欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1891-1898.doi: 10.3724/SP.J.1006.2019.94016

• 耕作栽培·生理生化 • 上一篇    下一篇

单粒花生主要脂肪酸含量近红外预测模型的建立及其应用

李建国,薛晓梦,张照华,王志慧,晏立英,陈玉宁,万丽云,康彦平,淮东欣(),姜慧芳,雷永(),廖伯寿   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
  • 收稿日期:2019-05-15 接受日期:2019-06-20 出版日期:2019-07-16 网络出版日期:2019-07-16
  • 通讯作者: 淮东欣,雷永
  • 作者简介:李建国, E-mail: 15611821765@163.com
  • 基金资助:
    本研究由玛氏-中国高油酸花生育种计划项目(MARS-China HOAP 2013-2018);国家自然科学基金项目(31671734);国家自然科学基金项目(31461143022);国家自然科学基金项目(31770250);国家自然科学基金项目(31371662);中央级科研院所基本科研业务费专项(Y2018PT52);国家现代农业产业技术体系建设专项(CARS-13)

Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut

Jian-Guo LI,Xiao-Meng XUE,Zhao-Hua ZHANG,Zhi-Hui WANG,Li-Ying YAN,Yu-Ning CHEN,Li-Yun WAN,Yan-Ping KANG,Dong-Xin HUAI(),Hui-Fang JIANG,Yong LEI(),Bo-Shou LIAO   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, Hubei, China
  • Received:2019-05-15 Accepted:2019-06-20 Published:2019-07-16 Published online:2019-07-16
  • Contact: Dong-Xin HUAI,Yong LEI
  • Supported by:
    This study was supported by the Mars-China High Oleic Acid Peanut Breeding Project(MARS-China HOAP 2013-2018);the National Natural Science Foundation of China(31671734);the National Natural Science Foundation of China(31461143022);the National Natural Science Foundation of China(31770250);the National Natural Science Foundation of China(31371662);the Fundamental Research Funds for Central Non-profit Scientific Institution(Y2018PT52);the China Agriculture Research System(CARS-13)

摘要:

脂肪酸组成是影响花生营养价值和货架寿命的主要因素, 高油酸花生以其营养保健价值高、化学稳定性好、耐储藏等特点, 深受广大消费者和花生加工企业的喜爱。因此, 培育高油酸品种是花生育种的重要目标, 建立快速、高效、准确检测花生中主要脂肪酸含量的无损方法是加快花生脂肪酸改良和高油酸品种选育进程的重要技术保障。本研究利用近红外光谱技术建立了可以非破坏性地快速检测单粒花生中油酸、亚油酸、棕榈酸含量的数学模型, 其中油酸模型的决定系数(R 2)为0.907, 均方差为3.463; 亚油酸模型的决定系数为0.918, 均方差为2.824; 棕榈酸模型的决定系数为0.824, 均方差为0.782。使用100粒花生验证该模型的准确性, 结果油酸、亚油酸和棕榈酸的近红外预测值与化学值的相关系数分别为0.88、0.90和0.71, 表明此模型可以准确地预测单粒花生中这3种脂肪酸的含量。本研究借助该模型建立了一种不依赖分子标记的快速、高效选育高油酸花生的方法, 并成功应用于高油酸花生育种, 选育出高油酸花生品种中花215。

关键词: 单粒花生, 脂肪酸, 近红外模型, 高油酸, 育种方法

Abstract:

Profile of fatty acid is the main factor determining the nutritional value and shelf life of peanut. High oleate peanut has been increasingly favored by customers and peanut processing enterprises, as it provides a prolonged shelf-life and a beneficial effect on human health. Therefore, creating high oleate peanut cultivar is an important objective for peanut breeding. Developing a nondestructive method which could detect the fatty acid composition in peanut rapidly, efficiently and accurately is an important technical support for accelerating the processing. In this study, models for predicting the contents of main fatty acids (oleic acid, linoleic acid and palmitic acid) in a single peanut seed were built up using near-infrared reflectance spectroscopy (NIRS). The coefficient of multiple determination (R 2) and the root mean squared error of external calibration (RMSECV) of prediction models were 0.907 and 3.463 for oleic acid, 0.918 and 2.824 for linoleic acid, 0.824 and 0.782 for palmitic acid, respectively. One hundred peanut seeds were analyzed by both NIR and gas chromatography (GC) to validate the accuracy of the prediction models. The correlation coefficients of oleic acid, linoleic acid and palmitic acid between NIR values and GC values were 0.88, 0.90, and 0.71, respectively, suggesting that these models could accurately predict the contents of the three main fatty acids in a single peanut seed. Furthermore, based on these prediction models, a breeding method of high oleate peanut without assistance of molecular marker was developed, and a high oleate peanut cultivar Zhonghua 215 was successfully bred.

Key words: single peanut seed, fatty acid, near infrared model, high oleic acid, breeding method

图1

本试验中使用的近红外检测仪Unity-SpectrastarXL"

图2

样品集的光谱分析"

表1

建立数学模型使用的单粒花生种子的油酸、亚油酸和棕榈酸含量"

棕榈酸(C16:0)含量
Palmitic acid content
油酸(C18:1)
含量
Oleic acid
content
亚油酸(C18:2)含量
Linoleic acid content
样本数
Sample size
1013 1195 1202
最小值Minimum (%) 5.9 32.8 0.7
最大值Maximum (%) 16.6 80.8 43.9
均值Mean (%) 11.1 51.8 26.5

图3

本方法中油酸模型、亚油酸模型和棕榈酸模型的决定系数"

附表1

检验数学模型准确性使用的单粒花生种子的油酸、亚油酸和棕榈酸含量的NIR预测值与化学值"

样品
Sample
C18:1 C18:2 C16:0
NIR GC NIR GC NIR GC
1 52.9 49.9 26.0 31.9 11.1 10.4
2 80.0 74.1 1.6 9.2 6.7 6.5
3 70.3 60.0 10.1 21.6 8.5 10.5
4 73.5 69.9 8.0 14.3 7.8 7.5
5 68.5 64.6 11.4 14.3 8.5 8.1
6 67.0 49.7 13.3 29.1 8.7 8.5
7 69.2 59.9 11.5 20.8 8.5 10.3
8 64.4 39.1 14.4 35.5 9.7 13.9
9 81.2 69.7 1.3 12.3 6.1 6.4
10 83.7 69.6 -1.7 11.3 5.6 9.2
11 82.4 74.6 -0.5 9.6 5.9 7.7
12 67.8 54.9 13.5 23.5 8.7 10.6
13 54.4 49.7 24.4 29.9 11.1 9.4
14 89.5 85.4 -5.8 1.4 4.8 5.8
15 88.2 85.1 -4.9 1.2 5.1 5.1
16 57.1 44.7 22.8 32.5 10.3 15.5
17 86.2 79.8 -3.6 2.5 5.3 6.9
18 93.3 79.8 -9.2 2.4 3.9 7.0
19 55.7 38.5 23.8 37.2 10.4 15.6
20 75.0 69.6 6.4 12.8 7.1 6.1
21 91.8 79.7 -7.7 2.1 4.5 7.5
22 66.7 54.9 13.7 24.3 8.6 12.6
23 60.3 44.8 20.3 33.0 10.0 13.8
24 59.2 49.8 20.1 32.0 10.2 9.9
25 62.0 44.8 17.5 31.1 9.3 11.0
26 90.8 79.7 -6.9 2.0 5.2 6.8
27 81.1 74.8 1.1 7.0 6.3 7.6
28 68.2 59.9 12.3 21.2 9.2 8.9
29 71.8 55.0 9.6 25.8 8.2 8.8
30 77.4 69.6 4.5 11.7 7.1 6.4
31 74.7 74.2 5.9 10.6 7.7 6.8
32 85.2 84.9 -2.1 2.1 5.7 6.0
33 83.8 74.3 -1.8 8.8 6.1 5.6
34 66.1 45.0 25.3 32.3 10.5 12.9
35 71.4 59.8 9.5 20.8 8.2 7.4
36 73.3 69.8 7.6 11.9 8.1 8.0
37 61.1 54.8 18.5 26.1 10.1 8.0
38 72.2 54.9 8.5 26.1 7.7 10.6
39 90.9 79.5 -7.9 2.5 4.4 6.2
40 86.5 44.9 -4.2 34.2 5.7 11.7
41 51.3 39.5 27.2 40.6 12.2 10.6
42 48.4 38.9 29.9 41.7 12.2 10.9
43 79.9 74.4 1.7 7.6 6.6 5.9
44 54.6 45.0 23.9 36.2 11.2 10.0
45 70.3 55.0 11.8 24.0 8.2 12.7
46 64.3 54.9 16.7 25.1 9.5 11.1
47 69.3 64.9 11.4 18.4 8.6 6.5
48 74.1 65.0 6.9 14.6 7.6 7.4
49 73.0 69.6 7.9 13.6 7.5 6.6
50 58.5 49.6 20.2 31.2 10.0 9.8
51 91.2 79.7 -7.6 2.4 4.6 7.5
52 87.0 79.7 -3.6 2.3 6.0 7.8
53 72.2 64.7 8.6 16.5 7.7 9.2
54 69.4 59.9 10.7 21.4 8.3 9.7
55 49.9 45.0 28.5 36.5 11.9 10.5
56 91.8 79.9 -9.2 2.4 4.3 6.3
57 70.5 38.7 10.0 36.9 8.0 12.7
58 73.7 59.8 4.0 20.4 6.5 8.9
59 87.7 79.6 -4.8 2.3 5.4 7.1
60 67.0 60.0 13.6 22.5 8.7 10.9
61 66.1 49.8 14.7 29.7 9.2 12.8
62 82.9 85.6 -0.4 1.4 6.0 6.3
63 81.6 85.6 -0.4 1.4 6.0 6.3
64 64.4 54.8 16.1 26.8 9.5 9.2
65 78.2 74.4 3.7 10.2 7.0 8.3
66 83.6 85.3 -1.4 1.4 5.8 5.6
67 89.3 85.6 -6.4 1.1 5.0 5.3
68 59.5 44.6 19.9 33.9 10.5 11.1
69 58.9 44.9 21.1 35.4 10.0 10.3
70 45.6 39.8 32.6 40.6 13.3 10.8
71 71.6 64.9 8.6 18.2 8.3 8.4
72 72.7 64.8 7.7 16.1 7.9 9.5
73 80.2 74.2 0.8 8.8 6.4 5.9
74 84.2 85.1 -0.6 1.4 5.8 6.6
75 76.0 69.9 4.8 12.4 6.8 8.3
76 87.5 64.7 -5.0 12.5 5.1 7.9
77 88.2 85.6 -4.8 1.7 4.9 5.4
78 60.8 38.7 18.1 37.0 9.6 11.3
79 54.0 38.7 24.6 37.9 11.4 12.5
80 58.6 44.8 20.7 32.1 10.7 12.2
81 50.6 39.7 28.8 40.5 11.9 9.6
82 53.9 49.9 25.0 28.3 10.8 7.6
83 84.9 84.8 -1.8 1.6 5.4 6.5
84 56.9 50.0 23.2 30.0 10.3 9.1
85 71.1 74.2 10.2 9.4 8.2 8.0
86 75.2 69.7 6.9 14.7 7.4 7.2
87 62.6 54.8 17.5 26.4 9.5 9.2
88 68.7 64.8 11.4 17.9 8.4 7.3
89 73.7 65.0 7.5 16.7 7.8 7.6
90 72.6 59.8 9.1 20.5 7.8 11.3
91 59.7 39.8 20.5 35.4 9.8 13.6
92 59.8 49.6 19.6 28.1 10.2 11.3
93 89.8 79.9 -6.8 2.5 5.2 6.3
94 66.8 59.9 14.2 19.7 8.9 8.6
95 86.5 84.8 -4.1 1.6 5.7 6.4
96 75.0 69.8 6.1 14.5 7.4 7.4
97 67.3 54.9 13.4 24.1 9.1 12.5
98 77.4 74.1 4.6 10.4 6.8 7.0
99 69.1 50.0 12.0 29.2 8.6 11.2
100 68.4 59.9 12.4 20.3 8.8 9.3

图4

检验使用的单粒花生种子的油酸(A)、亚油酸(B)、棕榈酸(C)近红外预测值与化学值相关性 C18:1: 油酸; C18:2: 亚油酸; C16:0-棕榈酸。"

附表2

单粒近红外光谱检测油酸含量在70%以上的F2花生种子"

样品
Sample
油酸
C18:1 (%)
样品
Sample
油酸
C18:1 (%)
6-1 82.9 4-13 73.8
2-11 82.2 9-10 73.4
10-6 81.2 5-12 73.3
8-12 80.0 3-16 73.2
3-3 79.7 9-20 73.2
11-31 79.2 5-1 73.2
6-2 78.8 4-12 72.8
7-18 78.3 3-16 72.6
8-8 77.7 10-15 72.5
11-42 76.8 9-11 72.2
4-11 76.2 11-8 72.1
4-14 75.5 4-7 72.1
4-2 75.5 8-19 71.8
5-7 75.1 9-21 71.5
8-4 74.8 4-15 71.3
1-11 74.7 1-16 70.7
7-3 74.4 6-29 70.5
3-11 74.2 2-17 70.3
12-21 74.0 10-7 70.1

附表3

单粒近红外光谱检测油酸含量在75%以上的F3花生种子"

样品
Sample
油酸
C18:1 (%)
样品
Sample
油酸
C18:1 (%)
样品
Sample
油酸
C18:1 (%)
样品
Sample
油酸
C18:1 (%)
2-11-2 86.1 8-8-4 83.3 7-3-30 81.6 7-3-4 79.7
9-10-14 85.6 8-8-12 83.2 7-18-22 81.5 8-12-31 79.6
8-12-4 85.6 7-18-2 83.2 7-18-1 81.5 6-2-17 79.5
8-8-14 85.6 3-16-5 83.1 8-8-5 81.5 4-13-2 79.5
2-11-11 85.4 6-1-3 83.1 4-11-1 81.4 3-11-13 79.5
8-12-3 85.3 4-14-23 83.1 11-42-59 81.3 5-12-10 79.4
3-11-4 85.1 8-4-4 83.0 12-21-14 81.3 4-2-8 79.3
9-10-4 85.1 5-12-32 83.0 5-12-40 81.3 4-11-12 79.3
5-12-3 84.9 6-1-22 82.9 3-16-16 81.3 11-31-27 79.3
11-42-2 84.8 9-10-1 82.9 8-4-10 81.3 7-18-32 79.3
10-6-4 84.8 3-3-3 82.9 9-10-20 81.2 4-11-25 79.3
1-11-5 84.7 6-1-23 82.8 11-42-25 81.1 4-13-4 79.1
3-3-2 84.7 4-11-4 82.7 3-16-22 81.1 4-13-7 79.0
5-12-1 84.6 6-2-13 82.7 4-13-14 81.1 8-12-9 78.9
12-21-15 84.6 9-10-5 82.7 4-13-3 81.0 4-13-33 78.9
2-11-5 84.6 11-42-12 82.7 9-10-25 81.0 3-16-45 78.8
10-6-3 84.5 5-12-2 82.6 7-3-1 81.0 3-16-30 78.7
6-1-1 84.4 11-31-22 82.5 4-13-30 81.0 4-13-1 78.7
1-11-4 84.4 4-11-7 82.5 8-12-14 80.9 5-7-21 78.6
4-11-10 84.3 8-12-23 82.4 4-2-1 80.9 7-3-9 78.5
4-2-5 84.2 9-10-33 82.4 10-6-10 80.9 7-3-27 78.5
9-20-4 84.2 7-18-12 82.3 11-31-2 80.8 3-11-2 78.0
1-11-3 84.2 9-21-1 82.3 9-10-27 80.8 11-31-4 78.0
8-8-1 84.2 4-14-5 82.3 9-10-15 80.7 3-11-1 78.0
2-11-3 84.1 11-31-7 82.2 4-2-9 80.7 9-10-26 77.9
2-11-1 84.1 7-18-10 82.2 8-12-7 80.7 3-16-35 77.6
14-14-2 84.1 4-13-24 82.2 11-31-26 80.7 4-14-4 77.6
8-8-17 84.1 5-12-8 82.2 11-31-14 80.7 3-16-24 77.4
4-14-15 84.1 6-2-2 82.2 11-42-19 80.5 11-31-30 77.3
11-31-15 84.1 6-2-9 82.1 3-3-8 80.5 5-12-27 76.5
1-11-1 84.1 9-10-10 82.1 11-31-8 80.5 4-2-42 76.4
2-11-4 84.0 9-10-6 82.1 10-6-18 80.5 4-14-31 76.4
8-8-2 84.0 4-11-5 82.1 2-11-28 80.5 5-7-19 76.3
3-3-5 83.9 6-2-6 82.0 4-11-41 80.3 11-31-28 76.1
9-20-2 83.9 6-1-10 82.0 6-1-7 80.3 8-8-18 75.9
5-7-2 83.9 4-11-3 81.9 4-2-2 80.3 4-13-17 75.8
6-1-4 83.9 6-1-27 81.9 4-13-10 80.3 12-21-10 75.8
10-6-2 83.8 8-4-8 81.9 4-13-34 80.1 6-2-32 75.6
1-11-2 83.7 4-14-14 81.8 9-10-9 80.1 3-3-31 75.6
11-31-3 83.7 8-8-3 81.8 11-42-16 80.1 9-10-16 75.6
9-10-12 83.7 7-3-2 81.7 11-42-8 80.1 3-11-24 75.6
9-10-3 83.6 11-42-1 81.7 12-21-29 80.0 11-31-12 75.5
9-20-3 83.5 7-3-10 81.7 7-18-5 79.9 3-3-19 75.5
12-21-2 83.4 4-14-3 81.7 11-31-17 79.9 5-12-24 75.4
8-12-5 83.4 12-21-1 81.7 4-14-16 79.8 11-42-54 75.2
3-3-1 83.4 11-42-7 81.7 4-14-10 79.8 9-10-37 75.2
6-1-2 83.3 12-21-18 81.6 4-2-35 79.7 9-10-38 75.1
12-21-4 83.3 8-12-34 81.6 4-13-18 79.7 9-10-22 75.0
4-14-1 83.3 6-2-5 81.6 7-3-20 79.7 1-11-9 75.0

表2

单粒近红外光谱检测花生F4种子中的油酸含量(%)及其混样气相色谱检测结果"

2-11-3a 2-11-28 4-11-7 4-14-1 6-2-6 8-8-3 9-10-9 10-6-4 11-31-15 12-21-18
1b 87.5 86.7 77.7 81.2 78.8 78.7 76.5 76.9 75.8 77.0
2 80.3 78.2 76.5 76.7 81.2 76.7 78.7 78.0 79.2 76.6
3 84.2 76.2 76.8 76.4 75.5 76.1 75.4 81.5 79.7 82.9
4 80.6 83.4 80.0 79.0 78.3 80.0 85.8 75.4 76.0 75.8
5 78.1 76.2 77.6 80.8 75.1 78.2 83.7 77.5 86.1 77.3
6 76.3 78.0 79.0 75.9 82.5 76.6 77.8 75.9 75.4 76.5
7 82.0 83.9 77.9 76.7 78.0 81.5 77.5 76.4 76.0 79.7
8 76.7 76.2 77.3 77.5 77.8 77.7 75.2 77.6 81.2 76.6
9 76.1 82.5 82.6 84.1 75.0 79.3 77.5 84.7 83.6 82.9
10 85.1 78.9 80.1 78.3 77.8 76.2 77.5 75.0 79.5 82.2
GCc 82.0 80.1 80.4 81.7 81.0 81.3 79.7 79.8 80.5 81.2

表3

各F4株系AhFAD2的基因型"

F4株系 F4 lines 基因型Genotype
2-11-3 aabb
2002/11/28 aabb
2004/11/7 aabb
4-14-1 aabb
2006/2/6 aabb
2008/8/3 aabb
2009/10/9 aabb
2010/6/4 aabb
11-31-15 aabb
12-21-18 aabb
[1] 万书波 . 我国花生产业面临的机遇与科技发展战略. 中国农业科技导报, 2009,11(1):7-12.
Wan S B . Opportunities facing peanut industry in China and strategies for its science and technology development. J Agric Sci Technol, 2009,11(1):7-12 (in Chinese with English abstract).
[2] 刘娟, 汤丰收, 张俊, 臧秀旺, 董文召, 易明林, 郝西 . 国内花生生产技术现状及发展趋势研究. 中国农学通报, 2017,33(22):13-18.
Liu J, Tang F S, Zhang J, Zang X W, Dong W Z, Yi M L, Hao X . Current status and development trends of peanut production technology in China. Chin Agric Sci Bull, 2017,33(22):13-18 (in Chinese with English abstract).
[3] 郭建斌 . 花生含油量及脂肪酸组成的QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Guo J B . QTL Analysis for Oil Content and Fatty Acid Traits in Peanut (Arachis hypogaea L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).
[4] Pandey M K, Wang M L, Qiao L X, Feng S P, Khera P, Wang H, Tonnis B, Barkley N A, Wang J P, Holbrook C C, Culbreath A K, Varshney R K, Guo B Z . Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut(Arachis hypogaea L.). BMC Genetics, 2014,15(1):133.
doi: 10.1186/s12863-014-0133-4 pmid: 25491595
[5] Yin D, Deng S, Zhan K, Cui D . High-oleic peanut oils produced by hpRNA-mediated gene silencing of oleate desaturase. Plant Mol Biol Rep, 2007,25:154-163.
doi: 10.1007/s11105-007-0017-0
[6] 张晓科, 王珊珊, 曲伟华 . 近红外定量分析自然风干花生油酸和亚油酸及棕榈酸含量的探索. 农业开发与装备, 2017, ( 7):76-77.
Zhang X K, Wang S S, Qu W H . Quantitative analysis of natural air-dried arachidonic acid, linoleic acid and palmitic acid by near infrared spectroscopy. Agric Dev Equip, 2017, ( 7):76-77 (in Chinese with English abstract).
[7] 王传堂 . 高油酸花生. 上海: 上海科学出版社, 2017. pp 113-114.
Wang C T. High Oleic Acid Peanuts. Shanghai: Shanghai Scientific and Technical Publishers, 2017. pp 113-114(in Chinese).
[8] Idriss M R. 基于高光谱成像技术和近红外光谱技术测定花生种子及花生油中油酸和亚油酸含量的方法研究. 中国农业科学院博士学位论文, 北京, 2016.
Idriss M R . Determination of Oleic Acid and Linoleic Acid in Peanut Seeds and Peanut Oil by High Spectral Imaging and Near Infrared Spectroscopy. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[9] Chamberlin K D, Melouk H A, Madden R, Dillwith J W, Bannore Y, Rassi Z E, Payton M . Determining the oleic/linoleic acid ratio in a single peanut seed: a comparison of two methods. Peanut Sci, 2011,38:78-84.
doi: 10.3146/PS11-3.1
[10] 禹山林, 杨庆利, 潘丽娟, 曹玉良, 闵平, 朱雨杰 . 一种非破坏性测定花生种子主要脂肪酸含量的方法. 中国专利, 2009,CN101887018B.
Yu S L, Yang Q L, Pan L J, Cao Y L, Min P, Zhu Y J . A nondestructive method for the determination of main fatty acids in peanut seeds. Chinese patent, 2009,CN101887018B(in Chinese).
[11] 张严, 谢岩黎, 孙淑敏, 马明扬, 李琳琳 . 近红外分析花生籽粒脂肪酸含量的研究. 河南工业大学学报(自然科学版), 2014,35(2):54-58.
Zhang Y, Xie Y L, Sun S M, Ma M Y, Li L L . Analysis of fatty acids in peanut seeds by near infrared spectroscopy. J Henan Univ Technol (Nat Sci Edn), 2014,35(2):54-58 (in Chinese with English abstract).
[12] Chamberlin K D, Barkley N A, Tillman B L, Dillwith J W, Madden R, Payton M E, Bennett R S . A comparison of methods used to determine the oleic/linoleic acid ratio in cultivated peanut (Arachis hypogaea L.). Agric Sci, 2014,5:227-237.
[13] Lee J M, Pae S B, Choung M G, Lee M H, Kim S U, Oh E Y, Oh K W, Jung C S, Oh I S . Determination of fatty acid composition in peanut seed by near infrared reflectance spectroscopy. Korean Soci Crop Sci, 2016,61:64-69.
[14] 王传堂 . 生物技术和近红外技术在花生育种中的应用. 中国海洋大学博士学位论文, 山东青岛, 2010.
Wang C T . Application of Biotechnology and NIRS in Peanut Breeding. PhD Dissertation of Ocean University of China, Qingdao, Shandong, China, 2010 (in Chinese with English abstract).
[15] 张丽君, 刘龙龙, 马名川, 崔林, 周建萍 . 燕麦蛋白质近红外定量模型的创建及其在育种中的应用. 安徽农业科学, 2017,45(8):10-13.
Zhang L J, Liu L L, Ma M C, Cui L, Zhou J P . Establishment of near infrared quantitative model of oat protein and its application in breeding. J Anhui Agric Sci, 2017,45(8):10-13 (in Chinese with English abstract).
[16] Tillman B L, Gorbet D W, Person G . Predicting oleic and linoleic acid content of single peanut seeds using near-infrared reflectance spectroscopy. Crop Sci, 2006,46:2121. doi: 10.2135/cropsci2006. 01.0031.
doi: 10.2135/cropsci2006.01.0031
[17] Kavera, Nadaf H L, Hanchinal R R . Near infrared reflectance spectroscopy (NIRS) for large scale screening of fatty acid profile in peanut ( Arachis hypogaea L.). Legume Res, 2014,37:272. doi: 10.5958/j.0976-0571.37.3.041.
doi: 10.5958/j.0976-0571.37.3.041
[18] 迟晓元, 郝翠翠, 陈明娜, 潘丽娟, 陈娜, 王通, 王冕, 杨珍, 梁成伟, 禹山林 . 花生AhFAD2-1基因与油酸/亚油酸比值的关系. 花生学报, 2016,45(4):20-24.
Chi X Y, Hao C C, Chen M N, Pan L J, Chen N, Wang T, Wang M, Yang Z, Liang C W, Yu S L . Relationship between AhFAD2-1 gene and oleic acid/linoleic acid ratio in Peanut. J Peanut Sci, 2016,45(4):20-24 (in Chinese with English abstract).
[19] 禹山林, 朱雨杰, 闵平, 杨庆利, 曹玉良, 王传堂, 刘旭, 周学秋 . 傅立叶近红外漫反射非破坏性测定花生种子主要脂肪酸含量. 花生学报, 2010,39(1):11-14.
Yu S L, Zhu Y J, Min P, Yang Q L, Cao Y L, Wang C T, Liu X, Zhou X Q . Nondestructive determination of main fatty acids in peanut seeds with near infrared reflectance spectroscopy. J Peanut Sci, 2010,39(1):11-14 (in Chinese with English abstract).
[20] 徐平丽, 唐桂英, 付春 . 高通量检测花生油酸含量相关基因AhFAD2等位变异的方法. 农业生物技术学报, 2016,24:1364-1373.
Xu P L, Tang G Y, Fu C . Methods for high-throughput detecting the allelic variation of AhFAD2 gene related with oleic acid content in peanut(Arachis hypogaea L.). J Agric Biotechnol, 2016,24:1364-1373 (in Chinese with English abstract).
[21] 只升华, 苏同兵, 于拴仓, 张凤兰, 余阳俊, 张德双, 赵岫云, 汪维红, 卢桂香, 朱月林 . 利用全基因组关联分析获得白菜A01染色体定位的霜霉病抗病位点和相关分子标记开发. 植物生理学报, 2016,52:693-702.
Zhi S H, Su T B, Yu S C, Zhang F L, Yu Y J, Zhang D S, Zhao X Y, Wang W H, Lu G X, Zhu Y L . Genetic characteristics of A01-located resistant loci to downy mildew in Chinese cabbage by genome-wide association studies. J Plant Physiol, 2016,52:693-702 (in Chinese with English abstract).
[22] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿 . 利用回交和标记辅助选择快速培育高油酸花生品种及其评价. 中国农业科学, 2018,51:1641-1652.
doi: 10.3864/j.issn.0578-1752.2018.09.003
Zhang Z H, Wang Z H, Huai D X, Tan J Z, Chen J H, Yan L Y, Wang X J, Wan L Y, Chen A, Kang Y P, Jiang H F, Lei Y, Liao B S . Fast development of high oleate peanut cultivars by using marker-assisted backcrossing and their evaluation. Sci Agric Sin, 2018,51:1641-1652 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.09.003
[23] 吴静珠, 刘翠玲, 李慧, 孙晓荣 . 近红外光谱技术在食用油种类鉴别及脂肪酸含量检测中的应用. 食品科学技术学报, 2010,28(5):56-59.
Wu J Z, Liu C L, Li H, Sun X R . Application of near infrared spectroscopy in identification of edible oils and detection of fatty acids content. J Food Sci Technol, 2010,28(5):56-59 (in Chinese with English abstract).
[24] 周小华, 张玫, 相秉仁 . 近红外光谱结合区间偏最小二乘法应用于花生油酸价的测定. 粮油食品科技, 2017,25(2):62-64.
Zhou X H, Zhang M, Xiang B R . Detetmination of fatty acid value of peanut oil by near-infrared spectrometry combined with interval partial least squares. Sci Technol Cereals Oils Foods, 2017,25(2):62-64 (in Chinese with English abstract).
[25] 张建成, 王传堂, 王秀贞, 唐月异, 张树伟, 李桂杰 . 花生自然风干种子油酸、亚油酸和棕榈酸含量的近红外分析模型构建. 中国农学通报, 2011,27(3):90-93.
Zhang J C, Wang C T, Wang X Z, Tang Y Y, Zhang S W, Li G J . NIRS calibration models predictive of oleic, linoleic and palmitic acid content in sun-dried bulk peanut seed samples. Chin Agric Sci Bull, 2011,27(3):90-93 (in Chinese with English abstract).
[26] 张照华 . 利用MAS回交技术创制花生高油酸新种质及AhFAD2基因遗传效应分析. 中国农业科学院硕士学位论文, 北京, 2018.
Zhang Z H . Creation of New Peanut Germplasm with High Oleic Acid Using MAS Backcrossing Technology and the Genetic Effect of AhFAD2 Gene. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[27] Barkley N A, Isleib T G, Wang M L, Pittman R N . Genotypic effect of ahFAD2 on fatty acid profiles in six segregating peanut(Arachis hypogaea L.) populations. BMC Genetics, 2013,14:62. doi: 10.1186/1471-2156-14-62.
doi: 10.1186/1471-2156-14-62 pmid: 23866023
[1] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[2] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[3] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[4] 雷永, 王志慧, 淮东欣, 高华援, 晏立英, 李建国, 李威涛, 陈玉宁, 康彦平, 刘海龙, 王欣, 薛晓梦, 姜慧芳, 廖伯寿. 花生籽仁蔗糖含量近红外模型构建及在高糖品种培育中的应用[J]. 作物学报, 2021, 47(2): 332-341.
[5] 鲁庚,唐鑫,陆俊杏,李丹,胡秋芸,胡田,张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究[J]. 作物学报, 2020, 46(8): 1283-1290.
[6] 郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳. 利用RIL群体创制低山嵛酸花生新种质[J]. 作物学报, 2020, 46(5): 661-667.
[7] 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049.
[8] 侯智红,吴艳,程群,董利东,芦思佳,南海洋,甘卓然,刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系[J]. 作物学报, 2019, 45(6): 839-847.
[9] 郭建斌,吴贝,陈伟刚,黄莉,陈玉宁,周小静,罗怀勇,刘念,任小平,姜慧芳. 花生品种主要脂肪酸含量在不同生态区的稳定性[J]. 作物学报, 2019, 45(5): 676-682.
[10] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[11] 张宇婷,鲁少平,金诚,郭亮. 甘蓝型油菜皖油20号种子不同部位油脂合成的转录调控分析[J]. 作物学报, 2019, 45(3): 381-389.
[12] 刘浩,鲁清,李海芬,李少雄,陈小平,梁炫强,洪彦彬. 花生硬脂酰-ACP酸脱饱和基因FAB2表达的分子机制[J]. 作物学报, 2019, 45(11): 1638-1648.
[13] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[14] 方彦,孙万仓,武军艳,刘自刚,董云,米超,马骊,陈奇,何辉立. 北方白菜型冬油菜的膜脂脂肪酸组分和ATPase活性对温度的响应[J]. 作物学报, 2018, 44(01): 95-104.
[15] 于明洋,孙明明,郭悦,姜平平,雷永,黄冰艳,冯素萍,郭宝珠,隋炯明,王晶珊,乔利仙. 利用回交法快速选育高油酸花生新品系[J]. 作物学报, 2017, 43(06): 855-861.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!