欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1880-1890.doi: 10.3724/SP.J.1006.2019.94042

• 耕作栽培·生理生化 • 上一篇    下一篇

糜子绿豆带状种植下糜子的氮素积累、代谢及产量变化

党科,宫香伟,陈光华,赵冠,刘龙,王洪露,杨璞,冯佰利()   

  1. 西北农林科技大学农学院 / 旱区作物逆境生物学国家重点实验室 / 农业部作物基因资源与种质创制陕西科学观测试验站, 陕西杨凌 712100
  • 收稿日期:2019-03-18 接受日期:2019-08-09 出版日期:2019-09-03 网络出版日期:2019-09-03
  • 通讯作者: 冯佰利
  • 作者简介:党科, E-mail: dangke4718@163.com;|宫香伟, E-mail: gxw199308@163.com
  • 基金资助:
    本研究由国家现代农业(谷子高粱)产业技术体系建设专项(CARS-13.5-06-A26);国家“十二五”科技支撑计划项目(2014BAD07B03);国家自然科学基金项目(31371529);陕西省小杂粮产业技术体系项目(NYKJ-2018-YL19)

Nitrogen accumulation, metabolism, and yield of proso millet in proso millet- mung bean intercropping systems

Ke DANG,Xiang-Wei GONG,Guang-Hua CHEN,Guan ZHAO,Long LIU,Hong-Lu WANG,Pu YANG,Bai-Li FENG()   

  1. College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology for Arid Areas / Shaanxi Research Station of Crop Gene Resources & Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, Shaanxi, China
  • Received:2019-03-18 Accepted:2019-08-09 Published:2019-09-03 Published online:2019-09-03
  • Contact: Bai-Li FENG
  • Supported by:
    This study was supported by the China Agriculture Research System (Millet and Sorghum)(CARS-13.5-06-A26);the National Key Research and Development Program of China(2014BAD07B03);the National Natural Science Foundation of China(31371529);the Minor Coarse Cereals Technique System of Shaanxi Province(NYKJ-2018-YL19)

摘要:

禾豆间作是一种高效的生态种植模式, 为明确糜子-绿豆合理间套作种植模式下糜子对养分高效利用的机制, 于2017—2018年在榆林小杂粮综合试验示范站, 以单作糜子(SP)为对照, 设糜子(P)-绿豆(M) 4种间作模式[2∶2 (2P2M)、4∶2 (4P2M)、4∶4 (4P4M)、2∶4 (2P4M)], 分析糜子开花期和成熟期不同器官干物质积累、氮素含量及植株氮积累量, 以期探讨叶片和根系氮素代谢的变化规律, 进一步挖掘不同间作模式对糜子产量及其构成因素的调控效应。结果表明, 糜子-绿豆间作可显著增加糜子开花期根系、茎秆、叶片和鞘的氮素含量, 使成熟期穗的氮含量比单作增加10.9%~15.9%; 间作有利于促进糜子器官的生长发育, 与单作相比, 间作模式下糜子成熟期干物质积累量两年试验平均提高11.6%~32.1%, 植株氮素积累量增加12.8%~36.9%, 其中糜子叶片和茎秆的氮素转运量分别比单作增加51.7%~78.9%和24.1%~55.6%, 叶片对于穗的氮素贡献率增加40.6%~66.9%。糜子-绿豆间作模式可显著调节糜子旗叶和根系的氮素代谢, 硝酸还原酶活性、谷氨酰胺合酶活性、可溶性蛋白含量及游离氨基酸含量均有不同程度的增加, 2P4M处理下达到最大值。植株生理代谢、氮素营养的合理调控显著改善了糜子产量及其构成因素, 产量表现为2P4M>4P4M>2P2M>4P2M>SP。综上所述, 糜子-绿豆间作模式可促进糜子生育后期的氮素积累、转运及氮素代谢, 延缓了植株的衰老, 提高糜子产量, 表现出明显的间作优势。本试验条件下, 2P4M是陕北地区糜子-绿豆最佳的间作配比。

关键词: 糜子, 间作, 氮素积累, 氮代谢, 产量

Abstract:

Cereal-legume intercropping is a ecological and efficient planting pattern. To investigate the effects of proso millet- mung bean intercropping on nitrogen accumulation, metabolism and yield of proso millet from the flowering to maturity stage, we designed four patterns of proso millet (P) to mung bean (M) including 2:2, 4:2, 4:4, and 2:4 in 2017 and 2018 in Yulin, Shaanxi province. The intercropping significantly improved the nitrogen contents in root, stem, leaf and sheath of proso millet at the flowering stage. The nitrogen content in panicle at the maturity stage increased by 10.9%-15.9% compared with the sole cropping of proso millet. Intercropping increased the dry matter accumulation by 11.6%-32.1% and the nitrogen accumulation of proso millet by 12.8%-36.9%. The nitrogen transportation from leaves and stems to panicles increased by 51.7%-78.9% and 24.1%-55.6%, respectively. The proso millet-mung bean intercropping significantly promoted the nitrogen metabolism of proso millet flag leaves and roots. The nitrate reductase activity, glutamine synthase activity, soluble protein content and free amino acid content increased to a different degree, with the maximum in 2P4M treatment. The productivity and yield were enhanced in intercropping by boosting physiological metabolism and nitrogen assimilation. Overall, these results suggest that proso millet-mung bean intercropping pattern enhances the nitrogen accumulation, metabolism, and yield of proso millet, and 2P4M treatment is optimal to improve nitrogen uptake and yield under proso millet/mung bean intercropping systems in Yulin, Shaanxi.

Key words: proso millet, intercropping, nitrogen accumulation, nitrogen metabolism, yield

图1

田间种植模式图 SP: 单作糜子; SM: 单作绿豆; 2P2M: 2行糜子间作2行绿豆; 4P2M: 4行糜子间作2行绿豆; 4P4M: 4行糜子间作4行绿豆; 2P4M: 2行糜子间作4行绿豆。"

表1

不同间作模式对糜子不同器官氮含量的影响"

年份
Year
处理
Treatment
开花期 Flowering 成熟期 Maturity

Root

Stem

Leaf

Sheath

Panicle

Root

Stem

Leaf

Sheath

Panicle
2017 SP 0.43 e 0.73 e 2.24 e 1.32 c 2.40 a 0.52 e 0.67 b 2.24 a 1.61 a 2.15 d
2P2M 0.74 b 0.84 c 2.67 c 1.49 a 2.39 a 0.91 a 0.58 c 2.04 b 1.49 c 2.42 c
4P2M 0.64 d 0.87 b 2.41 d 1.38 b 2.23 c 0.64 d 0.78 a 1.88 c 1.38 d 2.53 b
4P4M 0.67 c 0.77 d 2.90 b 1.38 b 2.24 b 0.71 c 0.39 e 2.07 b 1.61 a 2.51 b
2P4M 1.00 a 0.99 a 3.07 a 1.52 a 2.17 d 0.84 b 0.45 d 1.61 d 1.55 b 2.59 a
2018 SP 0.42 d 0.92 d 2.87 c 1.36 c 2.56 a 0.53 e 0.93 a 2.84 a 1.61 a 2.20 c
2P2M 0.62 b 1.36 b 3.12 b 1.43 b 2.46 b 0.69 b 0.66 b 2.79 b 1.23 b 2.56 a
4P2M 0.63 b 1.15 c 3.13 b 1.43 b 2.20 c 0.56 d 0.52 c 2.48 d 1.23 b 2.46 b
4P4M 0.50 c 0.94 d 2.87 c 1.86 a 2.56 a 0.62 c 0.52 c 2.61 c 1.20 c 2.49 b
2P4M 0.72 a 1.65 a 3.34 a 1.91 a 2.49 b 0.93 a 0.45 d 2.59 c 1.08 d 2.62 a

图2

不同间作模式对糜子不同器官氮积累量的影响 图中不同小写字母表示处理间差异达0.05显著水平。缩写同表1。"

表2

不同间作模式对糜子不同器官氮素转运量和对穗的贡献率的影响"

年份
Year
处理
Treatment
氮素转移量A mount of N transferred (kg hm-2) 对穗的贡献率 Contribution to panicle (%)
叶片Leaf 茎Stem 鞘Sheath 叶片Leaf 茎Stem 鞘Sheath
2017 SP 26.0±3.5 d 11.6±0.5 c 1.6±0.8 d 11.7±2.7 d 5.2±0.5 c 0.7±0.4 b
2P2M 46.0±5.6 c 19.5±3.5 b 8.4±1.3 b 15.3±1.3 c 6.6±1.2 bc 2.8±0.5 a
4P2M 41.3±5.5 c 18.9±0.3 b 5.8±0.5 c 16.2±2.7 c 7.4±0.4 b 2.3±0.3 a
4P4M 63.1±1.1 b 22.5±3.3 b 6.8±1.5 bc 21.4±1.5 b 7.6±1.1 b 2.3±0.5 a
2P4M 89.3±0.7 a 32.3±2.4 a 10.8±1.8 a 25.8±0.3 a 9.3±0.8 a 3.1±0.5 a
2018 SP 11.7±2.2 d 38.3±2.5 e 4.9±0.1 b 4.2±0.8 d 14.1±1.0 b 1.8±0.0 c
2P2M 45.3±3.7 b 47.5±0.6 c 9.3±0.2 a 12.3±1.1 b 12.9±0.2 c 2.5±0.1 a
4P2M 40.6±3.4 b 42.3±2.0 d 1.7±0.1 d 12.9±1.0 b 13.5±0.6 bc 0.5±0.0 d
4P4M 34.7±0.9 c 72.2±2.5 a 2.5±0.8 c 9.9±0.3 c 20.5±0.8 a 0.7±0.2 d
2P4M 88.6±4.1 a 56.7±1.2 b 9.5±0.2 a 20.0±1.0 a 12.8±0.3 c 2.1±0.1 b

图3

不同间作模式对糜子旗叶和根氮代谢的影响 图中不同小写字母表示处理间差异达0.05显著水平。缩写同表1。"

图4

不同间作模式对糜子干物质积累量的影响 图中不同小写字母表示处理间差异达0.05显著水平。缩写同表1。"

表3

不同间作模式对糜子产量及产量构成因素的影响"

年份
Year
处理
Treatment
单株穗数
Panicles per plant
穗长
Panicle length (cm)
单株粒重
Grain weight per plant (g)
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
2017 SP 4.0±0.7 d 39.2±1.3 cd 24.0±1.9 e 8.61±0.0 d 4448.6±135.5 d
2P2M 4.8±0.8 bc 41.2±2.1 c 35.3±1.1 c 8.89±0.1 bc 4968.9±87.2 bc
4P2M 4.3±0.4 c 40.1±1.0 c 32.5±1.6 d 8.81±0.0 c 4696.2±76.8 c
4P4M 4.9±0.2 b 42.2±0.8 b 40.9±0.4 b 8.92±0.1 b 5131.6±73.5 b
2P4M 5.8±0.4 a 44.0±1.8 a 46.6±2.5 a 9.02±0.0 a 5367.8±56.8 a
2018 SP 3.4±0.9 b 46.4±2.2 a 29.0±1.3 d 8.66±0.1 c 4205.7±257.7 d
2P2M 4.6±2.0 ab 47.0±2.5 a 41.8±0.8 b 9.00±0.0 b 5153.8±150.7 b
4P2M 4.4±1.1 ab 46.6±2.6 a 36.7±0.7 c 9.03±0.1 ab 4539.8±144.6 c
4P4M 5.2±1.5 ab 47.2±1.9 a 43.2±0.7 b 9.10±0.1 ab 5249.6±147.3 b
2P4M 6.2±1.1 a 47.2±1.6 a 50.4±1.2 a 9.18±0.0 a 6471.2±236.6 a
[1] 王建林 . 高级耕作学. 北京: 中国农业大学出版社, 2013. pp 123-132.
Wang J L . Advanced Cultivation Science. Beijing: China Agricultural University Press, 2013. pp 123-132(in Chinese).
[2] 陆景陵 . 植物营养学. 北京: 中国农业大学出版社, 2003. pp 23-24.
Lu J L . Plant Nutriology. Beijing: China Agricultural University Press, 2003. pp 23-24(in Chinese).
[3] 吴巍, 赵军 . 植物对氮素吸收利用的研究进展. 中国农学通报, 2010,26(13):75-78.
Wu W, Zhao J . Advances on plants’ nitrogen assimilation and utilization. Chin Agric Sci Bull, 2010,26(13):75-78 (in Chinese with English abstract).
[4] 张亚洁, 周彧然, 杜斌, 杨建昌 . 不同种植方式下氮素营养对陆稻和水稻产量的影响. 作物学报, 2008,34:1005-1013.
doi: 10.3724/SP.J.1006.2008.01005
Zhang Y J, Zhou Y R, Du B, Yang J C . Effects of nitrogen nutrition on grain yield of upland rice and paddy rice under different cultivation methods. Acta Agron Sin, 2008,34:1005-1013 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.01005
[5] 张智猛, 万书波, 戴良香, 宁堂原, 宋文武 . 施氮水平对不同花生品种氮代谢及相关酶活性的影响. 中国农业科学, 2011,44:280-290.
Zhang Z M, Wan S B, Dai L X, Ning T Y, Song W W . Effects of nitrogen application rates on nitrogen metabolism and related enzyme activities of two different peanut cultivars. Sci Agric Sin, 2011,44:280-290 (in Chinese with English abstract).
[6] 武文明, 陈洪俭, 王世济, 魏凤珍, 李金才 . 氮肥运筹对苗期受渍夏玉米干物质和氮素积累与转运的影响. 作物学报, 2015,41:1246-1256.
doi: 10.3724/SP.J.1006.2015.01246
Wu W M, Chen H J, Wang S J, Wei F Z, Li J C . Effects of nitrogen fertilization application regime on dry matter, nitrogen accumulation and transportation in summer maize under waterlogging at the seedling stage. Acta Agron Sin, 2015,41:1246-1256 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.01246
[7] 焦念元, 汪江涛, 尹飞, 马超, 齐付国, 刘领, 付国占, 李友军 . 施用乙烯利和磷肥对玉米//花生间作氮吸收分配及间作优势的影响. 植物营养与肥料学报, 2016,22:1477-1484.
Jiao N Y, Wang J T, Yin F, Ma C, Qi F G, Liu L, Fu G Z, Li Y J . Effects of ethephon and phosphate fertilizer on N absorption and intercropped advantages of maize and peanut intercropping system. Plant Nutr Fert Sci, 2016,22:1477-1484 (in Chinese with English abstract).
[8] 赵平, 郑毅, 汤利, 鲁耀, 肖靖秀, 董艳 . 小麦蚕豆间作施氮对小麦氮素吸收、累积的影响. 中国生态农业学报, 2010,18:742-747.
Zhao P, Zheng Y, Tang L, Lu Y, Xiao J X, Dong Y . Effect of N supply and wheat/faba bean intercropping on N uptake and accumulation of wheat. Chin J Eco-Agric, 2010,18:742-747 (in Chinese with English abstract).
[9] 唐秀梅, 钟瑞春, 揭红科, 刘超, 王泽平, 韩柱强, 蒋菁, 贺梁琼, 李忠, 唐荣华 . 间作花生对木薯碳氮代谢产物及关键酶活性的影响. 中国农学通报, 2011,27(3):94-98.
Tang X M, Zhong R C, Jie H K, Liu C, Wang Z P, Han Z Q, Jiang J, He L Q, Li Z, Tang R H . Effect of interplanting peanut on metabolites and key enzyme activities of carbon-nitrogen metabolism of cassava. Chin Agric Sci Bull, 2011,27(3):94-98 (in Chinese with English abstract).
[10] 焦念元, 李吉明, 汪江涛, 李增嘉, 李友军, 付国占 . 氮磷对玉米花生间作蛋白质与氮代谢特点的影响. 作物杂志, 2014, ( 6):99-105.
Jiao N Y, Li J M, Wang J T, Li Z J, Li Y J, Fu G Z . Effects of nitrogen and phosphorus on protein and nitrogen metabolism characteristics in maize peanut intercropping system. Crops, 2014, ( 6):99-105 (in Chinese with English abstract).
[11] 周瑜, 苏旺, 王舰, 屈洋, 高小丽, 杨璞, 冯佰利 . 不同覆盖方式和施氮量对糜子光合特性及产量性状的影响. 作物学报, 2016,42:873-885.
doi: 10.3724/SP.J.1006.2016.00873
Zhou Y, Su W, Wang J, Qu Y, Gao X L, Yang P, Feng B L , Effects of mulching and nitrogen application on photosynthetic characteristics and yield traits in broomcorn millet. Acta Agron Sin, 2016,42:873-885 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.00873
[12] 王小春, 杨文钰, 邓小燕, 张群, 雍太文, 刘卫国, 杨峰, 毛树明 . 玉/豆和玉/薯模式下玉米氮素吸收利用差异及氮肥调控效应. 作物学报, 2014,40:519-530.
doi: 10.3724/SP.J.1006.2014.00519
Wang X C, Yang W Y, Deng X Y, Zhang Q, Yong T W, Liu W G, Yang F, Mao S M . Differences of nitrogen uptake and utilization and nitrogen regulation effects in maize between maize/soybean and maize/sweet potato relay intercropping systems. Acta Agron Sin, 2014,40:519-530 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00519
[13] 苗锐, 张福锁, 李隆 . 玉米/蚕豆、小麦/蚕豆和大麦/蚕豆间作体系地上部、地下部生物量及作物含氮量分析. 中国农学通报, 2008,24(7):148-152.
Miao R, Zhang F S, Li L . Shoot/root biomass and crops N-content analysis of maize/faba bean, wheat/faba bean and barley/faba bean intercropping systems. Chin Agric Sci Bull, 2008,24(7):148-152 (in Chinese with English abstract).
[14] 朱锦惠, 董艳, 肖靖秀, 郑毅, 汤利 . 小麦与蚕豆间作系统氮肥调控对小麦白粉病发生及氮素累积分配的影响. 应用生态学报, 2017,28:3985-3993.
Zhu J H, Dong Y, Xiao J X, Zheng Y, Tang L . Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system. Chin J Appl Ecol, 2017,28:3985-3993 (in Chinese with English abstract).
[15] 谌俊旭, 黄山, 范元芳, 王锐, 刘沁林, 杨文钰, 杨峰 . 单作套作大豆叶片氮素积累与光谱特征. 作物学报, 2017,43:1835-1844.
doi: 10.3724/SP.J.1006.2017.01835
Chen J X, Huang S, Fan Y F, Wang R, Liu Q L, Yang W Y, Yang F . Remote detection of canopy leaf nitrogen status in soybean by hyperspectral data under monoculture and intercropping systems. Acta Agron Sin, 2017,43:1835-1844 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01835
[16] Beadford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254.
doi: 10.1006/abio.1976.9999 pmid: 942051
[17] 刘萍, 李明军 . 植物生理学实验(第2版). 北京: 科学出版社, 2016. pp 80-81, 106-108.
Liu P, Li M J . Plant Physiology Experiment, 2nd edn. Beijing: Science Press, 2016. pp 80-81, 106-108(in Chinese).
[18] Cren M, Hirel B . Glutamine synthetase in higher plants: regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol, 1999,40:1187-1193.
doi: 10.1007/s00425-009-0935-1 pmid: 19415324
[19] 宫香伟, 韩浩坤, 张大众, 李境, 王孟, 薛志和, 高小丽, 杨璞, 冯佰利 . 氮肥对糜子籽粒灌浆期农田小气候及产量的调控效应. 中国农业大学学报, 2017,22(12):10-19.
Gong X W, Han H K, Zhang D Z, Li J, Wang M, Xue Z H, Gao X L, Yang P, Feng B L . Effects of nitrogen fertilizers on the field microclimate and yield of broomcorn millet at grain filling stage. J China Agric Univ, 2017,22(12):10-19 (in Chinese with English abstract).
[20] 尹彩侠, 李前, 孔丽丽, 秦裕波, 王蒙, 于雷, 刘春光, 王立春, 侯云鹏 . 控释氮肥减施对春玉米产量、氮素吸收及转运的影响. 中国农业科学, 2018,51:3941-3950.
doi: 10.3864/j.issn.0578-1752.2018.20.012
Yin C X, Li Q, Kong L L, Qin Y B, Wang M, Yu L, Liu C G, Wang L C, Hou Y P . Effect of reduced controlled-release nitrogen fertilizer application on yield, nitrogen absorption and transportation of spring maize. Sci Agric Sin, 2018,51:3941-3950 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.20.012
[21] 董宛麟, 于洋, 张立祯, 潘志华, 苟芳, 邸万通, 赵沛义, 潘学标 . 向日葵和马铃薯间作条件下氮素的吸收和利用. 农业工程学报, 2013,29(7):98-108.
Dong W L, Yu Y, Zhang L Z, Pan Z H, Gou F, Di W T, Zhao P Y, Pan X B . Nitrogen uptake and utilization in sunflower and potato intercropping. Trans CSAE, 2013,29(7):98-108 (in Chinese with English abstract).
[22] 沈其荣, 褚贵新, 曹金留, 曹云, 殷晓燕 . 从氮素营养的角度分析旱作水稻与花生间作系统的产量优势. 中国农业科学, 2004,37:1177-1182.
Shen Q R, Chu G X, Cao J L, Cao Y, Yin X Y . Yield advantage of groundnut intercropped with rice cultivated in aerobic soil from the viewpoint of plant nitrogen nutrition. Sci Agric Sin, 2004,37:1177-1182 (in Chinese with English abstract).
[23] 文熙宸, 王小春, 邓小燕, 张群, 蒲甜, 刘国丹, 杨文钰 . 玉米-大豆套作模式下氮肥运筹对玉米产量及干物质积累与转运的影响. 作物学报, 2015,41:448-457.
doi: 10.3724/SP.J.1006.2015.00448
Wen X C, Wang X C, Deng X Y, Zhang Q, Pu T, Liu G D, Yang W Y . Effects of nitrogen management on yield and dry matter accumulation and translocation of maize in maize-soybean relay-cropping system. Acta Agron Sin, 2015,41:448-457 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00448
[24] Duchene O, Vian J F, Celette F . Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms: a review. Agric Ecosys Environ, 2017,240:148-161.
doi: 10.1016/j.agee.2017.02.019
[25] 易镇邪, 王璞, 申丽霞, 张红芳, 刘明, 戴明宏 . 不同类型氮肥对夏玉米氮素累积、转运与氮肥利用的影响. 作物学报, 2006,32:772-778.
Yi Z X, Wang P, Shen L X, Zhang H F, Liu M, Dai M H . Effects of different types of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen fertilizer utilization in summer maize. Acta Agron Sin, 2006,32:772-778 (in Chinese with English abstract).
[26] Osaki M, Shinano T, Tadano T . Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops. Soil Sci Plant Nutr, 1991,37:117-128.
doi: 10.1080/00380768.1991.10415017
[27] 李念念, 孙敏, 高志强, 张娟, 张慧芋, 梁艳妃, 杨清山, 杨珍平, 邓妍 . 极端年型旱地麦田深松和覆盖播种水分消耗与植株氮素吸收、利用关系的研究. 中国农业科学, 2018,51:3455-3469.
doi: 10.3864/j.issn.0578-1752.2018.18.003
Li N N, Sun M, Gao Z Q, Zhang J, Zhang H Y, Liang Y F, Yang Q S, Yang Z P, Deng Y . A study on the relationship between water consumption and nitrogen absorption, utilization under sub-soiling during the fallow period plus mulched-sowing in humid and dry years of dryland wheat. Sci Agric Sin, 2018,51:3455-3469 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.18.003
[28] 何萍, 金继运, 林葆 . 氮肥用量对春玉米叶片衰老的影响及其机理研究. 中国农业科学, 1998,31(3):66-71.
He P, Jin J Y, Lin B . Effect of N application rates on leaf senescence and its mechanism in spring maize. Sci Agric Sin, 1998,31(3):66-71 (in Chinese with English abstract).
[29] 宫香伟, 李境, 马洪驰, 陈光华, 王孟, 杨璞, 高金锋, 冯佰利 . 黄土高原旱作区糜子-绿豆带状种植农田小气候特征与产量效应. 应用生态学报, 2018,29:3256-3266.
Gong X W, Li J, Ma H C, Chen G H, Wang M, Yang P, Gao J F, Feng B L . Field microclimate and yield for proso millet intercropping with mung bean in the dryland of loess plateau, Northwest China. Chin J Appl Ecol, 2018,29:3256-3266 (in Chinese with English abstract).
[30] 宫香伟, 韩浩坤, 张大众, 李境, 王孟, 薛志和, 杨璞, 高小丽, 冯佰利 . 氮肥运筹对糜子生育后期干物质积累与转运及叶片氮素代谢的调控效应. 中国农业科学, 2018,51:1045-1056.
doi: 10.3864/j.issn.0578-1752.2018.06.004
Gong X W, Han H K, Zhang D Z, Li J, Wang M, Xue Z H, Yang P, Gao X L, Feng B L . Effects of nitrogen fertilizer on dry matter accumulation, transportation and nitrogen metabolism in functional leaves of broomcorn millet at late growth stage. Sci Agric Sin, 2018,51:1045-1056 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.06.004
[31] 孙永健, 孙园园, 严奉君, 杨志远, 徐徽, 李玥, 王海月, 马均 . 氮肥后移对不同氮效率水稻花后碳氮代谢的影响. 作物学报, 2017,43:407-419.
doi: 10.3724/SP.J.1006.2017.00407
Sun Y J, Sun Y Y, Yan F J, Yang Z Y, Xu H, Li Y, Wang H Y, Ma J . Effects of postponing nitrogen topdressing on post-anthesis carbon and nitrogen metabolism in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2017,43:407-419 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00407
[32] 孙于卜, 毕华兴, 段航旗, 彭瑞东, 王晶晶 . 苹果-大豆间作系统细根分布变异及地下竞争. 生态学杂志, 2019,38:459-466.
Sun Y B, Bi H X, Duan H Q, Peng R D, Wang J J . Variation of fine root distribution and belowground competition in apple- soybean intercropping system. Chin J Ecol, 2019,38:459-466 (in Chinese with English abstract).
[33] Garnett T, Conn V, Kaiser B N . Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ, 2009,32:1272-1283.
doi: 10.1111/j.1365-3040.2009.02011.x pmid: 19558408
[34] Liu N, Wang J X, Guo Q F, Wu S H, Rao X Q, Cai X, Lin Z F . Alterations in leaf nitrogen metabolism indicated the structural changes of subtropical forest by canopy addition of nitrogen. Ecotoxicol Environ Safety, 2018,160:134-143.
doi: 10.1016/j.ecoenv.2018.05.037 pmid: 29800880
[35] 张智猛, 张威, 胡文广, 矫岩林, 王磊, 李伟芳 . 高产花生氮素代谢相关酶活性变化的研究. 花生学报, 2006,35(1):8-12.
Zhang Z M, Zhang W, Hu W G, Jiao Y L, Wang L, Li W F . Study on enzymatic activity correlative with nitrogen metabolism in high-yield peanut. J Peanut Sci, 2006,35(1):8-12 (in Chinese with English abstract).
[36] 王小纯, 王晓航, 熊淑萍, 马新明, 丁世杰, 吴克远, 郭建彪 . 不同供氮水平下小麦品种的氮效率差异及其氮代谢特征. 中国农业科学, 2015,48:2569-2579.
doi: 10.3864/j.issn.0578-1752.2015.13.009
Wang X C, Wang X H, Xiong S P, Ma X M, Ding S J, Wu K Y, Guo J B . Differences in nitrogen efficiency and nitrogen metabolism of wheat varieties under different nitrogen levels. Sci Agric Sin, 2015,48:2569-2579 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.13.009
[37] 宫香伟, 刘春娟, 冯乃杰, 郑殿峰, 王畅 . S3307和DTA-6对大豆不同冠层叶片光合特性及产量的影响. 植物生理学报, 2017,53:1867-1876.
Gong X W, Liu C J, Feng N J, Zheng D F, Wang C . Effects of plant growth regulators S3307 and DTA-6 on photosynthetic characteristics and yield in soybean canopy. Acta Phytophysiol Sin, 2017,53:1867-1876 (in Chinese with English abstract).
[38] Yin W, Chen G P, Feng F X, Guo Y, Hu F L, Chen G D, Zhao C, Yu A Z, Chai Q . Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Res, 2017,204:42-51.
doi: 10.1016/j.fcr.2017.01.005
[39] Zhang Y Y, Han H K, Zhang D Z, Li J, Gong X W, Feng B L, Xue Z H, Yang P . Effects of ridging and mulching combined practices on proso millet growth and yield in semi-arid regions of China. Field Crops Res, 2017,213:65-74.
doi: 10.1016/j.fcr.2017.06.015
[40] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强 . 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017,43:754-762.
doi: 10.3724/SP.J.1006.2017.00754
Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q . Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agron Sin, 2017,43:754-762 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00754
[41] 段志平, 刘天煜, 张永强, 焦超, 栾鹏飞, 杨涛, 石岩松, 田钰泉, 张伟, 李鲁华 . 离树间距对枣麦间作小麦光合特性及产量的影响. 麦类作物学报, 2017,37:1445-1452.
Duan Z P, Liu T Y, Zhang Y Q, Jiao C, Luan P F, Yang T, Shi Y S, Tian Y Q, Zhang W, Li L H . Effect of distance from tree line on photosynthetic characteristics and yield of wheat in jujube-wheat intercropping. J Triticeae Crops, 2017,37:1445-1452 (in Chinese with English abstract).
[42] 王志梁, 任媛媛, 张岁岐 . 黄土高原不同玉米-大豆间作模式对玉米生长发育的影响. 水土保持通报, 2014,34(6):321-326.
Wang Z L, Ren Y Y, Zhang S Q . Effect of maize-soybean intercropping modes on maize growth on loess plateau. Bull Soil Water Conserv, 2014,34(6):321-326 (in Chinese with English abstract).
[43] 原小燕, 张云云, 符明联, 陆建美, 王建丽, 罗金超, 刘珏, 赵凯琴, 田正书 . 间作带型、宽窄行与密植对玉米和花生产量及相关性状的影响. 西南农业学报, 2018,31:2288-2293.
Yuan X Y, Zhang Y Y, Fu M L, Lu J M, Wang J L, Luo J C, Liu J, Zhao K Q, Tian Z S . Effects of intercropping, row distance and planting density on yield and related traits of maize and peanut. Southwest Chin J Agric Sci, 2018,31:2288-2293 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!