作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2562-2571.doi: 10.3724/SP.J.1006.2023.22047
徐高峰1,2(), 申时才1,2, 张付斗1,2,*(), 杨韶松1,2, 金桂梅1,2, 郑凤萍1,2, 温丽娜1,2, 张云3,*(), 吴冉迪1,4
XU Gao-Feng1,2(), SHEN Shi-Cai1,2, ZHANG Fu-Dou1,2,*(), YANG Shao-Song1,2, JIN Gui-Mei1,2, ZHENG Feng-Ping1,2, WEN Li-Na1,2, ZHANG Yun3,*(), WU Ran-Di1,4
摘要:
明确土壤微生物对化感作物田间抑草作用的影响及其机制, 对农田杂草绿色防控具有重要意义。长雄野生稻(Oryza longistaminata)是培育化感水稻的优良抗原, 然而目前尚不清楚土壤微生物对该野生稻及其后代化感抑草作用的影响。本试验以非化感亚洲栽培稻(RD23)作为参照, 通过温室盆栽试验对比研究了土壤微生物对长雄野生稻及其中化感潜力后代(RL169)的抑草效应, 并分析了与其共培稗草的根际土壤微生物群落结构特征和对稗草养分吸收与利用的影响。结果表明: 1) 土壤微生物显著增强了长雄野生稻及其化感后代(RL169)的抑草效应(P<0.05), 而对非化感亚洲栽培稻(RD23)则无明显影响; 方差分析表明, 土壤微生物、根系分泌物和不同化感潜力水稻互作(土壤微生物×根系分泌物×不同化感潜力水稻)对稗草的株高、根长和生物量具有显著影响(P<0.05)。2) 长雄野生稻及其化感后代(RL169)改变了稗草根际土壤微生物的群落结构, 降低了稗草根际土壤细菌的多样性水平和丰富度, 与其共培稗草的根际细菌在科、属和种水平的数量显著低于非化感亚洲栽培稻(RD23)处理组(P<0.05)。3) 长雄野生稻及其化感后代(RL169)显著降低了共培稗草对N、P和K营养元素的吸收与利用, 且在土壤微生物作用下, 长雄野生稻处理组稗草对N和P的吸收和中化感潜力水稻(RL169)处理组稗草对N的吸收显著降低; 方差分析也显示, 土壤微生物和不同化感潜力水稻极显著或显著影响稗草对N元素(P<0.01)或K元素(P<0.05)的吸收, 但对P元素的吸收却无显著影响; 另外, 稗草养分的利用仅受到不同化感潜力水稻的显著影响(P<0.05)。综上所述, 长雄野生稻及其化感后代(RL169)改变了稗草根际土壤细菌的群落结构, 降低了其对营养元素N、P和K的吸收和利用, 其化感抑草效应在土壤微生物的作用下被显著提高。本研究结果对进一步认清土壤微生物对水稻化感作用的影响以及对野生种质资源的开发利用均具有重要意义。
[1] |
Heap I. Global perspective of herbicide-resistant weeds. Pest Manag Sci, 2014, 70: 1306-1315.
doi: 10.1002/ps.3696 pmid: 24302673 |
[2] |
Chen G Q, Wang Q, Yao Z W, Zhu L F, Dong L Y. Penoxsulam-resistant barnyardgrass (Echinochloa crus-galli) in rice fields in China. Weed Biol Manag, 2016, 16: 16-23.
doi: 10.1111/wbm.2016.16.issue-1 |
[3] |
Kong C H, Hu F, Wang P, Wu J L. Effects of allelopathic rice varieties combined with cultural management options on paddy field weeds. Pest Manag Sci, 2008, 64: 276-282.
doi: 10.1002/(ISSN)1526-4998 |
[4] | 郭怡卿, 张付斗, 陶大云, 余柳青. 野生稻化感抗(耐)稗草种质资源的初步研究. 西南农业学报, 2014, 17(3): 295-298. |
Guo Y Q, Zhang F D, Tao D Y, Yu L Q. A preliminary study on the allelopathic activity of wild rice germplasm. Southwest Chin J Agric Sci, 2014, 17(3): 295-298. (in Chinese with English abstract) | |
[5] |
Khanh T D, Xuan T D, Chung M I. Rice allelopathy and the possibility for weed management. Ann Appl Biol, 2007, 151: 325-339.
doi: 10.1111/aab.2007.151.issue-3 |
[6] |
Kong C H, Xu X H, Wang P, Zhao H, Gu Y. Activity and allelopathy of soil of flavone O-glycosides from rice. J Agric Food Chem, 2007, 55: 6007-6012.
doi: 10.1021/jf0703912 |
[7] |
林文雄. 水稻化感抑草作用的根际生物学特性与研究展望. 作物学报, 2013, 39: 951-960.
doi: 10.3724/SP.J.1006.2013.00951 |
Lin W X. Rhizobiological properties of allelopathic rice in suppression of weeds and its research prospect. Acta Agron Sin, 2013, 39: 951-960. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00951 |
|
[8] |
Wu L K, Wang H B, Zhang Z X, Lin R, Zhang Z Y, Lin W X. Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS One, 2011, 6: e20611.
doi: 10.1371/journal.pone.0020611 |
[9] | 李秋玲, 肖辉林. 土壤性质及生物化学因素与植物化感作用的相互影响. 生态环境学报, 2012, 21: 2013-2036. |
Li Q L, Xiao H L. The interactions of soil properties and biochemical factors with plant allelopathy. J Ecol Environ Sci, 2012, 21: 2031-2036. (in Chinese with English abstract) | |
[10] |
Zhu X, Zhang J, Ma K. Soil biota reduce allelopathic effects of the invasive Eupatorium adenophorum. PLoS One, 2011, 6: e25393.
doi: 10.1371/journal.pone.0025393 |
[11] | 孔垂华, 徐效华, 梁文举, 周勇军, 胡飞. 水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性. 生态学报, 2004, 24: 1317-1322. |
Kong C H, Xu X H, Liang W J, Zhou Y J, Hu F. Non-phenolic allelochemicals in root exudates of an allelopathic rice variety and their identification and weed-suppressive activity. Acta Ecol Sin, 2004, 24: 1317-1322. (in Chinese with English abstract) | |
[12] |
Kong C H, Zhang S Z, Li Y H, Xia Z C, Yang X F, Meiners S J, Wang P. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nat Commun, 2018, 9: 3867.
doi: 10.1038/s41467-018-06429-1 |
[13] |
蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 2010, 34: 979-988.
doi: 10.3773/j.issn.1005-264x.2010.08.011 |
Jiang Q, Song M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chin J Plant Ecol, 2010, 34: 979-988. (in Chinese with English abstract)
doi: 10.3773/j.issn.1005-264x.2010.08.011 |
|
[14] | Guo Y Q, Zhang F D, Tao D Y, Yu L Q, David G. Preliminary studies on the allelopathic potential of wild rice (Oryza) germplasm. Allelopathy, 2005, 15: 13-19. |
[15] | 张付斗, 郭怡卿, 余柳青, 陶大云. 野生稻和非洲栽培稻抗稗草种质资源筛选和评价. 作物学报, 2014, 30: 1144-1148. |
Zhang F D, Guo Y Q, Yu L Q, Tao D Y. Evaluation and screening of resistance to barnyardgrass in germplasm of wild rice (Oryza sativa) and African cultivar. Acta Agron Sin, 2014, 30: 1144-1148. (in Chinese with English abstract)
doi: 10.3724/SP.J.1095.2013.20557 |
|
[16] | 张付斗, 郭怡卿, 余柳青. 水稻对稗草化感作用的生物测定. 华中农业大学学报, 2004, 23(2): 203-207. |
Zhang F D, Guo Y Q, Yu L Q. The study on bioassay for rice allelopathy to barnyardgrass. J Huazhong Agric Univ, 2004, 23(2): 203-207. | |
[17] | 徐高峰, 申时才, 张付斗, 张玉华. 长雄野生稻及其后代抑草效果与化感潜力和农艺性状的关系. 中国生态农业学报, 2014, 22: 1348-1356. |
Xu G F, Shen S C, Zhang F D, Zhang Y H. Relationships among weed suppression effect, allelopathy and agronomic characteristics of Oryza longistaminata and related descendants. Chin J Eco- Agric, 2014, 22: 1348-1356. (in Chinese with English abstract) | |
[18] |
Xu G F, Shen S C, Zhang F D, Zhang Y, Kato-Noguchi H, David R C. Relationship between allelopathic effects and functional traits of different allelopathic potential rice accessions at different growth stages. Rice Sci, 2018, 25: 32-41.
doi: 10.1016/j.rsci.2017.09.001 |
[19] | 刘春生, 杨守祥. 农业化学分析. 北京: 中国农业出版社, 1996, pp 8-60. |
Liu C S, Yang S X. The Methods of Agrochemical Analysis. Beijing: China Agriculture Press, 1996. pp 8-60. (in Chinese) | |
[20] | Rice E L. Allelopathy. Orlando, FL, USA: Academic Press, 1984. |
[21] |
Williamson G B. Richardson D. Bioassays for allelopathy: measuring treatment responses within independent controls. J Chem Ecol, 1989, 14: 181-187.
doi: 10.1007/BF01022540 |
[22] |
徐高峰, 申时才, 张付斗, 张玉华. 温度对不同叶龄长雄野生稻及其后代化感作用的影响. 中国水稻科学, 2016, 30: 559-566.
doi: 10.16819/j.1001-7216.2016.5158 |
Xu G F, Shen S C, Zhang F D, Zhang Y H. Allelopathic response to different temperature conditions of wild rice (Oryza longistaminata) and its descendants. Chin J Rice Sci, 2016, 30: 559-566. (in Chinese with English abstract) | |
[23] |
Chandramohan D, Purushothaman D, Kothandaraman R. Soil phenolics and plant growth inhibition. Plant Soil, 1973, 39: 303-308.
doi: 10.1007/BF00014797 |
[24] |
Putnam A R, Duke W B. Biological suppression of weeds: evidence for allelopathy in accessions of cucumber. Science, 1974, 185: 370-372.
pmid: 17794306 |
[25] | 俞慎, 何振立, 黄昌勇. 重金属胁迫下土壤微生物和微生物过程研究进展. 应用生态学报, 2003, 14: 618-622. |
Yu S, He Z L, Huang C Y. Advances in the research of soil microorganisms and their mediated processes under heavy metal stress. Chin J Appl Ecol, 2003, 14: 618-622. (in Chinese with English abstract) | |
[26] | 陈良生. 低磷对化感水稻根际微生物多样性的影响. 福建农林大学硕士学位论文, 福建福州, 2011. |
Chen L S. Impact of Lower Phosphorus Supplies on Rhizospheric Microbial Diversity of Different Allelopathic Rice. MS Thesis of Fujian A&F University, Fuzhou, Fujian, China, 2011. (in Chinese with English abstract) | |
[27] | 熊君, 林辉锋, 李振方, 方长旬, 韩庆典, 林文雄. 旱直播条件下强弱化感潜力水稻根际微生物的群落结构. 生态学报, 2012, 32: 6100-6109. |
Xiong J, Lin H F, Li Z F, Fang C X, Han Q D, Lin W X. Analysis of rhizosphere microbial community structure of weak and strong allelopathic rice varieties under dry paddy field. Acta Ecol Sin, 2012, 32: 6100-6109. (in Chinese with English abstract) |
[1] | 陈鸿飞,庞晓敏,张仁,张志兴,徐倩华,方长旬,李经勇,林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响[J]. 作物学报, 2017, 43(10): 1507-1517. |
[2] | 涂勇,杨文钰,刘卫国,雍太文,江连强,王小春. 大豆与烤烟不同套作年限对根际土壤微生物数量的影响[J]. 作物学报, 2015, 41(05): 733-742. |
|