developing cotton (Gossypium hirsutum L.) ovules. Plant Physiol, 1994, 106: 393–394
[15]Hasenfratz M P, Tsou C L, Wilkins T A. Expression of two related vacuolar H+-ATPase 16-kilodalton proteolipid genes is differentially regulated in a tissue-specific manner. Plant Physiol, 1995, 108: 1395–1404
[16]Andrawis A, Solomon M, Delmer D P. Cotton fiber annexins: a potential role in the regulation of callose synthase. Plant J, 1993, 3: 763–772
[17]Shin H, Brown Jr R M. GTPase activity and biochemical characterization of a recombinant cotton fiber annexin. Plant Physiol, 1999, 119: 925–934
[18]Kawai M, Aotsuka S, Uchimiya H. Isolation of a cotton CAP gene: a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation. Plant Cell Physiol, 1998, 39: 1380–1383
[19]Wang S, Zhao G H, Jia Y H, Du X M. Molecular cloning, and characterization of an adenylyl cyclase-associated protein from Gossypium arboreum L. Agric Sci China, 2009, 8(7): 777–783
[20]Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 2006, 18: 651–664
[21]Qin Y M , Hu C Y, Pang Y, Kastaniotis A J, Hiltunen J K, Zhu Y X. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell, 2007, 19: 3692–3704
[22]Bolton J J, Soliman K M, Wilkins T A, Jenkins J N. Aberrant expression of critical genes during secondary cell wall biogenesis in a cotton mutant, Ligon lintless-1 (Li-1). Comparative Function Genom, DOI: 10.1155/2009/659301
[23]Yang Y H, Dudoit S, Luu P, Lin D M, Peng V, Ngai J, Speed T P. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucl Acids Res, 2002, 30: e15
[24]Tusher V, Tibshirani R, Chu G. Significance analysis of microarrays applied to transcriptional responses to ionizingradiation. Proc Natl Acad Sci USA, 2001, 98: 5116–5121
[25]Murry E, Soonpaa M H, Reinecke H. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 2004, 428: 664-668
[26]Page R A, Okada S, Harwood J L. Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants. Biochim Biophys Acta, 1994, 1210: 369–372
[27]Post-Beittenmiller D, Roughan P G, Ohlrogge J B. Regulation of plant fatty acid biosynthesis. Analysis of acyl-Coenzyme A and acyl-acyl carrier protein substrate pools in spinach and pea chloroplasts. Plant Physiol, 1992, 100: 923–930
[28]Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res, 2000, 28, 27–30
[29]De Fabiani E, Mitro N, Godio C, Gilardi F, Caruso D, Crestani M. Bile acid signaling to the nucleus: finding new connections in the transcriptional regulation of metabolic pathways. Biochimie, 2004, 86: 771–778
[30]Wanjie S W, Welti R, Moreau R A, Chapman K D. Identification and quantification of glycerolipidsin cotton fibers: reconciliation with metabolicpathway predictions from DNA databases. Lipids, 2005, 40: 8
[31]Qin Y M, Pujol F A, Shi Y H, Feng J X, Liu Y M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Cloning and functional characterization of two cDNAs encoding NADPH-dependent 3-ketoacyl-CoA reductases from developing cotton fibers. Cell Res, 2005, 15: 465–473
[32]Gou J Y, Wang L J, Chen S P, Hu W L, Chen X Y. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res, 2007, 17: 422–434
[1] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[2] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[3] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[4] 鲁庚,唐鑫,陆俊杏,李丹,胡秋芸,胡田,张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究[J]. 作物学报, 2020, 46(8): 1283-1290.
[5] 郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳. 利用RIL群体创制低山嵛酸花生新种质[J]. 作物学报, 2020, 46(5): 661-667.
[6] 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049.
[7] 侯智红,吴艳,程群,董利东,芦思佳,南海洋,甘卓然,刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系[J]. 作物学报, 2019, 45(6): 839-847.
[8] 郭建斌,吴贝,陈伟刚,黄莉,陈玉宁,周小静,罗怀勇,刘念,任小平,姜慧芳. 花生品种主要脂肪酸含量在不同生态区的稳定性[J]. 作物学报, 2019, 45(5): 676-682.
[9] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[10] 张宇婷,鲁少平,金诚,郭亮. 甘蓝型油菜皖油20号种子不同部位油脂合成的转录调控分析[J]. 作物学报, 2019, 45(3): 381-389.
[11] 李建国,薛晓梦,张照华,王志慧,晏立英,陈玉宁,万丽云,康彦平,淮东欣,姜慧芳,雷永,廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用[J]. 作物学报, 2019, 45(12): 1891-1898.
[12] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[13] 方彦,孙万仓,武军艳,刘自刚,董云,米超,马骊,陈奇,何辉立. 北方白菜型冬油菜的膜脂脂肪酸组分和ATPase活性对温度的响应[J]. 作物学报, 2018, 44(01): 95-104.
[14] 雷雅坤,刘兵强,邸锐,闫龙,杨春燕,郝东旭,张孟臣. 大豆不同环境下脂肪酸组分含量的QTL分析[J]. 作物学报, 2016, 42(02): 303-310.
[15] 吴林坤,黄伟民,王娟英,吴红淼,陈军,秦贤金,张重义,林文雄. 不同连作年限野生地黄根际土壤微生物群落多样性分析[J]. 作物学报, 2015, 41(02): 308-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!