欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (01): 95-104.doi: 10.3724/SP.J.1006.2018.00095

• 耕作栽培·生理生化 • 上一篇    下一篇

北方白菜型冬油菜的膜脂脂肪酸组分和ATPase活性对温度的响应

方彦1,2,孙万仓1,2,*,武军艳2,刘自刚2,董云2,3,米超2,马骊2,陈奇2,何辉立2   

  1. 1 甘肃省干旱生境作物学重点实验室,甘肃兰州 730070;2 甘肃省油菜工程技术研究中心, 甘肃兰州 730070;3 甘肃省农业科学院作物研究所, 甘肃兰州 730070
  • 收稿日期:2017-01-20 修回日期:2017-09-10 出版日期:2018-01-12 网络出版日期:2017-09-28
  • 通讯作者: 孙万仓, E-mail: 18293121851@163.com, Tel: 18293121851
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-12),国家自然科学基金项目(31460356, 31560397),国家重点基础研究发展计划项目(973计划) (2015CB150206)和甘肃农业大学盛彤笙创新基金(GSAU-STS-1428)资助。

Response of Membrane Fatty Acid Composition and ATPase Activity in Brassica rapa L. to Temperature in North China

FANG Yan1,2,SUN Wan-Cang1,2,*,WU Jun-Yan2,LIU Zi-Gang2,DONG Yun2,3,MI Chao2,MA Li2,CHEN Qi2,HE Hui-Li2   

  1. 1 Gansu Provincial Key Laboratory of Arid Land Crop Sciences, Lanzhou 730070, Gansu, China; 2 Rape Engineering and Technology Research Center of Gansu Provincial, Lanzhou 730070, Gansu, China; 3 Crops Institute of Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2017-01-20 Revised:2017-09-10 Published:2018-01-12 Published online:2017-09-28
  • Contact: Sun Wancang, E-mail: 18293121851@163.com, Tel: 18293121851
  • Supported by:

    This study was supported by the National Modern Agro-industry Technology System (CARS-13), the National Natural Science Foundation of China (31460356, 31560397), the National Key Basic Research Program of China (973 Program) (2015CB150206), and the Sheng Tongsheng Innovation Fund of Gansu Agricultural University (GSAU-STS-1428).

摘要:

为了解北方白菜型冬油菜膜脂脂肪酸和ATPase活性与抗寒性的关系,以抗寒性强的冬油菜品种陇油7号和抗寒性弱的品种天油2号为材料,研究了不同温度处理(25°C、10°C、2°C、–5°C)后叶片和根系膜脂脂肪酸组分和ATPase酶活性的变化。结果表明,低温胁迫下2个冬油菜品种叶片和根系膜脂脂肪酸组分相同,叶片中不饱和脂肪酸以亚麻酸为主,根系不饱和脂肪酸以亚油酸为主。随处理温度的降低,2个冬油菜品种叶片不饱和脂肪酸含量呈先降低(10°C,2°C)后增加(–5°C)的趋势;陇油7号根中不饱和脂肪酸含量逐步增加,天油2号则逐步降低;在低温条件下(2°C,–5°C),陇油7号膜脂U/S比值、IUFA值高于天油2号;ATPase活性表现为陇油7号逐渐高于天油2号。说明2个冬油菜品种的膜脂在低温响应上存在一定差异,低温下不饱和脂肪酸含量和ATPase活性的提高是强抗寒冬油菜品种在北方旱寒区严酷环境条件下能安全越冬的重要原因。

关键词: 冬油菜, 脂肪酸, ATP酶活性, 抗寒性

Abstract:

Brassica rapa L. cultivars Longyou 7 (cold tolerant) and Tianyou 2 (cold sensitive) were used to investigate the variations of membrane fatty acid composition and ATPase activity at the temperatures of 25°C, 10°C, 2°C, and –5°C. There was the same membrane fatty acid composition in leaf and root of two cultivars under temperature stresses, with linolenic acid as the main component of unsaturated fatty acid in leaf, but linoleic acid in root. With decrease of treatment temperatures, the content of unsaturated fatty acid in leaf initially decreased at 10°Cand 2°C, then increased at –5°C.The content of unsaturated fatty acid rose up gradually in root of Longyou 7, but reduced in Tianyou 2. At low temperature(2°C, –5°C), the ratio of U/S and IUFA in Longyou 7 were significantly higher than those in Tianyou 2.The activity of ATPase was gradually increased in Longyou 7 than in Tianyou 2. It suggested there are differences in membrane lipids in response to temperature for two winter rapeseed cultivars, the increase of unsaturated fatty acid content and ATPase activity is the main cause sustaining winter rapeseed cultivars to overwinter.

Key words: winter rapeseed, fatty acid, ATPase activity, cold tolerance

[1] 王洪春. 植物抗性生理. 植物生理学通讯, 1981, (6): 72–81 Wang H C. Physiological responses of plants to anti-environment. Plant Physiol Commun, 1981, (6): 72–81 (in Chinese with English abstract) [2] Kasamo K, Kagita F, Yamanishi H, Sakaki T. Low temperature-induced changes in the thermotropic properties and fatty acid composition of the plasma membrane and tonoplast of cultured rice (Oryza sativa L.) cells. Plant Cell Physiol, 1992, 33: 609–616 [3] Lyons J M, Wheaton T A, Pratt H K. Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants. Plant Physiol, 1964, 39: 262–268 [4] 王洪春, 汤章城, 苏维埃, 王文英, 李锦树. 水稻干胚膜脂脂肪酸组分差异性分析. 植物生理学报, 1980, 6: 227–236 Wang H C, Tang Z C, Su W A, Wang W Y, Li J S. Analysis of difference in fatty acid composition of membrane lipids of dry rice embryo. Acta Phytophysiol Sin, 1980, 6(3): 227–236 (in Chinese with English abstract) [5] 杨玲, 钱建东, 方芳, 苏维埃. 佛手柑叶磷脂酰甘油相变和脂肪酸组成的差异. 植物生理学通讯, 1995, 31: 196–197 Yang L, Qian J D, Fang F, Su W A. Difference of thermal phase transition and fatty acid composition of phosphatidylglycerols in fingered citron leaves. Plant Physiol Commun, 1995, 31(3): 196–197 (in Chinese with English abstract) [6] Lyons J M. Chilling injury in plants. Ann Rev Plant Physiol, 1973, 24: 445–466 [7] 赵金梅, 周禾, 孙启忠, 郭强, 李芳. 植物脂肪酸不饱和性对植物抗寒性影响的研究. 草业科学, 2009, 26(9): 129–134 Zhao J M, Zhou H , Sun Q Z, Guo Q, Li F. Study on the influence of plant fatty acid desaturation on cold tolerance. Pratac Sci, 2009, 26(9): 129–134 (in Chinese with English abstract) [8] Larus B, Sangwan V, Omann F, Dhindsa R S. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J, 2000, 23: 785–794 [9] 夏明, 刘亚学, 阿拉木斯,李志勇. 低温下苜蓿叶片膜脂脂肪酸组分的研究. 中国草地, 2002, 24(6): 28–31 Xia M, Liu Y X, AL M S. Li Z Y. Fatty acid composition of cell membrane of alfalfa leaves at chilling temperature. Grassland China, 2002, 24(6): 28–31 (in Chinese with English abstract) [10] 孙汉洲, 赵芳, 李志辉. 用细胞膜膜脂脂肪酸成分分析法筛选抗寒巨桉种源. 中南林学院学报, 2000, 20(3): 59–62 Sun H Z, Zhao F, Li Z H. Selection of the cold-resistant species provenances of eucalyptus grand is by using the method of composition analysis of fatty acids of cell membrane. J Central South For Univ, 2000, 20(3): 59–62 (in Chinese with English abstract) [11] 杨玉珍, 罗青, 彭方仁. 不同种源香椿叶片脂肪酸组分含量与抗寒性关系. 林业科技开发, 2011, 25(5): 21–25 Yang Y Z, Luo Q, Peng F R. A relationship between cold resistance and content of fatty acid composition in leaves of Toona sinensis from different provenances. China For Sci Technol, 2011, 25(5): 21–25 (in Chinese with English abstract) [12] 宋芳琳, 张苗苗, 苏金乐, 柴军舰, 张广信. 自然降温过程中猴樟和香樟幼苗的抗寒性比较. 西部林业科学, 2012, 41(6): 48–52 Song F L, Zhang M M, Su J L, Chai J J, Zhang G X. The comparison on cold resistance between cinnamomum bodinieri and cinnamomum camphora seedlings in natural decreasing process of air temperature. J West China For Sci, 2012, 41(6): 48–52 (in Chinese with English abstract) [13] Murelli C, Rizza F, Albini F M, Dulio A, Terzi V, Cattivelli L. Metabolic changes associated with cold acclimation in contrasting cultivars of barley. Physiol Plant, 1995, 94: 87–93 [14] 王萍, 张成军, 陈国祥, 王静, 施大伟, 吕川根. 低温对水稻剑叶膜脂过氧化和脂肪酸组分的影响. 作物学报, 2006, 32: 568–572 Wang P, Zhang C J, Chen G X, Wang J, Shi D W, Lü C G. Effects of low temperature on lipid peroxidation and fatty acid composition of flag leaf in rice (Oryza sativa L.). Acta Agron Sin, 2006, 32: 568–572 (in Chinese with English abstract) [15] 王金胜, 郭定成. 温度与膜脂脂肪酸对不同抗冷性玉米幼苗ATP酶的影响. 山西农业大学学报, 1994, 14: 290–292 Wang J S, Guo D C. Temperature and fatty acid of membrane lipids effected on activity of ATPase in mitochondria of maize seedling belonging to four chilling-resistant level. J Shanxi Agric Univ, 1994, 14(3): 290–292 (in Chinese with English abstract) [16] Caldogno R F, Maria I, Michelis D, Maria C, Pugliarello. Active transport of Ca2+ in membrane vesicles from pea: Evidence for a H+/ Ca2+ antiport. Biochim Biophys Acte, 1982, 639: 287–295 [17] 宋立新, 王瑞秀. 离子转运ATPase的结构和功能. 生理科学进展, 1989, 20: 334–338 Song L X, Wang D X. Structure and function of ion transporter ATPase. Progr Physiol Sci, 1989, (4): 334–338 (in Chinese with English abstract) [18] 郑翠兵. 盐胁迫下甜菜碱对甜菜光合作用及抗氧化能力的影响. 黑龙江大学硕士学位论文, 黑龙江哈尔滨, 2011 Zheng C B. Effects of betaine on photosynthesis and antioxidant ability of sugarbeet under salt stress. MS Thesis of University of Heilongjiang, Harbin, China, 2011 (in Chinese with English abstract) [19] 薛刚, 刘凤霞. 干旱对棉花根和下胚轴质膜脂肪酸组分及其相关酶活性的影响. 植物生理学通讯, 1997, 33(2): 97–100 Xue G, Liu F X. Effects of drought stress on fatty acid composition and involved enzyme activity of plasma membrane in cotton root and hypocoty. Plant Physiol Commun, 1997, 33(2): 97–100 (in Chinese with English abstract) [20] 李俊明, 张敬贤, 崔四平, 魏建昆, 张海明, 耿庆汉. 膜脂组成和膜结合酶活性与玉米幼苗抗冷性的关系. 华北农学报, 1992, 7(3): 50–53 Li J M, Zhang J X, Cui S P, Wei J K, Zhang H M, Geng Q H. The relationship among membrane lipids membrane linked enzymes and maizecold-resistance. Acta Agric Boreali-Sin, 1992, 7(3): 50–53 (in Chinese with English abstract) [21] 刘炜. 低温下冷敏感植物春小麦和抗寒植物冬小麦细胞内Ca2+的稳态平衡能力的比较研究. 山东师范大学硕士学位论文, 山东济南, 2000 Liu W. Difference of Ca2+-homeostasis between Chilling-Sensitive Spring Wheat and Chilling-Resistant Winter Wheat Under Low Temperature. MS Thesis of Shandong Normal University, Ji’nan, China, 2000 (in Chinese with English abstract). [22] 王红, 孙德兰, 卢存福, 简令成. 抗寒锻炼对冬小麦幼苗质膜Ca2+-ATPase的稳定作用. 植物学报, 1998, 40: 1098–1101 Wang H, Sun D L, Lu C F, Jian L C. Stability effects of cold-acclimation on the plasmolemma Ca2+-ATPase of winter wheat seedlings. Acta Bot Sin, 1998, 40: 1098–-1101 (in Chinese with English abstract) [23] 王精明, 李美茹. 低温对水稻幼苗根细胞质膜、液泡膜Mg2+-ATP酶活性的影响. 湖北农学院学报, 2000, 20: 295–297 Wang J M, Li M R. Effect of low temperature on the activity of Mg2+-ATP in root plasma membrane and tonoplast membrane of rice seedlings. J Hubei Agric Coll, 2000, 20: 295–297 (in Chinese with English abstract). [24] 孙万仓, 刘海卿, 刘自刚, 武军艳, 李学才, 方彦, 曾秀存, 许耀照, 张亚宏, 董云. 北方寒旱区白菜型冬油菜安全越冬的临界指标分析. 作物学报, 2016, 42: 609–618 Sun W C, Liu H Q, Liu Z G, Wu J Y, Li X C, Fang Y, Zeng X C, Xu Y Z, Zhang Y H, Dong Y. Critical index analysis of safe over-wintering rate of winter rapeseed (Brassica rapa) in cold and arid region in north China. Acta Agron Sin, 2016, 42: 609–618 (in Chinese with English abstract) [25] 徐燕, 薛立, 屈明. 植物抗寒性的生理生态学机制研究进展. 林业科学, 2007, 43(4): 88–94 Xu Y, Xue L, Qu M. Physiological and ecological mechanisms of plant adaptation to low temperature. Sci Silvae Sin, 2007, 43(4): 88–94 (in Chinese with English abstract) [26] 刘自刚, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 史鹏飞, 杨刚, 李学才, 武军艳, 方彦, 曾秀存. 冬前低温胁迫下白菜型冬油菜抗寒性的形态及生理特征. 中国农业科学, 2013, 46: 4679–4687 Liu Z G, Sun W C, Yang N N, Wang Y, He L, Zhao C X, Shi P F, Yang G, Li X C, Wu J Y, Fang Y, Zeng X C. Morphology and physiological characteristics of cultivars with different levels of cold-resistance in winter rapeseed (Brassica campestris L.) during cold acclimation. Sci Agric Sin, 2013, 46: 4679–4687 (in Chinese with English abstract) [27] 杨宁宁, 孙万仓, 刘自刚, 史鹏辉, 方彦, 武军艳, 曾秀存, 孔德晶, 鲁美宏, 王月. 北方冬油菜抗寒性的形态与生理机制. 中国农业科学, 2013, 47: 452–461 Yang N N, Sun W C, Liu Z G. Shi P H, Fang Y, Wu J Y, Zeng X C, Kong D J, Lu M H, Wang Y. Morphological characters and physiological mechanisms of cold resistance of winter rapeseed in northern China. Sci Agric Sin, 2013, 47: 452–461 (in Chinese with English abstract) [28] 朱惠霞, 孙万仓, 邓斌, 燕妮, 武军艳, 范惠玲, 叶剑, 曾军, 刘雅丽, 张亚宏. 白菜型冬油菜品种的抗寒性及其生理生化特性. 西北农业学报, 2007, 16(4): 34–38 Zhu H X, Sun W C , Deng B, Yan N, Wu J Y, Fan H L, Ye J, Zeng J, Liu Y L, Zhang Y H. Study on cold hardiness and its physiological and biochemical characteristics of winter turnip rape (Brassica campetris). Acta Agric Boreali-occident Sin, 2007, 16(4): 34–38 (in Chinese with English abstract) [29] 史春会. 低温胁迫下不同类型秋菊品种主成分分析及抗寒性评价. 河南农业大学硕士学位论文, 河南郑州, 2011 Shi C H. Principal Component Analysis and Cold Tolerance Evaluation of Membrane Lipid Component iIn Different Varieties of Autumn Chrysanthemum Cultivers Under Low Temperature. MS Thesis of Henan Agricultural University, Zhengzhou, China, 2011 (in Chinese with English abstract) [30] Yoshida S. Reverse change in plasma membrane properties upon deacclimation of mulberry trees. Plant Cell Physiol, 1986, 27: 83–89 [31] 余泽宁. 龙眼叶片膜脂脂肪酸组分与龙眼耐寒性的关系. 亚热带植物科学, 2003, 32(2): 15–17 Yu Z N. Cold tolerance of longyan in relation to membrane fatty acid composition in leaves. Subtrop Plant Sci, 2003, 32(2): 15–17 (in Chinese with English abstract) [32] 王萍, 张成军, 陈国祥, 王静, 施大伟, 吕川根, 左敏, 刘蓉蓉. 低温对水稻幼苗类囊体膜脂肪酸组分和膜脂过氧化的影响. 中国水稻科学, 2006, 20: 401–405 Wang P, Zhang C J , Cheng X, Shi D W, Lü C G, Zuo M, Liu R R. Effects of low temperature on fatty acid composition of thylakoid membranes and lipid. peroxidation in leaves of rice seedlings, Chin Rice Sci, 2006, 20: 404–405 (in Chinese with English abstract) [33] 谢冬微, 王晓楠, 付连双, 孙健, 关涛, 李卓夫. 低温胁迫对冬小麦分蘖节膜脂脂肪酸的影响. 麦类作物学报, 2013, 33: 746–751 Xie D W, Wang X N, Fu L S,Sun J, Guan T, Li Z F. Effects of low temperature stress on membrane fatty acid in tillering node of winter wheat. J Triticeae Crops, 2013, 33: 746–751 (in Chinese with English abstract) [34] Douglas O, Brain D P. Responses of plant to low, nonfreezing temperature:protein metabolism, and acclimation. Ann Rev Plant Physiol, 1982, 33: 347–372 [35] 梁及芝, 李志辉, 黄志文, 朱日光, 黄晓明. 耐寒性桉树早期选择Ⅱ: 巨桉种源和家系幼林生长. 中南林学院学报, 2000, 20(3): 75–79 Liang J Z, Li Z H, Huang Z W, Zhu R G, Huang X M. Early selection in cold-resistant eucalyp tus II: analysis on growth of the young forests of eucalyp tus grand is provenances and families. J Central South For Univ, 2000, 20(3): 75–79 (in Chinese with English abstract) [36] 李志辉, 汤珧华, 孙汉洲, 左海松. 耐寒性桉树早期选择Ⅲ: 巨桉种源和家系膜脂肪酸组成、含量与抗寒性关系. 中南林学院学报, 2000, 20(3): 80–85 Li Z H, Tang Z H, Zhu R G, Zuo H S. Early selection in cold-resistant eucalyptus iii. the relation of composition and content of fatty acid and ability of cold-resistant of eucalyptus grand is provenance and families. J Central South For Univ, 2000, 20(3): 80–85 (in Chinese with English abstract) [37] 刘建. 两种桉树对低温胁迫的响应机制研究. 南京林业大学博士学位论文, 江苏南京, 2008 Liu J. Studies on Response Mechanisms of Two Eculypts to Low Temperature Stress. PhD Dissertation of Nanjing Forestry University, Nanjing, China, 2008 (in Chinese with English abstract) [38] 简令成. 植物抗寒机理研究的新进展. 植物学通报, 1992, 9(3): 17–22 Jian L C. Advances of the studies on the mechanism of plant cold hardiness. Chin Bull Bot, 1992, 9(3): 17–22 (in Chinese with English abstract) [39] 刘鸿先, 曾韶西, 李平. 植物抗寒性与酶系统多态性的关系. 植物生理学通讯, 1981, (6): 6–11 Liu H X, Zeng S X, Li P. The relationship between plant cold tolerance and enzyme system. Plant Physiol Commun, 1981, (6): 6–11 (in Chinese with English abstract) [40] Rachel W H, Kathleen A K, Robert W Ml. Mechanism for regulation cell surface distribution of Na+, K+-ATPase in polarized epithelial cells. Science, 1991, 254: 847–849 [41] 简令成, 孙龙华, 卫翔云, 王红, 张红. 从细胞膜系统的稳定性与植物抗寒性关系研究到抗寒剂的研制. 植物学通报, 1994, 11: 1–22 Jian L C, Sun L H, Wei X Y, Wang H, Zhang H. From the study on the stability of cellular membrane system in relation with plant cold hardiness to the creation of plant cold resister. Chin Bull Bot, 1994, 11: 1–22 (in Chinese with English abstract) [42] 许大全. 光合作用学. 北京: 科学出版社, 2013. pp 215–218 Xu D Q. Photosynthesis Science. Beijing: Science Press, 2013., pp215–218 [43] 曾韶西, 李美茹. 冷和盐预处理提高水稻幼苗抗寒性期间细胞Ca2+-ATPase酶活性的变化. 植物学报, 1999, 41: 156–160 Zeng S X, Li M R. Changes of Ca2+-ATPase Activities in cell of rice seedlings during the enhancement of chilling resistance induced by cold and salt pretreatment. Actor Bot Sin,1999, 41: 156–160 (in Chinese with English abstract) [44] Bonza M C, Michelis M I D. The plant Ca2+-ATPase repertoire: biochemical features and physiological functions. Plant Biol(Stuttg), 2011, 13: 421–430 [45] 简令成, 董合铸, 孙龙华. 蕃茄子叶细胞内三磷酸腺苷酶活性的超微结构定位及其在冷害中的变化. 植物学报, 1981, 23: 257–261 Jian L C, Dong H Z, Sun L H. Ultrastructural localization of adenosine tri phosphatase activity in cotyledon cells of tomato and its changes during chilling stress. Actor Bot Sin, 1981, 23(3): 257–261 (in Chinese with English abstract) [46] 戴金平, 沈征言, 简令成. 低温锻炼对黄瓜幼苗几种酶活性的影响. 植物学报, 1991, 33: 627–632 Dai J Y, Sheng Z Y, Jian L C. The effects of cold acclimation on several enzyme activities in cucumber seedling. Actor Bot Sin, 1991, 33: 627–632 (in Chinese with English abstract) [47] Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599 [48] Uemura M , Steponkus P L. Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane. J Plant Res, 1999, 112: 245–254 [49] 王育启, 王洪春. 生物膜组分对膜功能和膜相变的调控. 植物生理学报, 1981, 7: 185–192 Wang Q Y, Wang H C. Regulation and control of function and phase transition in membrane by composition of biomembrane lipid. Acta Phytophysiol Sin, 1981, 7(2): 185–192 (in Chinese with English abstract) [50] 李素丽, 杨丽涛, 李志刚, 李杨瑞, 韩春旺, 梁兆宙. 不同冷敏感型甘蔗茎尖Ca2+和Ca2+-ATP酶活性对低温的响应. 中国农业大学学报, 2011, 16(2): 14–21 Li S L, Yang L T, Li Z G, Li Y R, Han C W, Liang Z Y. Response of Ca2+ and Ca2+-ATPase activity in the stem tip of sugarcane to low temperature stress. J China Agric Univ, 2011, 16(2): 14–21 (in Chinese with English abstract)

[1] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[2] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[3] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[4] 鲁庚,唐鑫,陆俊杏,李丹,胡秋芸,胡田,张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究[J]. 作物学报, 2020, 46(8): 1283-1290.
[5] 郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳. 利用RIL群体创制低山嵛酸花生新种质[J]. 作物学报, 2020, 46(5): 661-667.
[6] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[7] 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049.
[8] 李静,闫金垚,胡文诗,李小坤,丛日环,任涛,鲁剑巍. 氮钾配施对油菜产量及氮素利用的影响[J]. 作物学报, 2019, 45(6): 941-948.
[9] 侯智红,吴艳,程群,董利东,芦思佳,南海洋,甘卓然,刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系[J]. 作物学报, 2019, 45(6): 839-847.
[10] 郭建斌,吴贝,陈伟刚,黄莉,陈玉宁,周小静,罗怀勇,刘念,任小平,姜慧芳. 花生品种主要脂肪酸含量在不同生态区的稳定性[J]. 作物学报, 2019, 45(5): 676-682.
[11] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[12] 张宇婷,鲁少平,金诚,郭亮. 甘蓝型油菜皖油20号种子不同部位油脂合成的转录调控分析[J]. 作物学报, 2019, 45(3): 381-389.
[13] 李建国,薛晓梦,张照华,王志慧,晏立英,陈玉宁,万丽云,康彦平,淮东欣,姜慧芳,雷永,廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用[J]. 作物学报, 2019, 45(12): 1891-1898.
[14] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[15] 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!