欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (01): 82-94.doi: 10.3724/SP.J.1006.2018.00082

• 耕作栽培·生理生化 • 上一篇    下一篇

外源葡萄糖增强高表达转玉米C4pepc水稻耐旱性的生理机制

张金飞1,2,李霞1,*,何亚飞1,2,谢寅峰2   

  1. 1江苏省农业科学院粮食作物研究所 / 江苏省优质水稻工程技术研究中心 / 国家水稻改良中心南京分中心,江苏南京 210014; 2南京林业大学生物与环境学院,江苏南京 210037
  • 收稿日期:2017-03-28 修回日期:2017-09-10 出版日期:2018-01-12 网络出版日期:2017-09-28
  • 通讯作者: 李霞, E-mail: jspplx@jaas.ac.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31571585), 江苏省农业科学院基本科研业务专项(ZX[16]2002)和江苏省农业科学院粮食作物研究所基金(LZS17-9)资助。

Physiological Mechanism on Drought Tolerance Enhanced by Exogenous Glucose in C4-pepc Rice

ZHANG Jin-Fei1, 2, LI Xia1,*, HE Ya-Fei1, 2,XIE Yin-Feng2   

  1. 1 Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; 2 College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
  • Received:2017-03-28 Revised:2017-09-10 Published:2018-01-12 Published online:2017-09-28
  • Contact: 李霞, E-mail: jspplx@jaas.ac.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31571585), the Jiangsu Provincial Academy of Agricultural Sciences Basic Research Business Special Project (ZX [16] 2002), and the Grant from the Institute of Food Crops of Jiangsu Academy of Agricultural Sciences (LZS17-9).

摘要:

为揭示葡萄糖参与植物耐旱性的内在机制,以高表达转玉米C4型磷酸烯醇式丙酮酸羧化酶 (phosphoenolpyruvate carboxylase,PEPC) 基因(C4-pepc)水稻(PC)和受体“Kitaake”(WT)为材料,通过盆栽和水培试验,研究外施葡萄糖联合干旱处理下,功能叶片的光合参数、总可溶性糖及其组分、Ca2+、NO含量、己糖激酶活性、B类钙调磷酸酶(calcineurin B-like, CBL)与蔗糖非发酵1 (sucrose nonfermenting-1, SNF1)相关蛋白激酶(SNF1-related protein kinase 3s, SnRK3s)基因表达的变化。结果表明,在盆栽试验中,分蘖期外施3%葡萄糖联合干旱处理对水稻的产量及其构成因子影响不显著,而在孕穗期处理,PC的株高、穗数、每穗实粒重和单株产量均显著高于WT。在水培试验中,外施1%葡萄糖和12% (m/v)聚乙二醇6000 (polyethylene glycol-6000, PEG-6000)模拟干旱处理,均显著提高了PC功能叶片的净光合速率(Pn)、气孔导度(Gs)和羧化效率(CE),叶片内蔗糖和果糖的含量也均显著高于WT。值得关注的是,PC叶片己糖激酶(hexokinase, HXK)活性、CBL1/SnRK3.1/SnRK3.4/ SnRK3.21基因的相对表达量在外施1%葡萄糖联合12% PEG模拟干旱处理下均显著低于12%PEG处理,而NO含量则显著上升。相关性分析也表明,PC中Pn、胞间CO2浓度(Ci)和Gs分别与葡萄糖含量、HXK活性和SnRK3.16基因表达显著相关。外施葡萄糖处理可上调PC糖水平,下调其CBL和SnRK3s基因表达,诱导NO参与叶片气孔调节,从而增强保水能力,保持光合能力稳定,最终表现为耐旱。

关键词: 水稻, 葡萄糖, 磷酸烯醇式丙酮酸羧化酶, 气孔导度, 干旱

Abstract:

In order to investigate the intrinsic mechanism of glucose participated in drought tolerance in plants, the effects of glucose were studied using the phosphoenolpyruvate carboxylase (C4-pepc) rice (PC) and “Kitaake” (WT) rice lines in pot experiments and hydroponics experiments respectively. The changes of photosynthetic parameters, total soluble sugar and sugar components contents, Ca2+ and NO contents, hexokinase activity, transcript levels of sucrose nonfermenting-1(SNF1)-related protein kinases 3 (SnRK3s) and calcitonin B-like (CBL) of the functional leaves in rice lines were measured. Agronomic traits of the wild type (WT) and PC were recorded in the mature period. In pot experiment, the treatment of 3% glucose with drought during tillering stage had no significant effect on agronomic traits of the tested rice. During the booting stage, the plant height, panicle number per plant, filled grain number per panicle and grain yield per plant in PC were significantly higher than in WT (P < 0.05). In the hydroponics experiment with 1% glucose combined with 12% (m/v) polyethylene glycol 6000 (PEG-6000) to simulate drought stress, the photosynthetic parameters such as net photosynthetic rate (Pn), stomatal conductance (Gs) and carboxylation efficiency (Ce) significantly increased in PC than in WT. Similarly, the contents of sucrose and fructose of leaves in PC lines were significantly higher than those in WT. It was noteworthy that hexokinase (HXK) activity and the relative gene expression of CBL and SnRK3.1/SnRK3.4/SnRK3.21 in PC lines under the treatment with 1% glucose and 12% PEG were significantly lower than those under 12% PEG treatment alone. Intriguingly, the NO contents of PC under the corresponding treatments were significantly increased (P < 0.05). In addition, the photosynthetic parameters were significantly correlated with the glucose content, HXK activity and SnRK3.16 transcript level respectively in PC lines. It is suggested that PC can decrease the expression of CBL and SnRK3s gene by increasing glucose, participate the stomatal regulation via NO, maintain relative water content, keep stable photosynthetic capacity, and therefore confer drought tolerance.

Key words: rice, glucose, phosphate phosphoenolpyruvate carboxylase, stomatal conductance, drought

[1] Khush G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005, 59: 1–6 [2] Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci, 2015, 6: 84 [3] Long S P, Marshall-Colon A, Zhu X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 2015, 161: 56–66 [4] Aubry S, Brown N J, Hibberd J M. The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot, 2011, 62: 3049–3059 [5] Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17: 76–80 [6] Orta D R, Merchant S S, Alric J, Barkan A, Blankenship R E, Bock R, Moore T A. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA, 2015, 112: 8529–8536 [7] Johnson J F, Vance C P, Allan D L. Phosphorus deficiency in Lupinus albus altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol, 1996, 112: 31–41 [8] Chen P B, Li X, Huo K, Wei X D, Dai C C, Lu C G. Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors. J Plant Physiol, 2014, 171: 458–466 [9] Ren C G, Li X, Liu X L, Wei X D, Dai C C. Hydrogen peroxide regulated photosynthesis in C4-pepc transgenic rice. Plant Physiol Biochem, 2014, 74: 218–229 [10] 方立锋, 丁在松, 赵明. 转ppc基因水稻苗期抗旱特性研究. 作物学报, 2008, 34: 1220–1226 Fang L F, Ding Z S, Zhao M. Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin, 2008, 34: 1220–1226 (in Chinese with English abstract) [11] Qian B, Li X, Liu X, Wang M. Improved oxidative tolerance in suspension cultured cells of C4-pepc transgenic rice by H2O2 and Ca2+ under PEG-6000. J Integr Plant Biol, 2015, 57: 534–549 [12] 周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用. 作物学报, 2011, 37: 112–118 Zhou B Y, Ding Z S, Zhao M. Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC gene in rice. Acta Agron Sin, 2011, 37: 112–118 (in Chinese with English abstract) [13] 丁在松, 周宝元, 孙雪芳, 赵明. 干旱胁迫下PEPC过表达增强水稻的耐强光能力. 作物学报, 2012, 38: 285–292 Ding Z S, Zhou B Y, Sun X F, Zhao M. High light tolerance is enhanced by overexpressed PEPC in rice under drought stress. Acta Agron Sin, 2012, 38: 285–292 (in Chinese with English abstract) [14] Vavasseur A, Raghavendra A S. Guard cell metabolism and CO2 sensing. New Phytol, 2005, 16: 665–682 [15] Liu X L, Li X, Zhang C, Dai C C, Zhou J Y, Ren C G, Zhang J F. Phosphoenolpyruvate carboxylase regulation in C4-PEPC expressing transgenic rice during early responses to drought stress. Physiol Plant, 2017, 159: 178–200 [16] Li L, Sheen J. Dynamic and diverse sugar signaling. Curr Opin Plant Biol, 2016, 33: 116–125 [17] Moore B, Zhou L, Rolland F, Hall Q, Cheng W H, Liu Y X, Hwang I, Jones T, Sheen J. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 2003, 300: 332–336 [18] Kelly G, David-Schartz R, Sade N, Moshelion M, Levi A, Alchanatis V, Granot D. The pitfalls of transgenic selection and new roles of AtHXK1: a high level of AtHXK1 expression uncouples hexokinas1-dependent sugar signaling from exogenous sugar. Plant Physiol, 2012, 159: 47–51 [19] Kim Y M, Heinzel N, Giese J O, Koeber J, Melzer M, Rutten T, Wiren N, Sonnewald U, Hajirezaei M R. A dual role of tobacco hexokinase1 in primary metabolism and sugar sensing. Plant Cell Environ, 2013, 36: 1311–1327 [20] Considine M J, Foyer C H. Redox regulation of plant development. Antioxid Redox Signal, 2014, 21: 1305–1326 [21] Matsoukas I G. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front Genet, 2014, 5: 218 [22] Tsai A Y, Gazzarrini S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci, 2014, 5: 119 [23] Jung K, Nemhauser J L, Perata P. New mechanistic links between sugar and hormone signalling networks. Curr Opin Plant Biol, 2015, 25: 130–137 [24] Yu S, Lian H, Wang J W. Plant development transitions: the role of microRNAs and sugars. Curr Opin Plant Biol, 2015, 27: 1–7 [25] Sheen J. Master regulators in plant glucose signaling networks. J Plant Biol, 2014, 57: 67–79 [26] Zhang Z W, Yaun S, Xu F, Yang H, Zhang N H, Cheng J, Lin H H. The plastid hexokinase pHXK: a node of convergence for sugar and plastid signals in Arabidopsis. FEBS Lett, 2010, 584: 3573–3579 [27] Hanson J, Smeekens S. Sugar perception and signaling: an update. Curr Opin Plant Biol, 2009, 12: 562–567 [28] Toroser D, Plaut Z, Huber S C. Regulation of a plant SNF1-related protein kinase by glucose-6-phosphate. Plant Physiol, 2000, 123: 403–412 [29] Zhang Y, Primavesi L F, Jhurreea D, Andraloj P J, Mitchell R A C, Powers S J, Schluepmann H, Delatte T, Wingler A, Paul M J. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol, 2009, 149: 1860–1871 [30] Li X, Wang C. Physiological and metabolic enzymes activity changes in transgenic rice plants with increased phosphoenolpyruvate carboxylase activity during the flowering stage. Acta Physiol Plant, 2013, 35: 1503–1512 [31] Doubnerová V, Ry?lavá H. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci, 2011, 180: 575–583 [32] Yoshida S, Forno D A, Cock J H. Laboratory Manual for Physiological Studies of Rice. Philippines: International Rice Research Institute, 1976. pp 61–64 [33] Smart R E, Bingham G E. Rapid estimates of relative water-content. Plant Physiol, 1974, 53: 258–260 [34] Ambavaram, M M, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Pereira A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun, 2014, 5: 93 [35] Li X, Wang C, Ren C G. Effects of 1-butanol, neomycin and calcium on the photosynthetic characteristics of pepc transgenic rice. Afr J Biol Technol, 2011, 10: 17466–17476 [36] Yang C Q, Liu W N, Zhao Z H, Wu H Y. Determination of the content of serum calcium with methylthymol blue as chromogenic reagent. Spectrosc Spectr Anal, 1998, 18: 485–487 [37] Murphy M E, Noack E. Nitric oxide assay using hemoglobin method. Methods Enzymol, 1994, 233: 240–250 [38] Schaffer A A, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol, 1997, 113: 739–746 [39] Jung H, Kim J K, Ha S W. Use of animal viral IRES sequence makes multiple truncated transcripts without mediating polycistronic expression in rice. J Korean Soc Biol Chem, 2011, 54: 678–684 [40] Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Physiol, 2004, 55: 69–84 [41] Sethi D, Dash S, Mohapatra S, Mohanty P. C4 rice: an advance technique for enhancing rice production. Adv Life Sci, 2016, 5: 2535–2542 [42] 吴琼, 许为钢, 李艳, 齐学礼, 胡琳, 张磊, 韩琳琳. 田间条件下转玉米C4型PEPC基因小麦的光合生理特性. 作物学报, 2010, 37: 2046–2052 Wu Q, Xu W G, Li Y, Qi X L, Hu L, Zhang L, Han L L. Physiological characteristics of photosynthesis in transgenic wheat with maize C4-PEPC gene under field conditions. Acta Agron Sin, 2010, 37: 2046–2052 (in Chinese with English abstract) [43] Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K R, Marsch-Martinez N, Pereira A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Nat Aca Sci USA, 2007, 104: 15270–15275 [44] Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H J, Rosenkranz R, Peterh?nsel C. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol, 2007, 25: 593–599 [45] Abebe T, Guenzi A C, Martin B, Cushman J C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol, 2003, 131: 1748–1755 [46] Daloso D M, Anjos L, Fernie A R. Roles of sucrose in guard cell regulation. New Phytol, 2016, 211: 809 [47] Granot D, Lugassi N, Kottapalli J, Kelly G. Sensing sugar and saving water. Proc Environ Sci, 2015, 29: 3 [48] Griffiths C A, Sagar R, Geng Y, Primavesi L F, Patel M K, Passarelli M K, Davis B G. Chemical intervention in plant sugar signaling increases yield and resilience. Nature, 2016, 540: 574–578 [49] Corpas F J, Barroso J B. Peroxisomal plant metabolism–an update on nitric oxide, Ca2+ and the NADPH recycling network. J Cell Sci, 2017, jcs. 202978. [50] Furuichi T, Cunningham K W, Muto S. A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol, 2001, 42: 900–905 [51] Li Z Y, Xu Z S, Chen Y, He G Y, Yang G X, Chen M, Ma Y Z. A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development. PLoS One, 2013, 8: e56412 [52] Batistic O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta, 2009, 1790: 985–992 [53]T ominaga M, Harada A, Kinoshita T, Shimazaki K. Biochemical characterization of calcineurin B-like-interacting protein kinase in Vicia guard cells. Plant Cell Physiol, 2010, 51: 408–421 [54] Mao J, Manik S M, Shi S, Chao J, Jin Y, Wang Q, Liu H. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana. Genes, 2016, 7: 62 [55] Li J, Long Y, Qi G N, Xu Z J, Wu W H, Wang Y. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell, 2014, 26: 3387-3402. [56] Kudahettige N P, Pucciariello C, Parlanti S, Alpi A, Perata P. Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of α-amylase production in flooded rice plants. Plant Biol, 2011, 13: 611–619.
[1] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[2] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[3] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[4] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[5] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050.
[6] 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159.
[7] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[8] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[9] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[10] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746.
[11] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[12] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[13] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[14] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[15] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!