欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (02): 249-254.doi: 10.3724/SP.J.1006.2011.00249

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

两种环境下甘蓝型油菜含油量差异的QTL分析

李超1,2,3,李波1,3,**,曲存民1,3,阎星颖1,3,付福友1,3,刘利钊1,3,谌利1,3,李加纳1,3,*   

  1. 1西南大学农学与生物科技学院,重庆 400716;2贵州省油料研究所,贵阳 550006;3重庆市油菜工程技术研究中心,重庆 400716
  • 收稿日期:2010-08-10 修回日期:2010-12-01 出版日期:2011-02-12 网络出版日期:2010-12-20
  • 通讯作者: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68251950
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2008AA10Z147), 国家科技支撑计划项目(2009BADA8B01), 国家自然科学基金项目(31071450)和贵州省农科院创新基金项目[黔农科合(创新基金)2010007号]资助。

QTL Analysis of Oil Content Difference in Two Environments in Brassica napus L.

LI Chao1,2,3,LI Bo1,3,**,QU Cun-Min1,3,YAN Xing-Ying1,3,FU Fu-You1,3,Liu Li-Zhao1,3,CHEN Li1,3,LI Jia-Na1,3,*   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; 2 Institute of Oil Crops, Guiyang 550006, China; 3 Chongqing Engineering Research Center for Rapeseed, Chongqing 400716, China
  • Received:2010-08-10 Revised:2010-12-01 Published:2011-02-12 Published online:2010-12-20
  • Contact: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68251950

摘要: 利用本实验室构建的遗传连锁图谱和复合区间作图法检测重组自交系GH06×P174(SWU-1)和GH06×中油821(SWU-2)群体在2个环境中含油量差值的QTL。以SWU-1群体在2个环境中检测到2个含油量差值QTL,分别位于2个不同的连锁群,单个QTL可解释表型变异的10.31%~12.45%;以SWU-2群体在2个环境中检测到3个含油量差值QTL,分别位于2个不同的连锁群,单个QTL可解释表型变异的6.60%~10.58%。分析结果表明,含油量受环境影响较大,差值的变异幅度达到0~18.66个百分点,变异系数达到58.24%,说明在油菜的油脂合成中,存在对环境敏感和钝感的基因。含油量差值QTL与2个环境中分别检测到的含油量QTL没有明显的连锁关系,初步分析说明对环境敏感或钝感的基因与油脂合成基因不是同一个系统。

关键词: 甘蓝型油菜, 含油量, 环境, 差值QTL

Abstract: According to the genetic linkage map established by our laboratory and composite interval mapping (CIM), the QTLs oil content difference between two environments were detected using the recombinant inbred lines (RIL) SWU-1 and SWU-2in Brassica napus L.two QTLs of the oil content difference were located in the two linkage groups, each of the QTLs explained 10.31%–12.45% of phenotypic variation in SWU-1; three QTLs of the oil content difference were located in the two linkage groups, each of them explained 6.60%–10.58% of phenotypic variation in SWU-2. The results showed that the oil content difference of the different genotypes was quite different, ranging from 0 to 18.66% and the coefficient of variation was up to 58.24%, which means there are different environment insensitive genes for oil content in the different genotypes. There wereno visiblelinkage relationship between the QTLs of oil content difference and the QTLs of oil content in two environments, which indicated that sensitive and insensitive genes do not have the same genetic expression system as the oil synthesis genes.

Key words: Brassica napus L., Oil content, Environment, Difference QTL

[1]Burns M J, Barnes S R, Bowman J G, Clarke M H E, Werner C P, Kearsey M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus: ( i ) Seed oil content and fatty acid composition. Heredity, 2003, 90: 39–48
[2]Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114: 67–80
[3]Yan X Y, Li J N, Fu F Y, Jin M Y, Chen L, Liu L Z. Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica, 2009, 170: 355–364
[4]Jin M-Y(金梦阳), Li J-N(李加纳), Fu F-Y(付福友), Zhang Z-S(张正圣), Zhang X-K(张学昆), Liu L-Z(刘列钊). QTL analysis of oil and hull content in Brassica napus L. Sci Agric Sin (中国农业科学), 2007, 40(4): 677–684 (in Chinese with English abstract)
[5]Zhang J-F(张洁夫), Qi C-K(戚存扣), Pu H-M(浦惠明), Chen S(陈松), Chen F(陈锋), Gao J-Q(高建芹) , Chen X-J(陈新军), Gu H(顾慧), Fu S-Z(傅寿仲). Inheritance and QTL Identification of oil content in Rapeseed (Brassica napus L.). Acta Agron Sin (作物学报), 2007, 33(9): 1495–1501(in Chinese with English abstract)
[6]Zhang S F, Ma C Z, Zhu J C, Wang J P, Wen Y C, Fu T D. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene. Acta Genet Sin, 2006, 33: 171–180
[7]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 1255–1264
[8]Zhao J, Becker H C, Zhang D, Zhang Y, Ecke W. Oil content in a European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype environment interactions. Crop Sci, 2005, 45: 51–59
[9]Dai W(戴维), Niu Y-Z(牛应泽), Guo S-X(郭世星), Jiang J(蒋俊). Analysis of heterosis and combining ability in oil content in Brassica napus L. under different environments. Southwest China J Agric Sci (西南农业学报), 2008, 21(3): 581–585 (in Chinese with English abstract)
[10]Wang S, Basten C J, Zeng Z B. Windows QTL cartographer. Version 2.5
[computer program] department of statistics, North Carolina State University, Raleigh, N C. 2006. Available from http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
[11]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13
[12]Zhang Z-L(张子龙), Li J-N(李加纳), Tang Z-L(唐章林), Chen L(谌利), Wang R(王瑞). The research progress of the effect of environmental factors on quality character s of rapeseed. Chin Agric Sci Bull (中国农学通报), 2006, 22(2): 124–129 (in Chinese with English abstract)
[13]Al-turki A I, Dick W A. Myrosinase activity in soil. Soil Sci Soc Am J, 2003, 67: 127
[14]Garzon G A. Effect of oil content and pH on the physicochemical of rape oil composites properties. Cereal Chem, 2003, 80: 2–5
[15]Zhang Z-L(张子龙), Wang G-X(王贵学), Tang Z-L(唐章林), Chen L(谌利), Li J-N(李加纳). Optimization of integrated agronomic technology for high oil content cultivation of “Yuhuang 1”. J Southwest Agric Univ(Nat Sci) (西南农业大学学报), 2004, 26: 401–404 (in Chinese with English abstract)
[16]Wu J(武杰), Li B-Z(李宝珍), Chen L(谌利), Tang Z-L(唐章林), Wang Z-Y(王正银), Li J-N(李加纳). Effects of different fertilizer levels on oil content of yellow- coated rapeseed (Brassica napus L.). Chin J Oil Crop Sci (中国油料作物学报), 2004, 26(4): 59–62 (in Chinese with English abstract)
[17]Mayw E, Hume D J, Hale B A. Effects of agronomic practice on free fatty acid levers in the oil of on tariogrown spring canola. Can J Plant Sci, 1994, 74: 267–274
[18]Liu H-L(刘后利). Genetics and Breeding of Brassica napus L. (油菜的遗传与育种). Shanghai: Shanghai Scientific and Technical Press, 1985, pp 128–214 (in Chinese)
[19]Hu Z-L(胡中立), Liu H-L(刘后利). Combining ability analysis for quality characters of Brassica napus and possible approaches of obtaining new germplasms of low glucosinolate content. Acta Agron Sin (作物学报), 1989, 15(3): 221–229 (in Chinese with English abstract)
[20]Fu S-X(付三雄), Wu X-M(伍晓明), Li C-L(李成磊), Zhang J-F(张洁夫), Chen X-J(陈新军), Qi C-K(戚存扣). Effects of different geographical positions on oil content of Brassica napus L. Jiangsu J Agric Sci (江苏农业学报), 2009, 25(2): 247–252 (in Chinese with English abstract)
[21]Fu S-X(付三雄), Qi C-K(戚存扣). Major gene plus polygene inheritance of oil content in Brassica napus L. Jiangsu J Agric Sci (江苏农业学报), 2009, 25(4): 731–736 (in Chinese with English abstract)
[22]Fu F-Y(付福友). Construction of High-Density Genetic Linkage Maps and QTL Analysis of Quality-Related Traits in Brassica napu. PhD Dissertation of Southwest University, 2007 (in Chinese with English abstract)
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[7] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[8] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[9] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[10] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[11] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[12] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[13] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[14] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[15] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!