欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (01): 75-81.doi: 10.3724/SP.J.1006.2018.000075

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

津田芜菁BrSIZ1基因克隆、定位及表达

罗云,马璇,谷俊辰,闫海芳*   

  1. 东北林业大学生命科学学院,黑龙江哈尔滨150040
  • 收稿日期:2017-03-07 修回日期:2017-07-23 出版日期:2018-01-12 网络出版日期:2017-08-02
  • 通讯作者: 闫海芳, E-mail: yanhaifang224@126.com
  • 基金资助:

    本研究由中央高校基本科研业务费专项(DL12CA10)和东北林业大学科研训练项目(KY2015053)资助。

Cloning, Location and Expression of BrSIZ1 in Brassica rapa L. subsp.rapifera ‘Tsuda’

LUO Yun, MA Xuan, GU Jun-Chen,YAN Hai-Fang*   

  1. College of Life Sciences, Northeast Forestry University, Harbin 150040, China
  • Received:2017-03-07 Revised:2017-07-23 Published:2018-01-12 Published online:2017-08-02
  • Contact: 闫海芳, E-mail: yanhaifang224@126.com
  • Supported by:

    This study was supported by the Fundamental Research Funds for the Central Universities and the Research Training Program of Northeast Forestry University.

摘要:

SIZ1是植物细胞蛋白质翻译后修饰SUMO化的E3连接酶,参与植物蛋白相互作用、定位和抗逆反应等。为研究BrSIZ1在津田芜菁中的表达特性,本研究克隆了津田芜菁SIZ1基因全长cDNA序列,命名为BrSIZ1 (GenBank登录号为KY441465),该基因全长2754 bp,其ORF全长2571 bp,编码856个氨基酸残基的多肽。构建了BrSIZ1-GFP表达载体进行亚细胞定位研究,结果显示BrSIZ1-GFP定位于细胞核内,可能在细胞核中发挥其功能。利用荧光定量PCR检测表明,该基因表达量在叶子中最高,幼苗和红色根皮中次之,表达具有组织特异性。而且BrSIZ1在芜菁根皮中的表达受长波紫外线(UV-A)诱导,在4°C、37°C胁迫的幼苗中,表达量增加。

关键词: 津田芜菁, SIZ1, 基因克隆, 定位, 表达分析

Abstract:

SIZ1, a SUMO E3 ligase involved in post-translation of proteins in plant cells, plays a role in protein interaction、location and response to environmental stresses. In order to elucidate the expression profile of SIZ1 in Tsuda, cDNA of SIZ1 gene was isolated from Tsuda. This gene was named BrSIZ1 (GenBank accession number KY441465). BrSIZ1 was 2754 bp in full length cDNA and 2571 bp in full length open reading frame (ORF), encoding a peptide with 856 amino acids. A BrSIZ1-GFP expression vector was constructed to analysis the subcellular localization. BrSIZ1-GFP was localized to nucleus, indicating that BrSIZ1 may play an important role in the nucleus. Quantitative-PCR analysis showed that the BrSIZ1 was expressed meetly in leaf and secondly in young seedling and red root epidermis, showing tissue specificity. The expression of the BrSIZ1 was induced by UV-A light in the root epidermis. The transcript level of BrSIZ1 was up-regulated when treated with temperature of 4°C or 37°C in young seedling.

Key words: Brassica rapa, SIZ1, gene cloning, location, expressing analysis

[1] Girdwood D W H, Tatham M H, Hay R T. SUMO and transcriptional regulation. Semin Cell Biol, 2004, 15: 201–210 [2] Johnson E S. Proteion modification by SUMO. Annu Rev Biochem, 2004, 73: 355–382 [3] Novatchkova M, Budhiraja R. Coupland G. SUMO conjugation in plants, Planta, 2004, 220: 1–8 [4] Johnson E S, Gupta A A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell, 2001, 106: 735–744 [5] Sharrocks A D. PIAS proteins and transcriptional regulation-more than just SUMO E3 ligases. Genes & Development, 2006, 20: 754–758 [6] Bienz M. The PHD finger, a nuclear protein-interaction domain. Trends in biochemical sciences, 2006, 31: 35–40 [7] Aravind L, Koon E V. SAP—a putative DNA-binding motif involved in chromosomal organization. Trend Biochem Sci, 2000, 25: 112–114 [8] Miura K, Jin J B, Hasegawa P M. Sumoylation, a post-translational regulatory process in plante. Curr Opin Plant Biol, 2007, 10: 495–502 [9] Huang L X, Yang S G, Zhang S C. The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J, 2009, 60: 666–678 [10] Jin J B, Jin Y H, Lee J. The SUMO E3 ligase AtS1Z1 regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J, 2008, 53: 530–540 [11] Thangasamy S, Guo C L, Chuang M H, Lai M H, Chen J, Jauh G Y. Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytologist, 2011, 189: 869–882 [12] Kurepa J, Walker J M, Smalle J. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis – Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem, 2003, 278: 6862–6872 [13] Lee J Y, Nam J, Park H C, Na G. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J, 2007, 49: 79–90 [14] Miura K, Jin J B, Lee J, Yoo C Y, Stirm T, Ashworth E N, Bressan R A, Yun D J, Hasegawa P M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis.Plant Cell, 2007, 19: 1403–1414 [15] Yoo C Y, Miura K, Jin J B. SIZ1 (small ubiquitin-like modifi er) E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol, 2006, 142:1548–1558 [16] Catala R, Ouyang J, Abreu I A. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell, 2007, 19: 2952–2966 [17] Zhang S, Zhuang K, Wang S, Lv J, Ma N N, Meng Q W. A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. JIPB, 2017, doi: 10.1111/jipb.12514 [18] Calderon-Villalobos L I, Nill C, Marrocco K. The evolutionarily conserved Arabidopsis thaliana F-box protein AtFBP7 is required for efficient translation during temperature stress. Gene, 2007, 392: 106–116 [19] Zhou B, Li Y, Xu Z, Yan H, Homma S, Kawabata S. Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J Exp Bot, 2007, 58: 1771–1781 [20] Kawabata S, Kusahara Y, Li Y, Sakiyama R. The regulation of anthocyanin biosynthesis in Eustoma grandiflorum under low light conditions. J Jpn Soc Hort Sci, 1999, 68: 519–526 [21] Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA, 1988, 85: 8998–9002 [22] Zhou B, Zhao X, Kawabata S, Li Y. Transient expression of a foreign gene by direct incorporation of DNA into intact plant tissue through vacuum infiltration. Biotechnol Lett, 2009, 31: 1811–1815 [23] Dingwall C, Robbins J, Dilworth S M, Roberts B, Richardson W D. The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen. J Cell Biol, 1988, 107: 841–849 [24] Liu F, Wang X, Su M Y, Yu M Y, Zhang S C, Lai J B, Yang C W, Wang YQ. Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium. BMC Plant Biology, 2015, 15: 225–239 [25] Huang X, Ouyang X, Deng X W. Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Curr Opin Plant Biol, 2014, 22: 96–103 [26] Lay H A, Sudip C, Ning W, Tokitaka O, Alfred B, Deng X W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell, 1998, 1: 213–222

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[6] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[7] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[8] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[9] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[10] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[11] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[12] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[13] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[14] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[15] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!