作物学报 ›› 2021, Vol. 47 ›› Issue (2): 262-274.doi: 10.3724/SP.J.1006.2021.04037
魏丽娟(), 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳*(), 曲存民*()
WEI Li-Juan(), SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na*(), QU Cun-Min*()
摘要:
锌(Zn)是重要的微量元素之一, 但土壤中过量的锌累积会影响植物的生长发育。本研究以不同遗传来源的140份甘蓝型油菜为材料, 利用芸薹属60K SNP芯片对锌胁迫下(30 mg L-1)甘蓝型油菜发芽期相对下胚轴长(RHL)进行全基因组关联分析, 筛选与甘蓝型油菜发芽期下胚轴长度显著关联的SNP位点及候选基因。群体结构分析表明, 供试的140份甘蓝型油菜被分为2个亚群, 其中89%材料间亲缘关系小于0.1, 说明供试群体材料亲缘关系比较远。GWAS分析共检测到8个与RHL显著关联的SNP位点, 单个SNP位点分别可解释22.0%~33.2%的表型变异。转录组分析获得的差异基因GO富集分析结果表明, 上调表达基因主要参与氧化还原反应、离子转运、胁迫反应、防御反应和硫化合物转运。综合全基因组关联分析和转录组测序结果, 共鉴定到19个与锌胁迫相关的候选基因, 包括编码锌指蛋白家族成员(B-box型和ZFP1)、谷胱甘肽转移酶GSTU21、过氧化物酶家族蛋白、ABC和MFS转运蛋白及细胞壁相关激酶蛋白和一些重要的转录因子(BnaA07g27330D、BnaA02g30270D、BnaA07g27840D、BnaA07g31860D和BnaA07g28000), 为深入解析油菜锌胁迫分子机制提供了参考。
[1] |
Koeppe D E. The uptake, distribution, and effect of cadmium and lead in plants. Sci Total Environ, 1977,7:197-206.
doi: 10.1016/0048-9697(77)90043-2 |
[2] |
Sinclair S A, Kramer U. The zinc homeostasis network of land plants. Biochim Biophys Acta, 2012,1823:1553-1567.
doi: 10.1016/j.bbamcr.2012.05.016 pmid: 22626733 |
[3] | Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. Heavy metal stress and some mechanisms of plant defense response. Sci World J, 2015,2015:756120. |
[4] |
Broadley M R, White P J, Hammond J P, Zelko I, Lux A. Zinc in plants. New Phytol, 2007,173:677-702.
doi: 10.1111/j.1469-8137.2007.01996.x pmid: 17286818 |
[5] |
Cambrollé J, Mancilla-Leytón J M, Muñoz-Vallés S, Luque T, Figueroa M E. Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere, 2012,86:867-874.
doi: 10.1016/j.chemosphere.2011.10.039 pmid: 22099539 |
[6] | 龚红梅, 李卫国. 锌对植物的毒害及机理研究进展. 安徽农业科学, 2009,37:14009-14015. |
Gong H M, Li W G. Research progress on the toxicity of zinc to plants and its mechanism. J Anhui Agric Sci, 2009,37:14009-14015 (in Chinese with English abstract). | |
[7] | Belouchrani A S, Mameri N, Abdi N, Grib H, Lounici H, Drouiche N. Phytoremediation of soil contaminated with Zn using canola (Brassica napus L.). Ecol Eng, 2016,95:43-49. |
[8] |
Gasic K, Korban S S. Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta, 2007,225:1277-1285.
doi: 10.1007/s00425-006-0421-y pmid: 17086401 |
[9] | Cojocaru P, Gusiatin Z M, Cretescu I. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Environ Sci Pollut Res, 2016,23:10693-10701. |
[10] | Salt D E, Blaylock M, Kumar N, Dushenkov V, Ensley B D, Chet I, Raskin I. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol, 1995,13:468-474. |
[11] | Turan M, Bringu A. Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environ, 2007,53:7-15. |
[12] | 曹春信, 刘新华, 周琴, 江巧君, 袁名安, 江海东. 过量锌对油菜生长、产量和养分吸收的影响及锌在植株地上部器官中的富集特征. 浙江农业学报, 2011,23:781-791. |
Cao C X, Liu X H, Zhou Q, Jiang Q J, Yuan M A, Jiang H D. Effects of excess zinc strss on growth yield nutrient uptake and enrichment characteristics of zinc in above-ground organs of rapeseed (Brassica napus). Acta Agric Zhejiangenisis, 2011,23:781-791 (in Chinese with English abstract). | |
[13] |
Zhang J, Chen K, Pang Y L, Naveed S A, Zhao X Q, Wang X Q, Wang Y, Dingkuhn M, Pasuquin J, Li Z K, Xu J L. QTL mapping and candidate gene analysis of ferrous iron and zinc toxicity tolerance at seedling stage in rice by genome-wide association study. BMC Genomics, 2017,18:828.
pmid: 29078746 |
[14] | Chen L L, Wan H P, Qian J L, Guo J B, Sun C M, Wen J, Yi B, Ma C Z, Tu J X, Song L Q, Fu T D, Shen J X. Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed (Brassica napus L.). Front Plant Sci, 2018,9:375. |
[15] | Zhang F G, Xiao X, Yan G X, Hu J H, Cheng X, Li L X, Li H G, Wu X M. Association mapping of cadmium-tolerant QTLs in Brassica napus L. and insight into their contributions to phytoremediation. Environ Exp Bot, 2018,155:420-428. |
[16] | 曲存民, 马国强, 朱美晨, 黄小虎, 贾乐东, 王书贤, 赵会彦, 徐新福, 卢坤, 李加纳, 王瑞. 砷胁迫下甘蓝型油菜苗期根、下胚轴和鲜重的全基因组关联分析. 作物学报, 2019,45:175-187. |
Qu C M, Ma G Q, Zhu M C, Huang X H, Jia L D, Wang S X, Zhao H Y, Xu X F, Lu K, Li J N, Wang R. Genome-wide association of roots, hypocotyls and fresh weight at germination stage as stress in Brassica napus L. Acta Agron Sin, 2019,45:175-187 (in Chinese with English abstract). | |
[17] |
Xu J, Chai T Y, Zhang Y X, Lang M L, Han L. The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves. Plant Cell Rep, 2009,28:1235-1242.
pmid: 19495770 |
[18] | Song Y, Hudek L, Freestone D, Puhui J, Michalczyk A A, Senlin Z, Ackland M L. Comparative analyses of cadmium and zinc uptake correlated with changes in natural resistance-associated macrophage protein (NRAMP) expression in Solanum nigrum L. and Brassica rapa. Environ Chem, 2014,11:653-660. |
[19] | Lichten L A, Cousins R J. Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr, 2009,29:153-176. |
[20] | Li N N, Xiao H, Sun J J, Wang S F, Wang J C, Chang P, Zhou X B, Lei B, Lu K, Luo F, Shi X J, Li J N. Genome-wide analysis and expression profiling of the HMA gene family in Brassica napus under Cd stress. Plant Soil, 2018,426:365-381. |
[21] |
Wang J W, Li Y, Zhang Y X, Chai T Y. Molecular cloning and characterization of a Brassica juncea yellow stripe-like gene, BjYSL7, whose overexpression increases heavy metal tolerance of tobacco. Plant Cell Rep, 2013,32:651-662.
pmid: 23430174 |
[22] | Takahashi R, Bashir K, Ishimaru Y, Nishizawa N K, Nakanishi H. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav, 2012,7:1605-1607. |
[23] | 张蕊, 邓文亚, 杨柳, 王亚萍, 肖芳枝, 禾健, 卢坤. 盐胁迫下甘蓝型油菜发芽期下胚轴和根长的全基因组关联分析. 中国农业科学, 2017,50:15-35. |
Zhang R, Deng W Y, Yang L, Wang Y P, Xiao F Z, He J, Lu K. Genome-wide association study of root length and hypocotyl length at germination stage under saline conditions in Brassica napus. Sci Agric Sin, 2017,50:15-35 (in Chinese with English abstract). | |
[24] | Munns R, James R A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil, 2003,253:201-218. |
[25] | Qu C M, Li M, Duan X J, Fan J H, Jia L D, Zhao H Y, Lu K, Li J N, Xu X F, Wang R. Identification of candidate genes for seed glucosinolate content using association mapping in Brassica napus L. Genes, 2015,6:1215-1229. |
[26] | 卢坤, 王腾岳, 徐新福, 唐章林, 曲存民, 贺斌, 梁颖, 李加纳. 甘蓝型油菜结角高度与荚层厚度的全基因组关联分析. 作物学报, 2016,42:344-352. |
Lu K, Wang T Y, Xu X F, Tang Z L, Qu C M, He B, Liang Y, Li J N. Genome-wide association analysis of height of podding and thickness of pod canopy in Brassica napus. Acta Agron Sin, 2016,42:344-352 (in Chinese with English abstract). | |
[27] |
Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000,155:945-959.
pmid: 10835412 |
[28] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol, 2005,14:2611-2620.
pmid: 15969739 |
[29] | Hardy O J, Vekemans X. Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002,2:618-620. |
[30] | Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635. |
[31] |
Wen Y J, Zhang H W, Ni Y L, Huang B, Zhang J, Feng J Y, Wang S B, Dunwell J M, Zhang Y M, Wu R L. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform, 2018,19:700-712.
pmid: 28158525 |
[32] |
Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T, Thi V, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H D, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[33] | 郑喜珅, 鲁安怀, 高翔, 赵谨, 郑德圣. 土壤中重金属污染现状与防治方法. 土壤与环境, 2002,11(1):79-84. |
Zheng X K, Lu A H, Gao X, Zhao J, Zheng D S. Contamination of heavy metals in soil present situation and method. Soil Environ Sci, 2002,11(1):79-84 (in Chinese with English abstract). | |
[34] |
Zhong B, Liang T, Wang L, Li K. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China. Sci Total Environ, 2014,490:422-434.
doi: 10.1016/j.scitotenv.2014.04.127 pmid: 24875258 |
[35] | Zhang F, Xiao X, Xu K, Cheng X, Xie T, Hu J, Wu X. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). BMC Genomics, 2020,21:139. |
[36] |
Zhang J, Mason A S, Wu J, Liu S, Zhang X, Luo T, Redden R, Batley J, Hu L, Yan G. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Front Plant Sci, 2015,6:1058.
doi: 10.3389/fpls.2015.01058 pmid: 26640475 |
[37] |
Ke L, Lei W, Yang W, Wang J, Gao J, Cheng J, Sun Y, Fan Z, Yu D. Genome-wide identification of cold responsive transcription factors in Brassica napus L. BMC Plant Biol, 2020,20:62.
doi: 10.1186/s12870-020-2253-5 pmid: 32028890 |
[38] | Shahid M, Natasha , Khalid S, Abbas G, Niazi N K, Murtaza B, Rashid M I, Bibi I. Redox mechanisms and plant tolerance under heavy metal stress: genes and regulatory networks. In: Sablok G, eds. Plant Metallomics and Functional Omics. Cham: Springer, 2019. pp 71-105. |
[39] |
Jiang Y, Qiu Y, Hu Y, Yu D. Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Front Plant Sci, 2016,7:145.
doi: 10.3389/fpls.2016.00145 pmid: 26904091 |
[40] |
Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant, 2012,5:1375-1388.
pmid: 22930734 |
[41] | Chen H Y, Hsieh E J, Cheng M C, Chen C Y, Hwang S Y, Lin T P. ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New Phytol, 2016,211:599-613. |
[42] |
Zang D D, Li H Y, Xu H Y, Zhang W H, Zhang Y M, Shi X X, Wang Y C. An arabidopsis zinc finger protein increases abiotic stress tolerance by regulating sodium and potassium homeostasis, reactive oxygen species scavenging and osmotic potential. Front Plant Sci, 2016,7:1272.
doi: 10.3389/fpls.2016.01272 pmid: 27605931 |
[43] |
Cao H J, Huang P Y, Zhang L L, Shi Y K, Sun D D, Yan Y X, Liu X H, Dong B, Chen G Q, Snyder J H, Lin F C, Lu J P. Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol, 2016,211:1035-1051.
pmid: 27041000 |
[44] |
Sun N, Liu M, Zhang W, Yang W, Bei X, Ma H, Qiao F, Qi X. Bean metal-responsive element-binding transcription factor confers cadmium resistance in tobacco. Plant Physiol, 2015,167:1136-1148.
doi: 10.1104/pp.114.253096 pmid: 25624396 |
[45] |
Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, Ren Y, Tang X, Xiao F, Liu Y, Cao S. Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione- dependent pathway in Arabidopsis. Plant Physiol, 2016,171:707-719.
pmid: 26983992 |
[46] |
Liu X M, An J, Han H J, Kim S H, Lim C O, Yun D J, Chung W S. ZAT11, a zinc finger transcription factor, is a negative regulator of nickel ion tolerance in Arabidopsis. Plant Cell Rep, 2014,33:2015-2021.
doi: 10.1007/s00299-014-1675-7 pmid: 25163803 |
[47] |
Yang L, Wei Y, Na L, Zeng J Y, Han Y J, Zuo Z J, Wang S T, Zhu Y R, Zhang Y, Sun J S, Yong W. Declined cadmium accumulation in Na+/H+ antiporter (NHX1) transgenic duckweed under cadmium stress. Ecotoxicol Environ Saf, 2019,182:109397.
doi: 10.1016/j.ecoenv.2019.109397 pmid: 31299476 |
[48] | 李洋, 于丽杰, 金晓霞. 植物重金属胁迫耐受机制. 中国生物工程杂志, 2015,35(9):94-104. |
Li Y, Yu L J, Jin X X. The mechanism of heavy metal stress in plants. China Biotechnol, 2015,35(9):94-104 (in Chinese with English abstract). | |
[49] | 李小宁. 锌胁迫对小麦种子萌发及幼苗生理生化特性的影响. 西北师范大学硕士毕业论文, 甘肃兰州, 2013. |
Li X N. Effects of Zinc Stress on Seed Germination, Physiological and Biochemical Characteristics in Wheat Seedling. MS Thesis of Northwest Normal University, Lanzhou, Gansu, China, 2013 (in Chinese with English abstract). | |
[50] |
Kumar S, Trivedi P K. Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci, 2018,9:751.
pmid: 29930563 |
[51] |
Ezaki B, Gardner R C, Ezaki Y, Matsumoto H. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol, 2000,122:657-665.
doi: 10.1104/pp.122.3.657 pmid: 10712528 |
[52] |
Srivastava D, Verma G, Chauhan A S, Pande V, Chakrabarty D. Rice (Oryza sativa L.) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory network leading to heavy metal and drought stress tolerance. Metallomics, 2019,11:375-389.
doi: 10.1039/c8mt00204e pmid: 30516767 |
[53] |
Zhang J, Martinoia E, Lee Y. Vacuolar transporters for cadmium and arsenic in plants and their applications in phytoremediation and crop development. Plant Cell Physiol, 2018,59:1317-1325.
doi: 10.1093/pcp/pcy006 pmid: 29361141 |
[54] |
Kim D Y, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J, 2007,50:207-218.
pmid: 17355438 |
[55] |
Korenkov V, King B, Hirschi K, Wagner G J. Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol J, 2009,7:219-226.
pmid: 19175521 |
[56] |
Hou X W, Tong H Y, Selby J, DeWitt J, Peng X X, He Z H. Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses. Plant Physiol, 2005,139:1704-1716.
doi: 10.1104/pp.105.066910 pmid: 16286448 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[5] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[6] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[7] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[8] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[9] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[10] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[11] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
[12] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[13] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099. |
[14] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[15] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
|