欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (01): 75-81.doi: 10.3724/SP.J.1006.2018.000075

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

津田芜菁BrSIZ1基因克隆、定位及表达

罗云,马璇,谷俊辰,闫海芳*   

  1. 东北林业大学生命科学学院,黑龙江哈尔滨150040
  • 收稿日期:2017-03-07 修回日期:2017-07-23 出版日期:2018-01-12 网络出版日期:2017-08-02
  • 通讯作者: 闫海芳, E-mail: yanhaifang224@126.com
  • 基金资助:

    本研究由中央高校基本科研业务费专项(DL12CA10)和东北林业大学科研训练项目(KY2015053)资助。

Cloning, Location and Expression of BrSIZ1 in Brassica rapa L. subsp.rapifera ‘Tsuda’

LUO Yun, MA Xuan, GU Jun-Chen,YAN Hai-Fang*   

  1. College of Life Sciences, Northeast Forestry University, Harbin 150040, China
  • Received:2017-03-07 Revised:2017-07-23 Published:2018-01-12 Published online:2017-08-02
  • Contact: 闫海芳, E-mail: yanhaifang224@126.com
  • Supported by:

    This study was supported by the Fundamental Research Funds for the Central Universities and the Research Training Program of Northeast Forestry University.

摘要:

SIZ1是植物细胞蛋白质翻译后修饰SUMO化的E3连接酶,参与植物蛋白相互作用、定位和抗逆反应等。为研究BrSIZ1在津田芜菁中的表达特性,本研究克隆了津田芜菁SIZ1基因全长cDNA序列,命名为BrSIZ1 (GenBank登录号为KY441465),该基因全长2754 bp,其ORF全长2571 bp,编码856个氨基酸残基的多肽。构建了BrSIZ1-GFP表达载体进行亚细胞定位研究,结果显示BrSIZ1-GFP定位于细胞核内,可能在细胞核中发挥其功能。利用荧光定量PCR检测表明,该基因表达量在叶子中最高,幼苗和红色根皮中次之,表达具有组织特异性。而且BrSIZ1在芜菁根皮中的表达受长波紫外线(UV-A)诱导,在4°C、37°C胁迫的幼苗中,表达量增加。

关键词: 津田芜菁, SIZ1, 基因克隆, 定位, 表达分析

Abstract:

SIZ1, a SUMO E3 ligase involved in post-translation of proteins in plant cells, plays a role in protein interaction、location and response to environmental stresses. In order to elucidate the expression profile of SIZ1 in Tsuda, cDNA of SIZ1 gene was isolated from Tsuda. This gene was named BrSIZ1 (GenBank accession number KY441465). BrSIZ1 was 2754 bp in full length cDNA and 2571 bp in full length open reading frame (ORF), encoding a peptide with 856 amino acids. A BrSIZ1-GFP expression vector was constructed to analysis the subcellular localization. BrSIZ1-GFP was localized to nucleus, indicating that BrSIZ1 may play an important role in the nucleus. Quantitative-PCR analysis showed that the BrSIZ1 was expressed meetly in leaf and secondly in young seedling and red root epidermis, showing tissue specificity. The expression of the BrSIZ1 was induced by UV-A light in the root epidermis. The transcript level of BrSIZ1 was up-regulated when treated with temperature of 4°C or 37°C in young seedling.

Key words: Brassica rapa, SIZ1, gene cloning, location, expressing analysis

[1] Girdwood D W H, Tatham M H, Hay R T. SUMO and transcriptional regulation. Semin Cell Biol, 2004, 15: 201–210 [2] Johnson E S. Proteion modification by SUMO. Annu Rev Biochem, 2004, 73: 355–382 [3] Novatchkova M, Budhiraja R. Coupland G. SUMO conjugation in plants, Planta, 2004, 220: 1–8 [4] Johnson E S, Gupta A A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell, 2001, 106: 735–744 [5] Sharrocks A D. PIAS proteins and transcriptional regulation-more than just SUMO E3 ligases. Genes & Development, 2006, 20: 754–758 [6] Bienz M. The PHD finger, a nuclear protein-interaction domain. Trends in biochemical sciences, 2006, 31: 35–40 [7] Aravind L, Koon E V. SAP—a putative DNA-binding motif involved in chromosomal organization. Trend Biochem Sci, 2000, 25: 112–114 [8] Miura K, Jin J B, Hasegawa P M. Sumoylation, a post-translational regulatory process in plante. Curr Opin Plant Biol, 2007, 10: 495–502 [9] Huang L X, Yang S G, Zhang S C. The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J, 2009, 60: 666–678 [10] Jin J B, Jin Y H, Lee J. The SUMO E3 ligase AtS1Z1 regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J, 2008, 53: 530–540 [11] Thangasamy S, Guo C L, Chuang M H, Lai M H, Chen J, Jauh G Y. Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytologist, 2011, 189: 869–882 [12] Kurepa J, Walker J M, Smalle J. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis – Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem, 2003, 278: 6862–6872 [13] Lee J Y, Nam J, Park H C, Na G. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J, 2007, 49: 79–90 [14] Miura K, Jin J B, Lee J, Yoo C Y, Stirm T, Ashworth E N, Bressan R A, Yun D J, Hasegawa P M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis.Plant Cell, 2007, 19: 1403–1414 [15] Yoo C Y, Miura K, Jin J B. SIZ1 (small ubiquitin-like modifi er) E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol, 2006, 142:1548–1558 [16] Catala R, Ouyang J, Abreu I A. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell, 2007, 19: 2952–2966 [17] Zhang S, Zhuang K, Wang S, Lv J, Ma N N, Meng Q W. A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. JIPB, 2017, doi: 10.1111/jipb.12514 [18] Calderon-Villalobos L I, Nill C, Marrocco K. The evolutionarily conserved Arabidopsis thaliana F-box protein AtFBP7 is required for efficient translation during temperature stress. Gene, 2007, 392: 106–116 [19] Zhou B, Li Y, Xu Z, Yan H, Homma S, Kawabata S. Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J Exp Bot, 2007, 58: 1771–1781 [20] Kawabata S, Kusahara Y, Li Y, Sakiyama R. The regulation of anthocyanin biosynthesis in Eustoma grandiflorum under low light conditions. J Jpn Soc Hort Sci, 1999, 68: 519–526 [21] Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA, 1988, 85: 8998–9002 [22] Zhou B, Zhao X, Kawabata S, Li Y. Transient expression of a foreign gene by direct incorporation of DNA into intact plant tissue through vacuum infiltration. Biotechnol Lett, 2009, 31: 1811–1815 [23] Dingwall C, Robbins J, Dilworth S M, Roberts B, Richardson W D. The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen. J Cell Biol, 1988, 107: 841–849 [24] Liu F, Wang X, Su M Y, Yu M Y, Zhang S C, Lai J B, Yang C W, Wang YQ. Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium. BMC Plant Biology, 2015, 15: 225–239 [25] Huang X, Ouyang X, Deng X W. Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Curr Opin Plant Biol, 2014, 22: 96–103 [26] Lay H A, Sudip C, Ning W, Tokitaka O, Alfred B, Deng X W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell, 1998, 1: 213–222

[1] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[2] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[3] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[4] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[5] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
[6] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[7] 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182.
[8] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[9] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[10] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[11] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[12] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[13] 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425.
[14] 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431.
[15] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!