作物学报 ›› 2018, Vol. 44 ›› Issue (01): 75-81.doi: 10.3724/SP.J.1006.2018.000075
罗云,马璇,谷俊辰,闫海芳*
LUO Yun, MA Xuan, GU Jun-Chen,YAN Hai-Fang*
摘要:
SIZ1是植物细胞蛋白质翻译后修饰SUMO化的E3连接酶,参与植物蛋白相互作用、定位和抗逆反应等。为研究BrSIZ1在津田芜菁中的表达特性,本研究克隆了津田芜菁SIZ1基因全长cDNA序列,命名为BrSIZ1 (GenBank登录号为KY441465),该基因全长2754 bp,其ORF全长2571 bp,编码856个氨基酸残基的多肽。构建了BrSIZ1-GFP表达载体进行亚细胞定位研究,结果显示BrSIZ1-GFP定位于细胞核内,可能在细胞核中发挥其功能。利用荧光定量PCR检测表明,该基因表达量在叶子中最高,幼苗和红色根皮中次之,表达具有组织特异性。而且BrSIZ1在芜菁根皮中的表达受长波紫外线(UV-A)诱导,在4°C、37°C胁迫的幼苗中,表达量增加。
[1] Girdwood D W H, Tatham M H, Hay R T. SUMO and transcriptional regulation. Semin Cell Biol, 2004, 15: 201–210 [2] Johnson E S. Proteion modification by SUMO. Annu Rev Biochem, 2004, 73: 355–382 [3] Novatchkova M, Budhiraja R. Coupland G. SUMO conjugation in plants, Planta, 2004, 220: 1–8 [4] Johnson E S, Gupta A A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell, 2001, 106: 735–744 [5] Sharrocks A D. PIAS proteins and transcriptional regulation-more than just SUMO E3 ligases. Genes & Development, 2006, 20: 754–758 [6] Bienz M. The PHD finger, a nuclear protein-interaction domain. Trends in biochemical sciences, 2006, 31: 35–40 [7] Aravind L, Koon E V. SAP—a putative DNA-binding motif involved in chromosomal organization. Trend Biochem Sci, 2000, 25: 112–114 [8] Miura K, Jin J B, Hasegawa P M. Sumoylation, a post-translational regulatory process in plante. Curr Opin Plant Biol, 2007, 10: 495–502 [9] Huang L X, Yang S G, Zhang S C. The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J, 2009, 60: 666–678 [10] Jin J B, Jin Y H, Lee J. The SUMO E3 ligase AtS1Z1 regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J, 2008, 53: 530–540 [11] Thangasamy S, Guo C L, Chuang M H, Lai M H, Chen J, Jauh G Y. Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytologist, 2011, 189: 869–882 [12] Kurepa J, Walker J M, Smalle J. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis – Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem, 2003, 278: 6862–6872 [13] Lee J Y, Nam J, Park H C, Na G. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J, 2007, 49: 79–90 [14] Miura K, Jin J B, Lee J, Yoo C Y, Stirm T, Ashworth E N, Bressan R A, Yun D J, Hasegawa P M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis.Plant Cell, 2007, 19: 1403–1414 [15] Yoo C Y, Miura K, Jin J B. SIZ1 (small ubiquitin-like modifi er) E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol, 2006, 142:1548–1558 [16] Catala R, Ouyang J, Abreu I A. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell, 2007, 19: 2952–2966 [17] Zhang S, Zhuang K, Wang S, Lv J, Ma N N, Meng Q W. A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. JIPB, 2017, doi: 10.1111/jipb.12514 [18] Calderon-Villalobos L I, Nill C, Marrocco K. The evolutionarily conserved Arabidopsis thaliana F-box protein AtFBP7 is required for efficient translation during temperature stress. Gene, 2007, 392: 106–116 [19] Zhou B, Li Y, Xu Z, Yan H, Homma S, Kawabata S. Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J Exp Bot, 2007, 58: 1771–1781 [20] Kawabata S, Kusahara Y, Li Y, Sakiyama R. The regulation of anthocyanin biosynthesis in Eustoma grandiflorum under low light conditions. J Jpn Soc Hort Sci, 1999, 68: 519–526 [21] Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA, 1988, 85: 8998–9002 [22] Zhou B, Zhao X, Kawabata S, Li Y. Transient expression of a foreign gene by direct incorporation of DNA into intact plant tissue through vacuum infiltration. Biotechnol Lett, 2009, 31: 1811–1815 [23] Dingwall C, Robbins J, Dilworth S M, Roberts B, Richardson W D. The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen. J Cell Biol, 1988, 107: 841–849 [24] Liu F, Wang X, Su M Y, Yu M Y, Zhang S C, Lai J B, Yang C W, Wang YQ. Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium. BMC Plant Biology, 2015, 15: 225–239 [25] Huang X, Ouyang X, Deng X W. Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Curr Opin Plant Biol, 2014, 22: 96–103 [26] Lay H A, Sudip C, Ning W, Tokitaka O, Alfred B, Deng X W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell, 1998, 1: 213–222 |
[1] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[2] | 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038. |
[3] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[4] | 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104. |
[5] | 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121. |
[6] | 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170. |
[7] | 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182. |
[8] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[9] | 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707. |
[10] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[11] | 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
[12] | 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495. |
[13] | 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425. |
[14] | 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431. |
[15] | 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954. |
|