欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (01): 63-74.doi: 10.3724/SP.J.1006.2018.00063

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价

余斌1,杨宏羽1,王丽2,刘玉汇1,白江平1,王蒂1,张俊莲1,*   

  1. 1甘肃农业大学农学院 / 甘肃省遗传改良与种质创新重点实验室 / 甘肃省干旱生境作物学国家重点实验室培育基地, 甘肃兰州 730070;2甘肃农业大学生命科学技术学院,甘肃兰州 730070
  • 收稿日期:2017-03-29 修回日期:2017-09-10 出版日期:2018-01-12 网络出版日期:2017-09-28
  • 基金资助:

    本研究由国家国际科技合作与交流专项(2014DFG31570)和国家现代农业产业技术体系建设专项(CARS-10-P18)资助。

Genetic Diversity Analysis and Comprehensive Assessment of Phenotypic Traits in Introduced Potato Germplasm Resources in Arid and Semi-arid Area

YU Bin1,YANG Hong-Yu1,WANG Li2,LIU Yu-Hui1,BAI Jing-Pin1,WANG Di1,ZHANG Jun-Lian1,*   

  1. 1 College of Agronomy, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2017-03-29 Revised:2017-09-10 Published:2018-01-12 Published online:2017-09-28
  • Supported by:

    This study was supported by International Science & Technology Cooperation Program of China (2014DF G31570), China Agriculture Research System (CARS-10-P18).

摘要:

马铃薯种质资源缺乏,适宜干旱半干旱条件下生长的品种更为紧缺,引进马铃薯种质是丰富种质资源的有效途径。本文采用Shannon-Wiener’s多样性指数及综合得分(F值)对119份从秘鲁国际马铃薯中心引进的马铃薯材料的表型性状(出苗率、株高、茎粗、叶面积、生育期、单株结薯数、单株产量、商品率、干物质含量和块茎长宽比)进行遗传多样性分析及综合评价。结果表明,参试材料的10个表型性状中生育期遗传多样性最为丰富;茎粗、叶面积、生育期、单株结薯数、单株产量、商品率、干物质含量、块茎长宽比对马铃薯种质资源表型性状综合值具有显著影响,这些指标可用于旱作条件下对马铃薯种质资源的综合评价;综合得分F值与所测经济性状(单株产量、商品率、干物质)具显著相关性,可作为马铃薯种质资源的主要评价指标;引进材料中CIP393228.67和CIP 385561.124在干旱区,CIP304350.95、CIP392797.22、CIP388615.22在半干旱区分别表现出较好的丰产稳产特性。这些材料综合评价较好,可有效补充中国马铃薯种质资源。

关键词: 马铃薯, 引进种质, 表型性状, 遗传多样性, 综合评价, 干旱半干旱区

Abstract:

In China, potato is a kind of foreign crop lacking germplasm resource,especially the varieties grown in arid and semi-arid areas. Therefore, it is an effective way to rich the germplasm resource by introducing potatoes abroad. In this study, the Shannon-Wiener’s diversity index and comprehensive score (F-value) were used to investigate the genetic diversity of 119 introduced potato clones from Peru International Potato Center about 10 phenotypic traits (emergence rate, plant height, stem diameter, leaf area, growth period, tuber number per plant, yield per plant, commodity rate, dry matter content and tuber length-width ratio). The genetic diversity of growth period was the most abundant among these phenotypic traits in 119 potato clones. Stem diameter, leaf area, growing period, tuber number per plant, yield per plant, commodity rate, dry matter content and tuber length-width ratio had significant effects on comprehensive value of phenotypic traits, and could be used to evaluate the potato germplasm resources on the drought farming. The F-value was significantly correlated with the economic characters (yield per plant, commodity rate and dry matter content), which can be used as the main evaluation index of potato germplasm resources. CIP393228.67 and CIP385561.124 in arid area and CIP304350.95, CIP392797.22, and CIP388615.22 in semi-arid area showed high and stable yield characteristics. These 119 introduced potato clones are rich in genetic diversity with good comprehensive evaluation, they could effectively complement potato germplasm resources and be beneficial to potato breeding in China.

Key words: potato, introduced germplasm, phenotypic traits, genetic diversity, comprehensive assessment, arid and semi-arid area

[1] The potato genome sequencing consortium. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475: 189–195 [2] 谢从华. 马铃薯产业的现状与发展. 华中农业大学学报(社会科学版), 2012, (1): 1–4 Xie C H. Potato industry: status and development. J Huazhong Agric Univ (Soc Sci Edn), 2012, (1): 1–4 (in Chinese with English abstract) [3] 罗其友, 刘洋, 高明杰, 易晓峰. 中国马铃薯产业现状与前景. 农业展望, 2015, 11(3): 35–40 Luo Q Y, Liu Y, Gao M J, Yi X F. Status quo and prospect of China's potato industry. Agric Outlook, 2015, 11(3): 35–40 (in Chinese with English abstract) [4] 孙秀梅. 国外种质资源在我国马铃薯育种中的利用. 中国马铃薯, 2000, 14(2): 110–111 Sun X M. Foreign germplasm utilization for potato breeding in China. China Potato J, 2000, 14(2): 110–111 (in Chinese) [5] 刘喜才, 张丽娟, 孙邦升, 宋继玲. 马铃薯种质资源研究现状与发展对策. 中国马铃薯, 2007, 21(1): 39–41 Liu X C, Zhang L J, Sun B S, Song J L. Research status and development countermeasure of potato germplasm. Chin Potato J, 2007, 21(1): 39–41 (in Chinese) [6] 金光辉. 中国马铃薯主要育成品种的种质资源分析. 中国种业, 1999, (4): 12–13 Jin G H. Germplasm analysis of main potato cultivars in China. Crop Germplasm Res, 1999, (4): 12–13 (in Chinese) [7] 邸宏, 陈伊里, 金黎平. 中国马铃薯部分栽培品种遗传多样性的AFLP分析. 园艺学报, 2006, 33: 1349–1352 Di H, Chen Y L, Jin L P. Genetic diversity analysis of some Chinese cultivated potato varieties using AFLP markers. Acta Hort Sin, 2006, 33: 1349–1352 (in Chinese with English abstract) [8] Hawkes J G. The potato evolution biodiversity and genetic resources. Quart Rev Biol, 1991, 66: 85 [9] 金黎平, 屈冬玉, 谢开云, 卞春松, 段绍光. 我国马铃薯种质资源和育种技术研究进展. 种子, 2003, (5): 98–100 Jin L P, Qu D Y, Xie K Y, Bian C S, Duan S G. Research progress of Chinese potato germplasm and breeding technology. Seed, 2003, 5: 98–100 (in Chinese) [10] 孙慧生. 马铃薯育种学. 北京, 中国农业出版社, 2003. pp 22–25 Sun H S. Potato Breeding Science. BeiJing: China Agriculture Press. 2003. pp 22–25 (in Chinese) [11] Glaszmann J C, Killian B, Upadhyaya H D, Varshne R K. Accessing genetic diversity for crop improvement. Curr Opin Plant Biol, 2010, 13: 167–173 (in Chinese) [12] 孙海宏, 叶广继, 王舰. 青海省引进CIP马铃薯种质资源产量与品质分析. 安徽农业科学, 2009, 37: 4934–4935 Sun H H, Ye G J, Wang J. Yield and quality analysis of potato germplasm resources from CIP in Qinghai Province. J Anhui Agric Sci, 2009, 37: 4934–4935 (in Chinese with English abstract) [13] 彭慧元, 赵旭剑, 雷尊国, 李其义. 从国际马铃薯中心引进马铃薯种质资源的适应性筛选. 种子, 2014, 33(10): 60–63 Peng H Y, Zhan X J, Lei Z G, Li Q Y. Selection of adaptability of introduced potato germplasm resources from international potato center. Seed, 2014, 33(10): 60–63 (in Chinese) [14] 刘文林, 张举梅, 盛万民, 张宏纪等. 52份俄罗斯引进马铃薯种质资源的遗传多样性与分子身份证构建. 分子植物育种, 2016, 14: 251–258 Liu W L, Zhang J M, Sheng W M, Sun Y, Liu D J, Guo Y F, Yang S P, Zhang R, Zhang H J. Genetic diversity analysis and molecular identities establishment of 52 russian potato varieties. Mol Plant Breed, 2016, 14: 251–258 (in Chinese with English abstract) [15] 段艳凤, 刘杰, 卞春松, 段绍光, 徐建飞, 金黎平. 中国88个马铃薯审定品种SSR指纹图谱构建与遗传多样性分析. 作物学报. 2009, 35: 1451?1457 Duan Y F, Liu J, Bian C S, Duan S G, Xu J F, Jin L P. Construction of fingerprinting and analysis of genetic diversity with SSR markers for eighty-eight approved potato cultivars (Solanum tuberosum L.) in China. Acta Agron Sin, 2009, 35: 1451?1457 (in Chinese with English abstract) [16] 张永成, 田丰. 马铃薯实验研究方法. 北京: 中国农业科学技术出版社, 2007. pp 117–123 Zhang Y C, Tian F. Potato Expermental Research Method. Beijing: China Agricultural Scientech Press, 2007. pp 117–123 (in Chinese) [17] Strong W L. Biased richness and evenness relationships within Shannon–Wiener index values. Ecol Indic, 2016, 67: 703–713 [18] 严威凯. 双图标分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805–1819 Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin, 2010, 36: 1805–1819 (in Chinese with English abstract) [19] Yan W K, Holland J B. A heritability-adjusted GGE Biplot for test environment evaluation. Euphytica, 2010, 171: 355–369 [20] Tester M, Langeridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818–822 [21] 徐建飞, 金黎平. 马铃薯遗传育种研究:现状与展望. 中国农业科学, 2017, 50: 990–1015 Xu J F, Jin L P. Advances and perspectives in research of potato genetics and breeding. Sci Agric Sin, 2017, 50: 990–1015 (in Chinese with English abstract) [22] Barandalla L, Ruiz J I, Rios D, Ritter E. Molecular analysis of local potato cultivars from Tenerife island using microsatellite markers. Euphytica, 2006, 152: 283–291 [23] Charles L, George N, Yong B F, Solomon I S, Margaret J H, Humberto G P. Genetic diversity of Kenyan potato germplasm revealed by simple sequence repeat markers. Am J Potato Res, 2011, 88: 424–434 [24] Wang F, Li F D, Wang J. Genetic diversity of Chinese and CIP potato (Solanum tuberosum L.) germplasm assessed by amplified fragment length polymorphism (AFLP) markers. Potato Res, 2013, 56: 167–178 [25] McGregor C E, Greyling M M, Warnich L. The use of simple sequence repeats(SSRs) to identify commercially important potato(Solanum Tuberosum L.) cultivars in South Africa. South Afric J Plant Soil, 2000, 17: 177–179 [26] 徐敏. 中国马铃薯审定品种系谱分析及遗传多样性研究. 中国农业科学院硕士学位论文, 北京, 2007 Xu M. Pedigree and Diversity of Approved Potato Cultivars (Solanum tuberosum L.) in China. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2007 (in Chinese with English abstract) [27] Luo Z W, Hackett C A, Bradshaw J E, Mcnicol J W, Milbourne D. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics, 2001, 157: 1369–1385 [28] Abdelhameed E, Arild L, Sonja S.K, Siri F, Leif S, Susan M, Esther M, Odd A R. Phenotypic diversity of plant morphological and root descriptor traits within a sweet potato (Ipomoea batatas L. Lam.) germplasm collection from Tanzania. Genet Resourc Crop Evol, 2011, 58: 397–407 [29] 胡标林, 万勇, 李霞, 雷建国, 罗向东, 严文贵, 谢建坤. 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 2012, 38: 829–839 Hu B L, Wan Y, Li X, Lei J G, Luo X D, Yan W G, Xie J K. Analysis on genetic diversity of phenotypic traits in rice (Oryza sativa) core collection and its comprehensive assessment. Acta Agron Sin, 2012, 38: 829–839 (in Chinese with English abstract) [30] 王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民. 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016, 42: 19–30 Wang H G, Jia G Q, Zhi H, Wen Q F, Dong J L, Chen L, Wang J J, Cao X N, Liu S C, Wang L, Qiao Z J, Diao X M. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agron Sin, 2016, 42: 19–30 (in Chinese with English abstract) [31] Ramanatha R V, Toby H. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult, 2002, 68: 1–19

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[5] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[6] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[7] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[8] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[9] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[10] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[11] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[12] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[13] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[14] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[15] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!