作物学报 ›› 2018, Vol. 44 ›› Issue (01): 53-62.doi: 10.3724/SP.J.1006.2018.00053
赵立娜1,2,**,刘子会1,**,段硕楠1,张园园1,2,李国良1,*,郭秀林1,*
ZHAO Li-Na1,2,**,LIU Zi-Hui1,**,DUAN Shuo-Nan1,ZHANG Yuan-Yuan1,2,LI Guo-Liang1,*,GUO Xiu-Lin1,*
摘要:
植物热激转录因子(heat shock transcription factor, Hsf)是响应热胁迫的主要调节因子,通过调节热激蛋白基因表达进而增强植物耐热性。小麦Hsf家族至少含有56个成员,其中B族11个,含B2亚族5个。本研究采用同源克隆技术,从37°C热处理的两叶一心小麦幼叶中克隆获得TaHsfB2d (序列号:AK331994)cDNA序列,序列长1191 bp,编码396个氨基酸。蛋白序列包括DNA结合结构域DBD和核定位信号序列NLS。同源分析表明,TaHsfB2d蛋白与大麦未知蛋白的相似性最高,为92%。荧光定量分析表明,TaHsfB2d在小麦多个组织器官中组成型表达,其中在成熟植株根系中表达量较高。37°C热胁迫、外源水杨酸(SA)和H2O2处理均能不同程度上调TaHsfB2d的表达,热激能显著增强SA和H2O2对TaHsfB2d表达的诱导。H2O2合成抑制剂DPI和羟自由基清除剂DMTU联合处理显著抑制热激对TaHsfB2d表达的上调作用、完全抑制SA对TaHsfB2d表达的上调。通过在洋葱内表皮瞬时表达TaHsfB2d并观察GFP荧光发现,正常条件下,TaHsfB2d蛋白定位于细胞核。酵母中耐热性鉴定表明,正常条件下,转TaHsfB2d的酵母细胞与转空载体对照酵母细胞的长势没有明显差异,热激处理同时降低,但前者的长势相对更强,TaHsfB2d的导入不影响细胞的生长发育。推测TaHsfB2d通过水杨酸途径介导植株耐热性调控过程,该过程依赖于H2O2存在。
[1] Nover L, Scharf K D, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley W B. The HSF world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones, 1996, 1: 215–223 [2] Nover L, Bharti K, D?ring P, Mishra S K, Ganguli A, Scharf K D. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones, 2001, 6: 177–189 [3] Guo M, Liu H J. Ma X, Luo D X, Gong Z H, Lu M H. The plant heat stress transcription factors (HSFs): structure, regulation and function in response to aboitic stresses. Front Plant Sci, 2016, 7: 114 [4] Scharf K D, Rose S, Zott W. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J, 1990, 9: 4495–4501 [5] Xue G P, Sadat S, Drenth J, Mclntyre C L. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot, 2014, 65: 539–557 [6] Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J, 2006, 48: 535–547 [7] Heerklotz D, D?ring P, Bonzelius F. The balance of nuclear import and export determines the intrancellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol, 2001, 21: 1759–1768 [8] Liu H C, Liao H T, Charng Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ, 2011, 34: 738–751 [9] Wunderlich M, Gro?-Hardt R, Sch?ff F. Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Mol Biol, 2014, 85: 541–550 [10] Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors for the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol, 2011, 157: 1243–1254 [11] Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Sch?ffl F. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant, 2009, 2: 152–165 [12] Zhu X, Thalor S K, Takahashi Y, Berberich T, and Kusano T. An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant Cell Environ, 2012, 35: 2014–2030 [13] Ma H, Wang C T, Yang B, Cheng H Y , Wang Z, Mijiti A, Ren C, Qu G H, Zhang H, Ma L. CarHSFB2, a Class B Heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer Arietinum L.). Plant Mol Biol Rep, 2016, 34: 1–14 [14] Kolmos E, Chowa B Y, Pruneda-Pazb J L, Kay S A. Kolmos HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci USA, 2014, 111: 16173–16177 [15] Bharti K, Von KoskullD?ring P, Bharti S, Kumar P, Tintschlk?rbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with HAC1/CBP. Plant Cell, 2004, 16: 1521–1535 [16] Hahn A, Bublak D, Schleiff E, Scharf K D. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell, 2011, 23: 741–755 [17] Begum T, Reuter R, Sch?ff F. Overexpression of AtHsfB4 induces specific effects on root development of Arabidopsis. Mech Dev, 2012, 130: 54–60 [18] Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A. Heat shock factor gene family in rice: genomic organization and transcript expression profiing in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem, 2009, 47: 785–795 [19] Qin D D, Wu H Y, Peng H R, Yao Y Y, Ni Z F, Li Z X, Zhou C L, Sun Q X. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat(Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics, 2008, 9:432–450 [20] Shim D, Hwang J U, Lee J, Lee S, Choi Y. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell, 2009, 21: 4031–4043 [21] Chauhan H, Khurana N, Agarwal P, Khurana J P, Khurana P. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS One, 2013, 8: e79577 [22] Zhang S X, Xu Z S, Li P S, Yang L, Wei Y Q, Chen M, Li L C, Zhang G S, Ma Y Z. Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol Biol Rep, 2013, 31: 688–697 [23] 李慧聪, 李国良, 郭秀林. 玉米热激转录因子基因ZmHsf-Like对逆境胁迫响应的信号途径. 作物学报, 2014, 40: 622–628 Li H C, Li G L, Guo X L. Signal transduction pathway of ZmHsf-Like gene responding to different abiotic stresses. Acta Agron Sin, 2014, 40: 622–628 (in Chinese with English abstract) [24] Li H X, Fan R C, Li L B, Wei B, Li G L, Gu L Q, Wang X P, Zhang X Q. Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat. Plant Cell Environ, 2014, 37: 1561–1573 [25] 李慧聪, 李国良, 郭秀林. 玉米热激转录因子基因(ZmHsf06)的克隆、表达和定位分析. 农业生物技术学报, 2015, 23: 41–51 Li H C, Li G L, Guo X L. Cloning, expression characteristics and subcellular-location of heat shock transcription factor ZmHsf06 in Zea mays. J Agric Biotechnol, 2015, 23: 41–51 (in Chinese with English abstract) [26] Gietz D, Jean A S, Woods R A, Schiestl R H. Improved method for high transformation of intact yeast cells. Nucleic Acids Res, 1992, 20: 1425 [27] Li H C, Zhang H N, Li G L, Liu Z H, Zhang Y M, Zhang H M. Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis. Funct Plant Biol, 2015, 42: 1080–1090 [28] Czarnecka-Verner E, Pan S, Salem T, Gurley W B. Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol Biol, 2004, 56: 57–75 [29] Ikeda M, Ohme-Takagi M. A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol, 2009, 50: 970–975 [30] Bharti K, von Koskull-Doring P, Bharti S, Kumar P, Tintschl Korbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell, 2004, 16: 1521–1535 [31] Xiang J, Ran J, Zou J, Zhou X, Liu A. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Rep, 2013, 32: 1795–1806 [32] Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Ryals J. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 1993, 261: 6 [33] Larkindale J, Hall J D, Knight M R, Vierling E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermos tolerance. Plant Physiol, 2005, 138: 882–897 [34] Snyman M, Cronjé M J. Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. J Exp Bot, 2008, 59: 2125–2132 [35] 李春光, 陈其军, 高新起, 祁碧菽, 陈乃芝, 许守明, 陈 珈, 王学臣. 拟南芥热激转录因子AtHsfA2调节胁迫反应基因的表达并提高热和氧化胁迫耐性. 中国科学C辑: 生命科学, 2005, 35: 398–407 Li C G, Chen Q J, Gao X Q, Qi B S, Chen N Z, Xu S M, Chen J, Wang X C. Heat shock transcription factor AtHsfA2 regulating genes expression related to stresses and increase endurance to heat and oxidation stress in Arabidopsis. Sci China, Ser C: Life Sci, 2005, 35: 398–407 (in Chinese with English abstract) [36] Liu H C, Charng Y Y. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol, 2013, 163: 276–290 [37] Ayarpadikannan S, Chung E, Cho C W, So H A, Kim S O, Jeon J M, Kwak M H, Lee S W, Lee J H. Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides. Plant Cell Rep, 2012, 31: 35–48 [38] Ogawa D, Yamaguchi K, Nishiuchi T. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot, 2007, 58: 3373–3383 |
[1] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[2] | 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551. |
[3] | 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581. |
[4] | 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143. |
[5] | 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209. |
[6] | 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224. |
[7] | 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258. |
[8] | 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287. |
[9] | 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307. |
[10] | 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905. |
[11] | 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918. |
[12] | 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953. |
[13] | 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817. |
[14] | 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667. |
[15] | 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600. |
|