作物学报 ›› 2018, Vol. 44 ›› Issue (01): 82-94.doi: 10.3724/SP.J.1006.2018.00082
张金飞1,2,李霞1,*,何亚飞1,2,谢寅峰2
ZHANG Jin-Fei1, 2, LI Xia1,*, HE Ya-Fei1, 2,XIE Yin-Feng2
摘要:
为揭示葡萄糖参与植物耐旱性的内在机制,以高表达转玉米C4型磷酸烯醇式丙酮酸羧化酶 (phosphoenolpyruvate carboxylase,PEPC) 基因(C4-pepc)水稻(PC)和受体“Kitaake”(WT)为材料,通过盆栽和水培试验,研究外施葡萄糖联合干旱处理下,功能叶片的光合参数、总可溶性糖及其组分、Ca2+、NO含量、己糖激酶活性、B类钙调磷酸酶(calcineurin B-like, CBL)与蔗糖非发酵1 (sucrose nonfermenting-1, SNF1)相关蛋白激酶(SNF1-related protein kinase 3s, SnRK3s)基因表达的变化。结果表明,在盆栽试验中,分蘖期外施3%葡萄糖联合干旱处理对水稻的产量及其构成因子影响不显著,而在孕穗期处理,PC的株高、穗数、每穗实粒重和单株产量均显著高于WT。在水培试验中,外施1%葡萄糖和12% (m/v)聚乙二醇6000 (polyethylene glycol-6000, PEG-6000)模拟干旱处理,均显著提高了PC功能叶片的净光合速率(Pn)、气孔导度(Gs)和羧化效率(CE),叶片内蔗糖和果糖的含量也均显著高于WT。值得关注的是,PC叶片己糖激酶(hexokinase, HXK)活性、CBL1/SnRK3.1/SnRK3.4/ SnRK3.21基因的相对表达量在外施1%葡萄糖联合12% PEG模拟干旱处理下均显著低于12%PEG处理,而NO含量则显著上升。相关性分析也表明,PC中Pn、胞间CO2浓度(Ci)和Gs分别与葡萄糖含量、HXK活性和SnRK3.16基因表达显著相关。外施葡萄糖处理可上调PC糖水平,下调其CBL和SnRK3s基因表达,诱导NO参与叶片气孔调节,从而增强保水能力,保持光合能力稳定,最终表现为耐旱。
[1] Khush G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005, 59: 1–6 [2] Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci, 2015, 6: 84 [3] Long S P, Marshall-Colon A, Zhu X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 2015, 161: 56–66 [4] Aubry S, Brown N J, Hibberd J M. The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot, 2011, 62: 3049–3059 [5] Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17: 76–80 [6] Orta D R, Merchant S S, Alric J, Barkan A, Blankenship R E, Bock R, Moore T A. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA, 2015, 112: 8529–8536 [7] Johnson J F, Vance C P, Allan D L. Phosphorus deficiency in Lupinus albus altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol, 1996, 112: 31–41 [8] Chen P B, Li X, Huo K, Wei X D, Dai C C, Lu C G. Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors. J Plant Physiol, 2014, 171: 458–466 [9] Ren C G, Li X, Liu X L, Wei X D, Dai C C. Hydrogen peroxide regulated photosynthesis in C4-pepc transgenic rice. Plant Physiol Biochem, 2014, 74: 218–229 [10] 方立锋, 丁在松, 赵明. 转ppc基因水稻苗期抗旱特性研究. 作物学报, 2008, 34: 1220–1226 Fang L F, Ding Z S, Zhao M. Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin, 2008, 34: 1220–1226 (in Chinese with English abstract) [11] Qian B, Li X, Liu X, Wang M. Improved oxidative tolerance in suspension cultured cells of C4-pepc transgenic rice by H2O2 and Ca2+ under PEG-6000. J Integr Plant Biol, 2015, 57: 534–549 [12] 周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用. 作物学报, 2011, 37: 112–118 Zhou B Y, Ding Z S, Zhao M. Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC gene in rice. Acta Agron Sin, 2011, 37: 112–118 (in Chinese with English abstract) [13] 丁在松, 周宝元, 孙雪芳, 赵明. 干旱胁迫下PEPC过表达增强水稻的耐强光能力. 作物学报, 2012, 38: 285–292 Ding Z S, Zhou B Y, Sun X F, Zhao M. High light tolerance is enhanced by overexpressed PEPC in rice under drought stress. Acta Agron Sin, 2012, 38: 285–292 (in Chinese with English abstract) [14] Vavasseur A, Raghavendra A S. Guard cell metabolism and CO2 sensing. New Phytol, 2005, 16: 665–682 [15] Liu X L, Li X, Zhang C, Dai C C, Zhou J Y, Ren C G, Zhang J F. Phosphoenolpyruvate carboxylase regulation in C4-PEPC expressing transgenic rice during early responses to drought stress. Physiol Plant, 2017, 159: 178–200 [16] Li L, Sheen J. Dynamic and diverse sugar signaling. Curr Opin Plant Biol, 2016, 33: 116–125 [17] Moore B, Zhou L, Rolland F, Hall Q, Cheng W H, Liu Y X, Hwang I, Jones T, Sheen J. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 2003, 300: 332–336 [18] Kelly G, David-Schartz R, Sade N, Moshelion M, Levi A, Alchanatis V, Granot D. The pitfalls of transgenic selection and new roles of AtHXK1: a high level of AtHXK1 expression uncouples hexokinas1-dependent sugar signaling from exogenous sugar. Plant Physiol, 2012, 159: 47–51 [19] Kim Y M, Heinzel N, Giese J O, Koeber J, Melzer M, Rutten T, Wiren N, Sonnewald U, Hajirezaei M R. A dual role of tobacco hexokinase1 in primary metabolism and sugar sensing. Plant Cell Environ, 2013, 36: 1311–1327 [20] Considine M J, Foyer C H. Redox regulation of plant development. Antioxid Redox Signal, 2014, 21: 1305–1326 [21] Matsoukas I G. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front Genet, 2014, 5: 218 [22] Tsai A Y, Gazzarrini S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci, 2014, 5: 119 [23] Jung K, Nemhauser J L, Perata P. New mechanistic links between sugar and hormone signalling networks. Curr Opin Plant Biol, 2015, 25: 130–137 [24] Yu S, Lian H, Wang J W. Plant development transitions: the role of microRNAs and sugars. Curr Opin Plant Biol, 2015, 27: 1–7 [25] Sheen J. Master regulators in plant glucose signaling networks. J Plant Biol, 2014, 57: 67–79 [26] Zhang Z W, Yaun S, Xu F, Yang H, Zhang N H, Cheng J, Lin H H. The plastid hexokinase pHXK: a node of convergence for sugar and plastid signals in Arabidopsis. FEBS Lett, 2010, 584: 3573–3579 [27] Hanson J, Smeekens S. Sugar perception and signaling: an update. Curr Opin Plant Biol, 2009, 12: 562–567 [28] Toroser D, Plaut Z, Huber S C. Regulation of a plant SNF1-related protein kinase by glucose-6-phosphate. Plant Physiol, 2000, 123: 403–412 [29] Zhang Y, Primavesi L F, Jhurreea D, Andraloj P J, Mitchell R A C, Powers S J, Schluepmann H, Delatte T, Wingler A, Paul M J. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol, 2009, 149: 1860–1871 [30] Li X, Wang C. Physiological and metabolic enzymes activity changes in transgenic rice plants with increased phosphoenolpyruvate carboxylase activity during the flowering stage. Acta Physiol Plant, 2013, 35: 1503–1512 [31] Doubnerová V, Ry?lavá H. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci, 2011, 180: 575–583 [32] Yoshida S, Forno D A, Cock J H. Laboratory Manual for Physiological Studies of Rice. Philippines: International Rice Research Institute, 1976. pp 61–64 [33] Smart R E, Bingham G E. Rapid estimates of relative water-content. Plant Physiol, 1974, 53: 258–260 [34] Ambavaram, M M, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Pereira A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun, 2014, 5: 93 [35] Li X, Wang C, Ren C G. Effects of 1-butanol, neomycin and calcium on the photosynthetic characteristics of pepc transgenic rice. Afr J Biol Technol, 2011, 10: 17466–17476 [36] Yang C Q, Liu W N, Zhao Z H, Wu H Y. Determination of the content of serum calcium with methylthymol blue as chromogenic reagent. Spectrosc Spectr Anal, 1998, 18: 485–487 [37] Murphy M E, Noack E. Nitric oxide assay using hemoglobin method. Methods Enzymol, 1994, 233: 240–250 [38] Schaffer A A, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol, 1997, 113: 739–746 [39] Jung H, Kim J K, Ha S W. Use of animal viral IRES sequence makes multiple truncated transcripts without mediating polycistronic expression in rice. J Korean Soc Biol Chem, 2011, 54: 678–684 [40] Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Physiol, 2004, 55: 69–84 [41] Sethi D, Dash S, Mohapatra S, Mohanty P. C4 rice: an advance technique for enhancing rice production. Adv Life Sci, 2016, 5: 2535–2542 [42] 吴琼, 许为钢, 李艳, 齐学礼, 胡琳, 张磊, 韩琳琳. 田间条件下转玉米C4型PEPC基因小麦的光合生理特性. 作物学报, 2010, 37: 2046–2052 Wu Q, Xu W G, Li Y, Qi X L, Hu L, Zhang L, Han L L. Physiological characteristics of photosynthesis in transgenic wheat with maize C4-PEPC gene under field conditions. Acta Agron Sin, 2010, 37: 2046–2052 (in Chinese with English abstract) [43] Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K R, Marsch-Martinez N, Pereira A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Nat Aca Sci USA, 2007, 104: 15270–15275 [44] Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H J, Rosenkranz R, Peterh?nsel C. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol, 2007, 25: 593–599 [45] Abebe T, Guenzi A C, Martin B, Cushman J C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol, 2003, 131: 1748–1755 [46] Daloso D M, Anjos L, Fernie A R. Roles of sucrose in guard cell regulation. New Phytol, 2016, 211: 809 [47] Granot D, Lugassi N, Kottapalli J, Kelly G. Sensing sugar and saving water. Proc Environ Sci, 2015, 29: 3 [48] Griffiths C A, Sagar R, Geng Y, Primavesi L F, Patel M K, Passarelli M K, Davis B G. Chemical intervention in plant sugar signaling increases yield and resilience. Nature, 2016, 540: 574–578 [49] Corpas F J, Barroso J B. Peroxisomal plant metabolism–an update on nitric oxide, Ca2+ and the NADPH recycling network. J Cell Sci, 2017, jcs. 202978. [50] Furuichi T, Cunningham K W, Muto S. A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol, 2001, 42: 900–905 [51] Li Z Y, Xu Z S, Chen Y, He G Y, Yang G X, Chen M, Ma Y Z. A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development. PLoS One, 2013, 8: e56412 [52] Batistic O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta, 2009, 1790: 985–992 [53]T ominaga M, Harada A, Kinoshita T, Shimazaki K. Biochemical characterization of calcineurin B-like-interacting protein kinase in Vicia guard cells. Plant Cell Physiol, 2010, 51: 408–421 [54] Mao J, Manik S M, Shi S, Chao J, Jin Y, Wang Q, Liu H. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana. Genes, 2016, 7: 62 [55] Li J, Long Y, Qi G N, Xu Z J, Wu W H, Wang Y. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell, 2014, 26: 3387-3402. [56] Kudahettige N P, Pucciariello C, Parlanti S, Alpi A, Perata P. Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of α-amylase production in flooded rice plants. Plant Biol, 2011, 13: 611–619. |
[1] | 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571. |
[2] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[3] | 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411. |
[4] | 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038. |
[5] | 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050. |
[6] | 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159. |
[7] | 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295. |
[8] | 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132. |
[9] | 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941. |
[10] | 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746. |
[11] | 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881. |
[12] | 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707. |
[13] | 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479. |
[14] | 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698. |
[15] | 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338. |
|