欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2562-2571.doi: 10.3724/SP.J.1006.2023.22047

• 耕作栽培·生理生化 • 上一篇    下一篇

土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响

徐高峰1,2(), 申时才1,2, 张付斗1,2,*(), 杨韶松1,2, 金桂梅1,2, 郑凤萍1,2, 温丽娜1,2, 张云3,*(), 吴冉迪1,4   

  1. 1云南省农业科学院农业环境资源研究所, 云南昆明 650205
    2共建澜湄农业生物安全联合研究中心, 云南昆明 650205
    3云南省农业科学院生物技术与种质资源研究所, 云南昆明 650205
    4昆明学院农学与生命科学学院, 云南昆明 650205
  • 收稿日期:2022-08-11 接受日期:2023-02-21 出版日期:2023-09-12 网络出版日期:2023-03-16
  • 通讯作者: *张付斗, E-mail: fdzh@vip.sina.com; 张云, E-mail: zhangyun507@163.com
  • 作者简介:徐高峰, E-mail: xugaofeng1059@163.com
  • 基金资助:
    国家自然科学基金项目(31960544);国家自然科学基金项目(31860511);云南省技术创新人才项目(202105AD160021);国家重点研发计划项目(2021YFC2600400);云南省重大专项项目(202102AE090003)

Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants

XU Gao-Feng1,2(), SHEN Shi-Cai1,2, ZHANG Fu-Dou1,2,*(), YANG Shao-Song1,2, JIN Gui-Mei1,2, ZHENG Feng-Ping1,2, WEN Li-Na1,2, ZHANG Yun3,*(), WU Ran-Di1,4   

  1. 1Institute of Agricultural Environment and Resources Research, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
    2Yunnan Lancang-Mekong Agricultural Bio-Security International Science and Technology Cooperation Joint Research Center, Kunming 650205, Yunnan, China
    3Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
    4College of Agronomy and Life Sciences, Kunming University, Kunming 650205, Yunnan, China
  • Received:2022-08-11 Accepted:2023-02-21 Published:2023-09-12 Published online:2023-03-16
  • Supported by:
    National Natural Science Foundation of China(31960544);National Natural Science Foundation of China(31860511);Technological Innovation Talent Plan of Yunnan Province(202105AD160021);National Key Research and Development Program of China(2021YFC2600400);Special Funds of Major Science and Technology Project in Yunnan Province(202102AE090003)

摘要:

明确土壤微生物对化感作物田间抑草作用的影响及其机制, 对农田杂草绿色防控具有重要意义。长雄野生稻(Oryza longistaminata)是培育化感水稻的优良抗原, 然而目前尚不清楚土壤微生物对该野生稻及其后代化感抑草作用的影响。本试验以非化感亚洲栽培稻(RD23)作为参照, 通过温室盆栽试验对比研究了土壤微生物对长雄野生稻及其中化感潜力后代(RL169)的抑草效应, 并分析了与其共培稗草的根际土壤微生物群落结构特征和对稗草养分吸收与利用的影响。结果表明: 1) 土壤微生物显著增强了长雄野生稻及其化感后代(RL169)的抑草效应(P<0.05), 而对非化感亚洲栽培稻(RD23)则无明显影响; 方差分析表明, 土壤微生物、根系分泌物和不同化感潜力水稻互作(土壤微生物×根系分泌物×不同化感潜力水稻)对稗草的株高、根长和生物量具有显著影响(P<0.05)。2) 长雄野生稻及其化感后代(RL169)改变了稗草根际土壤微生物的群落结构, 降低了稗草根际土壤细菌的多样性水平和丰富度, 与其共培稗草的根际细菌在科、属和种水平的数量显著低于非化感亚洲栽培稻(RD23)处理组(P<0.05)。3) 长雄野生稻及其化感后代(RL169)显著降低了共培稗草对N、P和K营养元素的吸收与利用, 且在土壤微生物作用下, 长雄野生稻处理组稗草对N和P的吸收和中化感潜力水稻(RL169)处理组稗草对N的吸收显著降低; 方差分析也显示, 土壤微生物和不同化感潜力水稻极显著或显著影响稗草对N元素(P<0.01)或K元素(P<0.05)的吸收, 但对P元素的吸收却无显著影响; 另外, 稗草养分的利用仅受到不同化感潜力水稻的显著影响(P<0.05)。综上所述, 长雄野生稻及其化感后代(RL169)改变了稗草根际土壤细菌的群落结构, 降低了其对营养元素N、P和K的吸收和利用, 其化感抑草效应在土壤微生物的作用下被显著提高。本研究结果对进一步认清土壤微生物对水稻化感作用的影响以及对野生种质资源的开发利用均具有重要意义。

关键词: 水稻化感作用, 根际土壤, 土壤微生物多样性, 化感抑草效应, 养分的吸收与利用

Abstract:

Soil microbes may affect weed inhibitory effects of allelopathic crops that it is great significant to understand their causes and mechanisms for green ecological management of weeds in paddy fields. Oryza longistaminata (OL), a wild rice with strong allelopathic potential, is excellent cultivars for breeding allelopathic rice. However, the effect of soil microbes on allelopathy of this wild rice and its descendants is still unclear. In this study, the allelopathic effects of two allelopathic rice genotypes (OL and its descendant-RL169) and non-allelopathic Asian cultivated rice cultivar (RD23) affected by soil microbes on barnyardgrass were studied, and characteristics of rhizosphere soil microbes, and absorption and utilization of nutrients of barnyardgrass were analyzed. The results showed that: 1) Soil microbes significantly increased weed suppression of wild rice (OL) and its descendants (RL169) (P < 0.05) and had no significant effect on RD23. Multivariate analysis of variance showed that plant height, root length and biomass of barnyardgrass were significantly increased with interaction of soil microbes, root exudates and different allelopathic rice genotypes (P < 0.05). 2) Wild rice (OL) and its descendants (RL169) changed soil microbe community structure, reduced diversity and richness of bacteria in barnyardgrass rhizosphere soils, which the number of bacteria was significantly lower than that of RD23 at the family, genus and species levels (P < 0.05). 3) Soil microbes significantly reduced absorption and utilization of N, P and K of barnyardgrass which co-cultured with wild rice and its descendants (RL169). In the presence of soil microbes, the absorption of N and P of barnyardgrass which co-cultured with wild rice(OL) and the absorption of N of barnyardgrass which co-cultured with rice genotypes (RL169) were significantly reduced. Multivariate analysis of variance revealed that soil microbes and allelopathic rice genotypes significantly affected N (P < 0.01) or K (P < 0.05) absorption of barnyardgrass and had no significant effect on P absorption; but nutrient utilization of barnyardgrass was only obviously affected by allelopathic rice genotypes (P < 0.05). In conclusion, the allelopathic suppression of wild rice (OL) and its descendants (RL169) was significantly improved through soil microbe community structure changing of barnyardgrass rhizosphere soils and nutrient absorption and utilization (N, P, and K) reducing of barnyardgrass. Our study could increase further understanding of effect of soil microbes on rice allelopathy and provide a theoretical basis for the development and utilization of wild rice germplasm resources.

Key words: rice allelopathy, rhizospheric soil, soil microbial diversity, allelopathic weed suppression, nutrient absorption and utilization

图1

不同化感潜力水稻在不同土壤处理条件下对稗草的株高、根长和生物量的影响 图A、B和C分别表示稗草在不同条件下的株高、根长和生物量; 图中小写字母表示在0.05概率水平显著性比较, 小写字母不同表示差异显著; 图中RE × SM表示根系分泌物 × 土壤微生物; RE × NSM表示仅有根系分泌物; NRE × SM表示仅有土壤微生物; NRE × NSM表示即无根系分泌物, 又无土壤微生物。"

表1

不同因子对稗草生长的影响多因素方差分析"

稗草生长
Barnyardgrass growth
影响因子
Factor
自由度
DF
均方
MS
F
F-value
P
P-value
株高
Height
A 1 44.8533 27.3844 0.0001
B 1 3.7408 2.2839 0.1395
C 2 11.7475 7.1722 0.0024
A × B 1 3.0000 1.8316 0.1844
A × C 2 11.4008 6.9606 0.0028
B × C 2 1.1658 0.7118 0.4975
A × B× C 2 6.8125 6.4961 0.0130
根长
Root length
A 1 30.4008 37.1560 0.0001
B 1 1.9200 2.3466 0.1343
C 2 11.4494 13.9935 0.0001
A×B 1 0.6075 0.7425 0.3946
A×C 2 9.7627 11.9320 0.0001
B×C 2 0.3194 0.3903 0.6797
A × B× C 2 6.6869 6.8395 0.0402
生物量
Biomass
A 2 5808.0000 128.4324 0.0001
B 2 132.0000 2.9480 0.0638
C 2 3892.0000 86.0639 0.0001
A×B 4 133.3333 2.9484 0.0946
A×C 4 1524.0000 33.7002 0.0001
B×C 4 156.0000 3.4496 0.0626
A × B× C 8 633.3333 49.5528 0.0152

表2

不同化感潜力水稻在不同土壤条件下的抑草能力"

土壤处理
Soil treatment
综合抑制率Synthetic inhibitory effect (IRSE)
长雄野生稻
Oryza longistaminata
中化感潜力后代RL169
Medium allelopathic potential descendant of RL169
亚洲栽培稻RD23
Asian cultivated rice of RD23
RE × SM 65.30±2.21 a 47.45±2.16 a 27.06±3.06 a
RE × NSM 49.73±1.41 b 42.04±3.72 a 26.21±1.55 a
NRE × SM 27.20±1.96 c 31.24±1.47 b 24.86±1.15 a
NRE × NSM 25.63±1.78 c 29.96±0.95 b 23.65±1.33 a

图2

不同化感潜力水稻对稗草根际土壤微生物群落结构的影响 和图B分别表示不同化感潜力水稻对稗草根际不同分类单元细菌的数量和土壤微生物群落结构的影响。"

图3

不同化感潜力水稻对稗草根际土壤微生物生物多样性指数的影响"

表3

不同化感潜力水稻在不同土壤条件下对稗草养分吸收和利用的影响"

营养元素
Nutrient
土壤处理
Soil treatment
长雄野生稻
Oryza longistaminata
中化感潜力后代RL169
Medium allelopathic potential
descendant of RL169
亚洲栽培稻RD23
Asian cultivated rice of RD23
养分吸收率
UPE (mg)
养分利用率
NUE (%)
养分吸收率
UPE (mg plant-1)
养分利用率
NUE (%)
养分吸收率
UPE (mg)
养分利用率
NUE (%)
N 未灭菌SNS 1.03±0.07 Cc 35.37±2.28 Cb 1.48±0.09 Bc 42.64±3.51 Bb 2.14±0.07 Aa 47.39±2.14 Aab
灭菌SS 1.54±0.05 Cb 36.59±3.16 Cb 1.79±0.07 Bb 43.31±1.23 Bb 2.21±0.13 Aa 48.69±2.95 Aab
对照CK 2.31±0.11 Aa 56.49±3.27 Aa 2.31±0.11 Aa 56.49±3.27 Aa 2.31±0.11 Aa 56.49±3.27 Aa
P 未灭菌SNS 0.67±0.05 Cc 71.41±1.57 Cb 0.98±0.07 Bb 78.64±1.35 Bb 1.21±0.05 Aa 84.65±3.58 Aa
灭菌SS 1.08±0.10 Bb 72.63±1.08 Cb 1.04±0.08 Bb 79.26±4.67 Bb 1.29±0.07 Aa 85.19±4.03 Aa
对照CK 1.34±0.07 Aa 94.18±2.36 Aa 1.34±0.07 Aa 94.18±2.36 Aa 1.34±0.07 Aa 94.18±2.36 Aa
K 未灭菌SNS 0.14±0.02 Bb 276.45±7.91 Cb 0.19±0.05 Bb 289.35±13.72 Bb 0.31±0.04 Aa 324.92±6.52 Aab
灭菌SS 0.23±0.03 Bb 278.37±4.93 Cb 0.26±0.03 Bab 291.39±3.09 Bb 0.35±0.05 Aa 325.58±8.69 Aab
对照CK 0.39±0.04 Aa 358.19±8.58Aa 0.39±0.04 Aa 358.19±8.58 Aa 0.39±0.04 Aa 358.19±8.58 Aa

表4

不同因子对稗草养分吸收和利用的影响多因素分析"

养分吸收与利用
Nutrient absorption and utilization
影响因子
Factor
自由度
DF
均方
MS
F
F-value
P
P-value
N (UPE) A 1 0.4902 19.5480 0.0003
B 2 1.6410 65.4400 0.0001
A×B 2 0.1848 13.3800 0.0067
P (UPE) A 1 0.1962 2.5360 0.2523
B 2 0.2835 3.6640 0.2144
A×B 2 0.0774 3.5380 0.0506
K (UPE) A 1 0.0280 5.1460 0.0358
B 2 0.0468 8.6030 0.0024
A×B 2 0.0011 0.1980 0.8220
N (NUE) A 1 5.6438 0.2260 0.6399
B 2 282.8473 11.3490 0.0006
A×B 2 0.0928 0.0040 0.9963
P (NUE) A 1 5.5129 21.4400 0.0436
B 2 335.1219 1303.3060 0.0008
A×B 2 0.2571 0.0070 0.9932
K (NUE) A 1 14.3586 0.0530 0.8198
B 2 4873.0003 18.1430 0.0001
A×B 2 1.0096 0.0040 0.9962
[1] Heap I. Global perspective of herbicide-resistant weeds. Pest Manag Sci, 2014, 70: 1306-1315.
doi: 10.1002/ps.3696 pmid: 24302673
[2] Chen G Q, Wang Q, Yao Z W, Zhu L F, Dong L Y. Penoxsulam-resistant barnyardgrass (Echinochloa crus-galli) in rice fields in China. Weed Biol Manag, 2016, 16: 16-23.
doi: 10.1111/wbm.2016.16.issue-1
[3] Kong C H, Hu F, Wang P, Wu J L. Effects of allelopathic rice varieties combined with cultural management options on paddy field weeds. Pest Manag Sci, 2008, 64: 276-282.
doi: 10.1002/(ISSN)1526-4998
[4] 郭怡卿, 张付斗, 陶大云, 余柳青. 野生稻化感抗(耐)稗草种质资源的初步研究. 西南农业学报, 2014, 17(3): 295-298.
Guo Y Q, Zhang F D, Tao D Y, Yu L Q. A preliminary study on the allelopathic activity of wild rice germplasm. Southwest Chin J Agric Sci, 2014, 17(3): 295-298. (in Chinese with English abstract)
[5] Khanh T D, Xuan T D, Chung M I. Rice allelopathy and the possibility for weed management. Ann Appl Biol, 2007, 151: 325-339.
doi: 10.1111/aab.2007.151.issue-3
[6] Kong C H, Xu X H, Wang P, Zhao H, Gu Y. Activity and allelopathy of soil of flavone O-glycosides from rice. J Agric Food Chem, 2007, 55: 6007-6012.
doi: 10.1021/jf0703912
[7] 林文雄. 水稻化感抑草作用的根际生物学特性与研究展望. 作物学报, 2013, 39: 951-960.
doi: 10.3724/SP.J.1006.2013.00951
Lin W X. Rhizobiological properties of allelopathic rice in suppression of weeds and its research prospect. Acta Agron Sin, 2013, 39: 951-960. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00951
[8] Wu L K, Wang H B, Zhang Z X, Lin R, Zhang Z Y, Lin W X. Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS One, 2011, 6: e20611.
doi: 10.1371/journal.pone.0020611
[9] 李秋玲, 肖辉林. 土壤性质及生物化学因素与植物化感作用的相互影响. 生态环境学报, 2012, 21: 2013-2036.
Li Q L, Xiao H L. The interactions of soil properties and biochemical factors with plant allelopathy. J Ecol Environ Sci, 2012, 21: 2031-2036. (in Chinese with English abstract)
[10] Zhu X, Zhang J, Ma K. Soil biota reduce allelopathic effects of the invasive Eupatorium adenophorum. PLoS One, 2011, 6: e25393.
doi: 10.1371/journal.pone.0025393
[11] 孔垂华, 徐效华, 梁文举, 周勇军, 胡飞. 水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性. 生态学报, 2004, 24: 1317-1322.
Kong C H, Xu X H, Liang W J, Zhou Y J, Hu F. Non-phenolic allelochemicals in root exudates of an allelopathic rice variety and their identification and weed-suppressive activity. Acta Ecol Sin, 2004, 24: 1317-1322. (in Chinese with English abstract)
[12] Kong C H, Zhang S Z, Li Y H, Xia Z C, Yang X F, Meiners S J, Wang P. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nat Commun, 2018, 9: 3867.
doi: 10.1038/s41467-018-06429-1
[13] 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 2010, 34: 979-988.
doi: 10.3773/j.issn.1005-264x.2010.08.011
Jiang Q, Song M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chin J Plant Ecol, 2010, 34: 979-988. (in Chinese with English abstract)
doi: 10.3773/j.issn.1005-264x.2010.08.011
[14] Guo Y Q, Zhang F D, Tao D Y, Yu L Q, David G. Preliminary studies on the allelopathic potential of wild rice (Oryza) germplasm. Allelopathy, 2005, 15: 13-19.
[15] 张付斗, 郭怡卿, 余柳青, 陶大云. 野生稻和非洲栽培稻抗稗草种质资源筛选和评价. 作物学报, 2014, 30: 1144-1148.
Zhang F D, Guo Y Q, Yu L Q, Tao D Y. Evaluation and screening of resistance to barnyardgrass in germplasm of wild rice (Oryza sativa) and African cultivar. Acta Agron Sin, 2014, 30: 1144-1148. (in Chinese with English abstract)
doi: 10.3724/SP.J.1095.2013.20557
[16] 张付斗, 郭怡卿, 余柳青. 水稻对稗草化感作用的生物测定. 华中农业大学学报, 2004, 23(2): 203-207.
Zhang F D, Guo Y Q, Yu L Q. The study on bioassay for rice allelopathy to barnyardgrass. J Huazhong Agric Univ, 2004, 23(2): 203-207.
[17] 徐高峰, 申时才, 张付斗, 张玉华. 长雄野生稻及其后代抑草效果与化感潜力和农艺性状的关系. 中国生态农业学报, 2014, 22: 1348-1356.
Xu G F, Shen S C, Zhang F D, Zhang Y H. Relationships among weed suppression effect, allelopathy and agronomic characteristics of Oryza longistaminata and related descendants. Chin J Eco- Agric, 2014, 22: 1348-1356. (in Chinese with English abstract)
[18] Xu G F, Shen S C, Zhang F D, Zhang Y, Kato-Noguchi H, David R C. Relationship between allelopathic effects and functional traits of different allelopathic potential rice accessions at different growth stages. Rice Sci, 2018, 25: 32-41.
doi: 10.1016/j.rsci.2017.09.001
[19] 刘春生, 杨守祥. 农业化学分析. 北京: 中国农业出版社, 1996, pp 8-60.
Liu C S, Yang S X. The Methods of Agrochemical Analysis. Beijing: China Agriculture Press, 1996. pp 8-60. (in Chinese)
[20] Rice E L. Allelopathy. Orlando, FL, USA: Academic Press, 1984.
[21] Williamson G B. Richardson D. Bioassays for allelopathy: measuring treatment responses within independent controls. J Chem Ecol, 1989, 14: 181-187.
doi: 10.1007/BF01022540
[22] 徐高峰, 申时才, 张付斗, 张玉华. 温度对不同叶龄长雄野生稻及其后代化感作用的影响. 中国水稻科学, 2016, 30: 559-566.
doi: 10.16819/j.1001-7216.2016.5158
Xu G F, Shen S C, Zhang F D, Zhang Y H. Allelopathic response to different temperature conditions of wild rice (Oryza longistaminata) and its descendants. Chin J Rice Sci, 2016, 30: 559-566. (in Chinese with English abstract)
[23] Chandramohan D, Purushothaman D, Kothandaraman R. Soil phenolics and plant growth inhibition. Plant Soil, 1973, 39: 303-308.
doi: 10.1007/BF00014797
[24] Putnam A R, Duke W B. Biological suppression of weeds: evidence for allelopathy in accessions of cucumber. Science, 1974, 185: 370-372.
pmid: 17794306
[25] 俞慎, 何振立, 黄昌勇. 重金属胁迫下土壤微生物和微生物过程研究进展. 应用生态学报, 2003, 14: 618-622.
Yu S, He Z L, Huang C Y. Advances in the research of soil microorganisms and their mediated processes under heavy metal stress. Chin J Appl Ecol, 2003, 14: 618-622. (in Chinese with English abstract)
[26] 陈良生. 低磷对化感水稻根际微生物多样性的影响. 福建农林大学硕士学位论文, 福建福州, 2011.
Chen L S. Impact of Lower Phosphorus Supplies on Rhizospheric Microbial Diversity of Different Allelopathic Rice. MS Thesis of Fujian A&F University, Fuzhou, Fujian, China, 2011. (in Chinese with English abstract)
[27] 熊君, 林辉锋, 李振方, 方长旬, 韩庆典, 林文雄. 旱直播条件下强弱化感潜力水稻根际微生物的群落结构. 生态学报, 2012, 32: 6100-6109.
Xiong J, Lin H F, Li Z F, Fang C X, Han Q D, Lin W X. Analysis of rhizosphere microbial community structure of weak and strong allelopathic rice varieties under dry paddy field. Acta Ecol Sin, 2012, 32: 6100-6109. (in Chinese with English abstract)
[1] 陈鸿飞,庞晓敏,张仁,张志兴,徐倩华,方长旬,李经勇,林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响[J]. 作物学报, 2017, 43(10): 1507-1517.
[2] 涂勇,杨文钰,刘卫国,雍太文,江连强,王小春. 大豆与烤烟不同套作年限对根际土壤微生物数量的影响[J]. 作物学报, 2015, 41(05): 733-742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .