欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2494-2504.doi: 10.3724/SP.J.1006.2022.14150

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

紫苏溶血磷脂酰转移酶基因PfLPAAT的克隆及功能研究

徐华祥(), 鲁庚, 郭曦, 李圆圆, 张涛()   

  1. 重庆师范大学生命科学学院, 重庆 401331
  • 收稿日期:2021-08-17 接受日期:2022-02-25 出版日期:2022-10-12 网络出版日期:2022-03-31
  • 通讯作者: 张涛
  • 作者简介:第一作者联系方式: E-mail: xhx990123@163.com
  • 基金资助:
    国家自然科学基金项目(31171588);重庆师范大学研究生科研创新项目(YKC21033)

Cloning and functional study of lysophosphatidic acid acyltransferase gene in Perilla frutescens

XU Hua-Xiang(), LU Geng, GUO Xi, LI Yuan-Yuan, ZHANG Tao()   

  1. College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
  • Received:2021-08-17 Accepted:2022-02-25 Published:2022-10-12 Published online:2022-03-31
  • Contact: ZHANG Tao
  • Supported by:
    National Natural Science Foundation of China(31171588);Chongqing Normal University Postgraduate Research and Innovation Project(YKC21033)

摘要:

溶血磷脂酰转移酶(Lysophosphatidic acid acyltransferase, LPAAT)是植物甘油三酯生物合成的关键酶, 通过研究紫苏LPAAT基因(PfLPAAT)在油脂积累过程中的功能, 为揭示植物油脂积累的分子机制提供参考。本研究利用RT-PCR法获得PfLPAAT, 采用生物信息学方法分析PfLPAAT的推定蛋白的基本理化性质、跨膜结构域和亚细胞定位等, 并进行同源蛋白的系统发育分析。使用实时荧光定量PCR (qRT-PCR)方法对PfLPAAT在紫苏不同组织及种子不同发育时期的表达水平进行了分析。构建植物表达载体pCAMBIA1303-PfLPAAT, 通过花序侵染法转化拟南芥, 并对转基因拟南芥种子的含油量及脂肪酸组成进行分析。结果表明PfLPAAT序列长度为1149 bp, 编码382个氨基酸, 推定蛋白的理论等电点为9.60, 分子质量为43.02 kD。生物信息学分析表明, PfLPAAT蛋白在内质网行使功能, 属于PLN02380超家族。qRT-PCR表明, PfLPAAT在紫苏的各组织中均有表达, 其中在叶片和开花后15 d的种子中达到最高水平。与野生型拟南芥相比, 转基因拟南芥种子含油量增加2.04%~13.40%。脂肪酸组成分析结果表明, 油酸、亚油酸、亚麻酸和花生一烯酸的含量显著增加, 棕榈酸、硬脂酸、花生酸、花生二烯酸和芥酸含量降低。紫苏PfLPAAT的过表达不仅可以提高拟南芥种子含油量, 还可以不同程度地提高油脂中不饱和脂肪酸的含量。本研究结果为油料作物紫苏的种质资源挖掘和创新利用提供了新颖候选基因。

关键词: 紫苏, 溶血磷脂酰转移酶, 含油量, 不饱和脂肪酸

Abstract:

Lysophosphatidic acid acyltransferase (LPAAT) is a key enzyme in plant triacylglycerol biosynthesis. Investigating the function of Perilla frutescens LPAAT gene (PfLPAAT) in oil biosynthesis can help to reveal the molecular mechanism of plant oil accumulation. In this study, RT-PCR was used to obtain PfLPAAT, and the basic physical and chemical properties, transmembrane domain, and subcellular localization of the putative protein of PfLPAAT was analyzed by bioinformatics methods, and phylogenetic analysis of homologous proteins was conducted. The qRT-PCR was used to analyze the relative expression level of PfLPAAT in different tissues and developmental stages of seeds in Perilla. The expression vector pCAMBIA1303-PfLPAAT was constructed and transformed into Arabidopsis thaliana by floral dip method, and the oil content and fatty acid composition of transgenic Arabidopsis seeds were analyzed. The results showed that the PfLPAAT sequence was 1149 bp in length and encoded 382 amino acids. The theoretical isoelectric point of the putative protein was 9.60, and the molecular mass was 43.02 kD. Bioinformatics indicated that PfLPAAT functioned in endoplasmic reticulum and belonged to the PLN02380 superfamily. The qRT-PCR revealed that PfLPAAT expressed in all tissues of Perilla, and the highest level was observed in leaves and seeds of 15 days after flowering. Compared with wild-type Arabidopsis, the overexpression of PfLPAAT in Arabidopsis improved seed oil content significantly, with a range of 2.04% to 13.40%. Fatty acid composition analysis demonstrated that the content of oleic acid, linoleic acid, linolenic acid, and arachidic acid increased significantly, while the content of palmitic acid, stearic acid, arachidic acid, arachidonic acid, and docosaenoic acid decreased. In short, the overexpression of the PfLPAAT in Arabidopsis could not only increase the oil content of transgenic Arabidopsis seeds, but also increase the content of unsaturated fatty acids with varying degrees. The results provide novel candidate genes for the mining and innovative utilization of germplasm resources of the oil crop Perilla.

Key words: Perilla frutescens, lysophosphatidic acid acyltransferase, oil content, unsaturated fatty acids

表1

本研究中使用的引物序列"

引物代码
Primer name
引物序列
Primer sequence (5'-3')
PfLPAAT-F GGTTTTACTCATTATGGCGAT
PfLPAAT-R TCACCTCACCGCTCTCTGT
PfLPAAT-Bgl II-F GGGACTCTTGACCATGGTAGATCTGGCGATCCCAGCCGCGATTGTTG
PfLPAAT-Bgl II-R ACAGGACGTAAACTAGTCAGATCTCGCTGTCTGTCTTGTCTCGTTGAG
PfLPAAT-q-F TACATGCCATACTGCACTCACAGTT
PfLPAAT-q-R TATTTCCGGCCTGGGATTCA
β-Actin-F AGACCTTCAATGTGCCAGCCA
β-Actin-R CACGACCAGCAAGATCCAACCA

图1

PfLPAAT的克隆与分析 A: PfLPAAT的PCR扩增产物, M: DL2000 marker, 1: PfLPAAT ORF扩增产物; B、C: 分别为PfLPAAT的跨膜结构和疏水性分析; D、E: 分别为PfLPAAT的二级结构和保守结构域的预测。"

图2

MEME对LPAAT的2个基序的预测 该保守结构域是从8个植物的LPAAT蛋白序列比对中产生的, 轮廓框表示高度保守的基序NHX4D (A, 催化结构域)和EGTR (B, 结合结构域)。"

图3

不同植物LPAAT的多序列比对分析"

图4

PfLPAAT及其同源蛋白的系统发育分析 分支上的数字表示Bootstrap验证中基于1000次重复该节点的可信度。"

图5

PfLPAAT在不同组织(A)和种子不同发育时期(B)的相对表达量分析"

图6

转基因拟南芥的鉴定与获取 A: 含有PfLPAAT编码区的质粒pCAMBIA1303的T-DNA元件; LB: 左边界; CaMV35S: 来自花椰菜花叶病毒的35S强启动子; PfLPAAT: 紫苏的溶血磷脂酰转移酶基因; GUS: β-葡萄糖苷酸酶; GFP: 绿色荧光蛋白; NOS: 胭脂碱合酶终止子; RB: 右边界。B: T3代转基因拟南芥的鉴定; M: DL2000 marker; 1~10: 转基因拟南芥株系扩增产物。C~E: 分别为转基因拟南芥幼苗、莲座叶和果荚的GUS染色。"

图7

转基因拟南芥种子表型观察 A, B: 分别为野生型和转基因拟南芥的干种子在体视显微镜视图, 其中右下角刻度棒表示1 mm; C, D: 分别为野生型和转基因拟南芥(株系1~10)种子的长度及宽度, 数据为平均值±标准误(n = 31)。"

表2

转基因拟南芥种子含油量与脂肪酸组成分析"

株系
Line
含油量
Oil content (%)
C16:0
(%)
C18:0 (%) C18:1 (%) C18:2 (%) C18:3 (%) C20:0 (%) C20:1 (%) C20:2 (%) C22:1 (%)
Col 31.260 11.02 3.45 17.64 30.86 17.86 1.09 15.12 1.81 1.15
1 33.471* 5.32* 2.63* 20.71* 36.74* 17.52 0.45* 15.26 0.46* 0.91*
2 31.896 4.76* 2.47* 18.57 35.6* 15.6* 0.7* 21.07* 0.32* 0.91*
3 33.400* 7.57* 2.37* 16.53* 40.19* 20.08* 0.51* 11.98* 0.34* 0.43*
4 32.640* 3.32* 0.47* 20.83* 38.88* 19.5* 0.71* 14.99 0.37* 0.93
5 32.005 6.85* 3.44 19.92* 35.83* 16.39* 0.47* 16.05 0.53* 0.52*
6 32.150* 7.23* 2.87 19.5* 37.48* 14.9* 0.68* 16.22 0.6* 0.52*
7 33.117* 6.23* 2.44* 16.24* 40.08* 18.19* 0.55* 14.64 0.75* 0.88*
8 35.092* 6.17* 2.3* 15.96* 39.36* 20.41* 0.56* 14.01* 0.51* 0.72*
9 32.205* 10.02 2.34* 14.42* 33.00* 20.23* 0.71* 17.56* 0.67* 1.05
10 35.450* 6.67* 2.53* 16.7 32.46* 21.69* 0.66* 17.48* 0.53* 1.28
[1] Choi S J, Oh S S, Kim C R, Kwon Y K, Suh S H, Kim J K, Park G G, Son S Y, Shin D H. Perilla frutescens extract ameliorates acetylcholinesterase and trimethyltin chloride-induced neurotoxicity. J Med Food, 2016, 19: 281-289.
doi: 10.1089/jmf.2015.3540
[2] Yu H, Qiu J F, Ma L J, Hu Y J, Li P, Wan J B. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem Toxicol, 2017, 108: 375-391.
doi: 10.1016/j.fct.2016.11.023
[3] Wang X, Zhang Z, Li H, Hou T, Zhao Y, Li H. Effects of ethanol, activated carbon, and activated kaolin on perilla seed oil: volatile organic compounds, physicochemical characteristics, and fatty acid composition. J Food Sci, 2021, 86: 4393-4404.
doi: 10.1111/1750-3841.15907 pmid: 34514602
[4] Okazaki K, Sato N, Tsuji N, Tsuzuki M, Nishida I. The significance of C16 fatty acids in the sn-2 positions of glycerolipids in the photosynthetic growth of Synechocystis sp. PCC6803. Plant Physiol, 2006, 141: 546-556.
[5] Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol, 2010, 152: 670-684.
doi: 10.1104/pp.109.148247 pmid: 19965969
[6] Zhao J, Bi R, Li S, Zhou D, Bai Y, Jing G, Zhang K, Zhang W. Genome-wide analysis and functional characterization of Acyl-CoA:diacylglycerol acyltransferase from soybean identify GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. J Plant Physiol, 2019, 242: 153019.
[7] Brown A P, Brough C L, Kroon J T, Slabas A R. Identification of a cDNA that encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii. Plant Mol Biol, 1995, 29: 267-278.
[8] Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A. SLC1 and SLC4encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem, 2007, 282: 30845-30855.
doi: 10.1074/jbc.M702719200 pmid: 17675291
[9] Woodfield H K, Fenyk S, Wallington E, Bates R E, Brown A, Guschina I A, Marillia E F, Taylor D C, Fell D, Harwood J L, Fawcett T. Increase in lysophosphatidate acyltransferase activity in oilseed rape (Brassica napus) increases seed triacylglycerol content despite its low intrinsic flux control coefficient. New Phytol, 2019, 224: 700-711.
doi: 10.1111/nph.16100 pmid: 31400160
[10] 叶雪影. 在油菜中分别超量表达AhLEC1AhLPAAT基因对油菜含油量的影响. 湖北大学硕士学位论文, 湖北武汉, 2014.
Ye X Y. Influence of Arachis hypogaea LPAAT and LEC1 Respectively Over-expression on Oil Content in Brassica napus L. MS Thesis of Hubei University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract)
[11] Yu B, Wakao S, Fan J, Benning C. Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol, 2004, 45: 503-510.
doi: 10.1093/pcp/pch064
[12] Angkawijaya A E, Nguyen V C, Nakamura Y. Enhanced root growth in phosphate-starved Arabidopsis by stimulating de novo phospholipid biosynthesis through the overexpression of LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 (LPAT2). Plant Cell Environ, 2017, 40: 1807-1818.
doi: 10.1111/pce.12988
[13] Kim H U, Li Y, Huang A H. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell, 2005, 17: 1073-1089.
doi: 10.1105/tpc.104.030403
[14] Angkawijaya A E, Nguyen V C, Nakamura Y. LYSOPHOSPHATIDIC ACID ACYLTRANSFERASES 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. New Phytol, 2019, 224: 336-351.
doi: 10.1111/nph.16000 pmid: 31211859
[15] 于蕊, 赵永青, 张庆雨, 白章振, 孙道阳, 胡佳媛, 牛立新, 张延龙. 拟南芥异源表达紫斑牡丹PrLPAAT1对种子脂肪酸含量的影响. 园艺学报, 2018, 45: 2188-2198.
Yu R, Zhao Y Q, Zhang Q Y, Bai Z Z, Sun D Y, Hu J Y, Niu L X, Zhang Y L. Effect of ectopic expression of Paeonia rockii PrLPAAT1 on fatty acids content of seed. Acta Hortic Sin, 2018, 45: 2188-2198. (in Chinese with English abstract)
[16] 汪慧慧, 刘少锋, 岳宁燕, 熊兴华. 甘蓝型油菜BnaLPAT2基因克隆与生物信息学分析及载体构建. 基因组学与应用生物学, 2019, 38: 1666-1673.
Wang H H, Liu S F, Yue N Y, Xiong X H. Cloning and bioinformatics analysis of BnaLPAT2genes in Brassica napus and construction of their plant expression vector. Genomics Appl Biol, 2019, 38: 1666-1673. (in Chinese with English abstract)
[17] 丁检, 吴双, 蔡彩平, 郭旺珍. 棉花溶血磷酸酯酰转移酶(LPAT)家族基因的发掘和表达分析. 作物学报, 2015, 41: 378-385.
doi: 10.3724/SP.J.1006.2015.00378
Ding J, Wu S, Cai C P, Guo W Z. Genome-wide identification of Lysophosphatidic Acid Acyltransferase gene family and their expression analysis in cotton. Acta Agron Sin, 2015, 41: 378-385. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00378
[18] Liao B, Hao Y, Lu J, Bai H, Guan L, Zhang T. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. BMC Genomics, 2018, 19: 213.
[19] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, Castro E D, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res, 2012, 40: W597-W603.
[20] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335.
[21] Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[22] 余云舟, 杜娟, 王罡, 季静. 重组质粒导入根癌农杆菌冻融法的研究. 吉林农业大学学报, 2003, 25: 257-259.
Yu Y Z, Du J, Wang G, Ji J. Studies on the freeze-thaw method of transforming recombinant plasmid DNA into Agrobacterium tumefaciens. J Jilin Agric Univ, 2003, 25: 257-259. (in Chinese with English abstract)
[23] Zhang X, Henriques R, Lin S S, Niu Q W, Chua N H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc, 2006, 1: 641-646.
doi: 10.1038/nprot.2006.97
[24] Li R, Yu K, Hildebrand D F. DGAT1, DGAT2and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 2010, 45: 145-157.
doi: 10.1007/s11745-010-3385-4
[25] 付松, 徐先顺, 向奋飞. 保健油脂中多不饱和脂肪酸的GC/MS分析. 中国卫生检验杂志, 2005, 15: 1042-1044.
Fu S, Xu X S, Xiang F F. Analysis of the multi-unsaturated fatty acids in healthy oils by GC/MS. Chin J Heaith Labor Technol, 2005, 15: 1042-1044. (in Chinese with English abstract)
[26] Chung C H, Kim J L, Lee Y C, Choi Y L. Cloning and characterization of a seed-specific ω-3 Fatty acid desaturase cDNA from Perilla frutescens. Plant Cell Physiol, 1999, 40: 114-118.
pmid: 10189709
[27] Hwang S K, Kim K H, Hwang Y S. Molecular cloning and expression analysis of 3-ketoacyl-ACP synthases in the immature seeds of Perilla frutescens. Mol Cells, 2000, 10: 533-539.
pmid: 11101144
[28] 鲁庚, 唐鑫, 陆俊杏, 李丹, 胡秋芸, 胡田, 张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究. 作物学报, 2020, 46: 1283-1290.
doi: 10.3724/SP.J.1006.2020.94192
Lu G, Tang X, Lu J X, Li D, Hu Q Y, Hu T, Zhang T. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens. Acta Agron Sin, 2020, 46: 1277-1284. (in Chinese with English abstract)
[29] Lewin T M, Wang P, Coleman R A. Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry, 1999, 38: 5764-5771.
pmid: 10231527
[30] Cortés V A, Smalley S V, Goldenberg D, Lagos C F, Hodgson M I, Santos J L. Divergent metabolic phenotype between two sisters with congenital generalized lipodystrophy due to double AGPAT2 homozygous mutations. a clinical, genetic and in silico study. PLoS One, 2014, 9: e87173.
[31] 唐韶华. 油菜甘油磷酸酰基转移酶和溶血磷脂酸酰基转移酶基因的克隆及其在油脂代谢中的作用. 华中农业大学硕士学位论文, 湖北武汉, 2013.
Tang S H. The Roles of Glycerol-3-phosphate Acyltransferase and Lysophosphatidic Acid Acyltransferase in Lipid Metabolism in Brassica napus. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013 (in Chinese with English abstract).
[32] Reynolds K B, Taylor M C, Zhou X R, Vanhercke T, Wood C C, Blanchard C L, Singh S P, Petrie J R. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids. Front Plant Sci, 2015, 6: 164.
[33] Wang N, Ma J, Pei W, Wu M, Li H, Li X, Yu S, Zhang J, Yu J. A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality. BMC Genomics, 2017, 18: 218.
[34] 马建江, 王诺菡, 吴嫚, 裴文锋, 王文魁, 李兴丽, 张金发, 喻树迅, 于霁雯. 雷蒙德氏棉和亚洲棉基因组数据中LPAAT基因家族的发掘及其同源基因在陆地棉材料中的表达分析. 遗传, 2015, 37: 692-701.
Ma J J, Wang N H, Wu M, Pei W F, Wang W K, Li X L, Zhang J F, Yu S X, Yu J W. Genome-wide analysis of the LPAAT gene family in Gossypium raimondii and G. arboreum, and expression analysis of its orthologs in G. hirsutum. Hereditas, 2015, 37: 692-701. (in Chinese with English abstract)
[35] Kim H U, Huang A H. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol, 2004, 134: 1206-1216.
doi: 10.1104/pp.103.035832
[36] Chia T Y, Pike M J, Rawsthorne S. Storage oil breakdown during embryo development of Brassica napus (L.). J Exp Bot, 2005, 56: 1285-1296.
doi: 10.1093/jxb/eri129
[37] Alessandri C, Pignatelli P, Loffredo L, Lenti L, Ben M D, Carnevale R, Perrone A, Ferro D, Angelico F, Violi F. Alpha-linolenic acid-rich wheat germ oil decreases oxidative stress and CD40 ligand in patients with mild hypercholesterolemia. Arterioscler Thromb Vasc Biol, 2006, 26: 2577-2578.
pmid: 17053175
[38] Yang Q, Cao W, Zhou X, Cao W, Xie Y, Wang S. Anti-thrombotic effects of α-linolenic acid isolated from Zanthoxylum bungeanum Maxim seeds. BMC Compl Altern Med, 2014, 14: 348.
[39] Wen J, Khan I, Li A, Chen X, Yang P, Song P, Jing Y, Wei J, Che T, Zhang C. Alpha-linolenic acid given as an anti-inflammatory agent in a mouse model of colonic inflammation. Food Sci Nutr, 2019, 7: 3873-3882.
doi: 10.1002/fsn3.1225
[40] Brown A P, Slabas A R, Denton H. Substrate selectivity of plant and microbial lysophosphatidic acid acyltransferases. Phytochemistry, 2002, 61: 493-501.
doi: 10.1016/S0031-9422(02)00290-X
[41] Zhang Q Y, Yu R, Xie L H, Rahman M M, Kilaru A, Niu L X, Zhang Y L. Fatty acid and associated gene expression analyses of three tree peony species reveal key genes for α-linolenic acid synthesis in seeds. Front Plant Sci, 2018, 9: 106.
[42] Fahs Z, Rossez Y, Guénin S, Gutierrez L, Thomasset B, Perrin Y. Cloning and molecular characterization of three lysophosphatidic acid acyltransferases expressed in flax seeds. Plant Sci, 2019, 280: 41-50.
doi: 10.1016/j.plantsci.2018.10.026
[1] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[2] 鲁庚,唐鑫,陆俊杏,李丹,胡秋芸,胡田,张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究[J]. 作物学报, 2020, 46(8): 1283-1290.
[3] 张宇婷,鲁少平,金诚,郭亮. 甘蓝型油菜皖油20号种子不同部位油脂合成的转录调控分析[J]. 作物学报, 2019, 45(3): 381-389.
[4] 魏大勇,崔艺馨,梅家琴,汤青林,李加纳,钱伟. 油菜种子含油量GWAS分析及位点整合系统构建[J]. 作物学报, 2018, 44(9): 1311-1319.
[5] 吴坤,吴文雄,杨敏敏,刘红艳,郝国存,赵应忠. 白芝麻籽粒油脂、蛋白质及芝麻素含量QTL定位分析[J]. 作物学报, 2017, 43(07): 1003-1011.
[6] 马珍珍,李加纳,Bennjiamin WITTKOP,Martin FRAUEN,阎星颖,刘列钊,肖阳. 甘蓝型油菜籽粒含油量、蛋白质、纤维素及半纤维素含量QTL分析[J]. 作物学报, 2013, 39(07): 1214-1222.
[7] 闫贵欣,陈碧云,许鲲,高桂珍,吕培军,伍晓明,李锋,李俊. 不同施氮水平下甘蓝型油菜发育种子中基因表达谱差异分析[J]. 作物学报, 2012, 38(11): 2052-2060.
[8] 黄莉, 赵新燕, 张文华, 樊志明, 任小平, 廖伯寿, 姜慧芳, 陈玉宁. 利用RIL群体和自然群体检测与花生含油量相关的SSR标记[J]. 作物学报, 2011, 37(11): 1967-1974.
[9] 李超, 李波, 曲存民, 阎星颖, 付福友, 刘利钊, 谌利, 李加纳. 两种环境下甘蓝型油菜含油量差异的QTL分析[J]. 作物学报, 2011, 37(02): 249-254.
[10] 廖伯寿,雷永,王圣玉,黄家权,任小平,姜慧芳,晏立英. 利用RIL群体创造抗黄曲霉兼抗青枯病的高油花生新种质[J]. 作物学报, 2010, 36(08): 1296-1301.
[11] 徐一兰;官春云;谭太龙;余龙喜. 油菜种子形成中含油量与其合成相关酶活性的变化及其相关性[J]. 作物学报, 2008, 34(10): 1854-1857.
[12] 廖伯寿;雷永;王圣玉;李栋;黄家权;姜慧芳;任小平. 花生重组近交系群体的遗传变异与高油种质的创新[J]. 作物学报, 2008, 34(06): 999-1004.
[13] 张洁夫;戚存扣;浦惠明;陈松;陈锋;高建芹;陈新军;顾慧;傅寿仲. 甘蓝型油菜含油量的遗传与QTL定位[J]. 作物学报, 2007, 33(09): 1495-1501.
[14] 吴建国;石春海;张海珍;樊龙江. 应用近红外反射光谱法整粒测定小样品油菜籽含油量的研究[J]. 作物学报, 2002, 28(03): 421-425.
[15] 王晓军. 应用核磁共振技术测定油菜籽含油量的方法研究[J]. 作物学报, 1993, 19(04): 289-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .