欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1868-1879.doi: 10.3724/SP.J.1006.2019.93011

• 耕作栽培·生理生化 • 上一篇    下一篇

种植密度对不同株型玉米冠层光能截获和产量的影响

柏延文,杨永红,朱亚利,李红杰,薛吉全,张仁和()   

  1. 西北农林科技大学农学院, 陕西杨凌 712100
  • 收稿日期:2019-03-04 接受日期:2019-06-24 出版日期:2019-12-12 网络出版日期:2019-07-22
  • 通讯作者: 张仁和
  • 作者简介:柏延文, E-mail: yanwbai1993@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0300304);陕西省重点研发计划项目(2017ZDCXL-NY-02-02);陕西省技术创新引导专项(2019TG-002)

Effect of planting density on light interception within canopy and grain yield of different plant types of maize

Yan-Wen BAI,Yong-Hong YANG,Ya-Li ZHU,Hong-Jie LI,Ji-Quan XUE,Ren-He ZHANG()   

  1. College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Received:2019-03-04 Accepted:2019-06-24 Published:2019-12-12 Published online:2019-07-22
  • Contact: Ren-He ZHANG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0300304);the Shaanxi Key Research and Development Program(2017ZDCXL-NY-02-02);the Shaanxi Technology Innovation and Guide Project(2019TG-002)

摘要:

为了明确密植栽培中不同株型玉米的冠层光能截获、物质生产与产量的关系, 以不同株型玉米陕单609 (紧凑型)、秦龙14 (中间型)和陕单8806 (平展型)为试验材料, 设置4个种植密度(4.5×10 4、6.0×10 4、7.5×10 4和9.0×10 4株 hm -2), 于2016—2017年开展大田试验, 研究密度对形态特性、冠层光分布、灌浆参数以及干物质积累等的影响。结果表明, 陕单609、秦龙14和陕单8806两年平均产量依次为12,176、9624和8533 kg hm -2, 分别在9.0×10 4、7.5×10 4和6.0×10 4株 hm -2达到高产, 产量较低密度分别提高了26.9%、20.4%和19.7%; 随着种植密度的增加, 叶面积降低, LAI和叶向值增加, 在高密度下陕单609中间层由于较大的叶片和叶向值能截获更多的光能, 秦龙14次之; 灌浆速率达到最大时的天数(Dmax)、粒重(Wmax)、籽粒最大灌浆速率(Gmax)、平均灌浆速率(Gave)、籽粒活跃灌浆期(P)均随密度的增加而降低, 高密度下陕单609的Dmax分别较秦龙14和陕单8806早1.4 d和3.0 d, WmaxP分别高于秦龙14 (0.3 g和3.3 d)和陕单8806 (1.1 g和5.4 d); 吐丝后干物质积累量、干物质转运量及其对籽粒的贡献率随密度的增加呈先升高后降低的趋势。在高密度下, 陕单609花后干物质积累量、花后干物质转运量和干物质转移对籽粒的贡献高于秦龙14 (5.1%、36.0%、33.5%)和陕单8806 (26.6%、46.7%、59.1%)。穗位层光能截获与产量(r = 0.631)显著正相关(P < 0.05), 与花后干物质积累量(r = 0.661)和平均灌浆速率(r = 0.859)极显著相关(P < 0.01)。可见, 与秦龙14和陕单8806相比, 紧凑型品种陕单609密植下调控穗上部叶片直立, 改善冠层中下部光分布, 维持较高的光合绿叶面积, 延缓冠层叶片衰老, 增加花后营养器官光合产物的积累以及籽粒灌浆速率, 实现了增产。

关键词: 玉米, 株型, 种植密度, 冠层结构, 干物质积累转运, 籽粒灌浆

Abstract:

The objective of this study was to clarify the relationship between light interception in canopy and dry matter production and grain yield in different plant types of maize. The response of morphological characteristics, canopy light distribution, grain filling parameters and dry matter accumulation were studied using three different maize hybrids Shaandan 609 (SD609, compact), Qinlong 14 (QL14, semi-compact), and Shaandan 8806 (SD8806, flat) with four plant densities (4.5×10 4, 6.0×10 4, 7.5×10 4, and 9.0×10 4plants hm -2) in the field from 2016 to 2017. The average yields of SD609, QL14, and SD8806 were 12,176, 9624, and 8533 kg hm -2, respectively, within two years, reaching high yields under 9.0×10 4, 7.5×10 4, and 6×10 4 plants hm -2, with the yield increase of 26.9%, 20.4%, and 19.7% compared with those under 4.5×10 4 plants hm -2, respectively. With the increase of plant density, leaf area decreased, but LAI and leaf orientation value increased. The middle leaves of SD609 were more upright and larger than those of QL14 under 9×10 4 plants hm -2. With increasing plant density, Dmax (days to the maximum grain-filling rate), Wmax (kernel weight at the maximum grain filling rate), Gmax (maximum grain-filling rate), Gave (average grain-filling rate) and P (active filling period) decreased, the Dmax for SD609 was 1.4 days and 3.0 days earlier than that of QL14 and SD8806, and the Wmax and P were higher than those of SD636 (0.3 g and 3.3 d) and SD8806 (1.1 g and 5.4 d), respectively. The dry matter accumulation after silking and the contribution of dry matter transportation to grain yield increased and then decreased with the increase of plant density, the accumulation, transportation and contribution to grain of dry matter after anthesis were higher in SD609 than QL14 (5.1%, 36.0%, 33.5%) and SD8806 (26.6%, 46.7%, 59.1%). The light interception in the ear canopy was significantly correlated with yield (r = 0.631, P < 0.05), the dry matter accumulation after silking (r = 0.661) and average grain filling rate (r = 0.859) at P < 0.01. Thus, compared with QL14 and SD8806, SD609 could regulate the mid and upper leaves more vertical under close planting, improve the light distribution in the mid and lower canopy, maintain a higher area of green leaves, delay the senescence of canopy leaves, increase dry matter accumulation after anthesis and grain filling rate, so obtain a higher grain yield.

Key words: maize, plant type, plant density, canopy structure, dry matter accumulation and translocation, grain filling

表1

种植密度对不同株型玉米产量及其构成因子的影响"

年份
Year
品种
Hybrids
密度
Density
(×104 plants hm-2)
穗数
Ears hm-2
穗粒数
No. ear-1
百粒重
100-kernels weight
(g)
籽粒产量
Grain yield
(kg hm-2)
2016 陕单609 4.5 44689±851 d 589±11.2 a 37.8±0.0 a 9950±448 d
Shaandan 609 6.0 57807±1002 c 561±10.1 b 35.4±0.1 b 11483±1038 c
7.5 74482±2658 b 514±11.5 c 33.8±0.3 c 12940±885 b
9.0 90713±3321 a 486±11.6 d 31.8±0.1 d 14020±921 a
秦龙14 4.5 48802±1568 d 553±14.5 a 31.3±0.6 a 8447±236 c
Qinlong14 6.0 61142±1258 c 528±11.4 b 29.7±1.1 b 9588±682 b
7.5 74814±995 b 492±11.2 c 28.7±0.8 c 10564±965 a
9.0 90601±3584 a 402±8.2 d 26.8±1.1 d 9761±689 b
陕单8806 4.5 46912±2214 d 538±15.3 a 30.8±1.5 a 7774±398 c
Shaandan 8806 6.0 60695±3654 c 515±15.6 b 29.5±0.1 b 9221±991 a
7.5 73591±2256 b 441±7.8 c 26.1±0.1 c 8470±786 b
9.0 88800±1502 a 371±8.1 d 24.3±0.0 d 8006±683 c
差异来源Source of variation
密度 Density (D) ** ** ** **
品种 Hybrids (H) ns ** ** **
密度×品种 D×H ns ** ** **
2017 陕单609 4.5 47083±2523 d 613±19.8 a 35.7±0.8 a 10304±1211 c
Shaandan 609 6.0 59444±2216 c 588±21.5 b 33.6±1.1 b 11744±923 b
7.5 76389±3650 b 547±11.1 c 31.8±0.9 c 13288±1065 a
9.0 89361±4026 a 502±10.6 d 30.5±0.5 d 13682±689 a
秦龙14 4.5 46750±2601 d 574±10.3 a 32.1±1.1 a 8614±738 d
Qinlong 14 6.0 60417±668 c 528±9.6 b 30.8±1.2 b 9825±456 b
7.5 74027±2789 b 501±11.2 c 29.3±0.5 c 10867±669 a
9.0 86806±1269 a 410±12.3 d 26.2±0.7 d 9325±359 c
陕单8806 4.5 43639±754 d 545±16.8 a 31.5±1.1 a 7492±775 d
Shaandan 8806 6.0 61917±2105 c 518±19.2 b 30.6±0.4 b 9814±486 a
7.5 71639±1526 b 455±9.3 c 28.4±0.6 c 9257±698 b
9.0 82639±3058 a 386±6.3 d 25.8±0.0 d 8230±668 c
差异来源 Source of variation
密度 Density (D) ** ** ** **
品种 Hybrids (H) * ** ** **
密度×品种 D×H * ** ** **

表2

不同株型玉米产量构成因子与种植密度的回归关系"

项目
Item
品种
Hybrid
回归方程
Regression equation
R2
穗粒数 陕单609 Shaandan 609 y= -24.3x+714.3 0.992**
Kernel number 秦龙14 Qinlong 14 y= -33.6x+725.3 0.930**
陕单8806 Shaandan 8806 y= -37.2x+722.0 0.964**
粒重 陕单609 Shaandan 609 y= -1.2x+42.1 0.994**
Kernel weight 秦龙14 Qinlong 14 y= -1.1x+36.9 0.974**
陕单8806 Shaandan 8806 y= -1.4x+37.9 0.975**

图5

种植密度对不同株型玉米灌浆速率的影响 缩写同图1。"

表3

种植密度对不同株型玉米籽粒灌浆参数的影响"

年份
Year
品种
Cultivar
密度
Density (×104 plant hm-2)
Richards方程
Richards equation
R2 Dmax
(d)
Wmax
(g 100-kernel-1)
Gmax
(g kernel-1 d-1)
Gave
(g kernel-1 d-1)
P
(d)
2016 陕单609 4.5 y=36.8/[1+exp(1.87-0.11x)]^3.3 0.9993 28.7±0.3 a 15.6±0.1 a 1.27±0.06 a 0.86±0.01 a 54.2±1.3 a
Shaandan 609 6.0 y=35.4/[1+exp(2.58-0.11x)]^2.2 0.9995 28.4±0.3 b 15.4±0.2 b 1.17±0.02 b 0.79±0.02 b 52.6±0.9 b
7.5 y=34.7/[1+exp(1.85-0.10x)]^3.1 0.9993 28.1±0.4 c 14.6±0.3 c 1.07±0.02 c 0.73±0.01 c 51.5±1.1 c
9.0 y=33.2/[1+exp(1.51-0.09x)]^3.8 0.9989 27.9±0.4 d 13.7±0.3 d 0.98±0.01 d 0.66±0.00 d 50.1±0.7 d
秦龙14 4.5 y=33.2/[1+exp(1.15-0.09x)]^4.4 0.9992 30.5±0.2 a 13.9±0.4 a 1.03±0.02 a 0.70±0.00 a 52.6±0.9 a
Qinlong 14 6.0 y=32.3/[1+exp(1.73-0.09x)]^2.8 0.9988 30.2±0.3 b 13.7±0.1 b 0.93±0.02 b 0.65±0.01 b 51.5±1.2 b
7.5 y=30.2/[1+exp(2.62-0.10x)]^1.8 0.9989 30.1±0.6 c 13.6±0.1 b 0.89±0.03 c 0.62±0.02 c 50.2±1.1 c
9.0 y=29.5/[1+exp(2.36-0.09x)]^1.9 0.9976 29.7±0.3 c 13.2±0.2 c 0.79±0.04 d 0.58±0.03 d 49.5±0.8 d
陕单8806 4.5 y=30.7/[1+exp(4.55-0.15x)]^0.8 0.9992 31.8±0.3 a 13.8±0.5 a 1.01±0.06 a 0.70±0.00 a 49.3±0.7 a
Shaandan 8806 6.0 y=29.0/[1+exp(4.11-0.14x)]^0.9 0.9993 31.7±0.1 b 13.6±0.1 b 0.97±0.01 b 0.64±0.01 b 47.1±1.1 b
7.5 y=28.6/[1+exp(3.71-0.13x)]^1.0 0.9997 31.4±0.6 c 13.4±0.4 c 0.90±0.04 c 0.60±0.01 c 46.7±0.6 c
9.0 y=28.8/[1+exp(0.68-0.08x)]^1.5 0.9993 31.2±0.5 d 12.9±0.2 d 0.84±0.02 d 0.53±0.04 d 45.7±0.3 d
2017 陕单609 4.5 y=37.6/[1+exp(2.88-0.11x)]^7.8 0.9992 29.6±0.2 a 14.9±0.2 a 1.07±0.03 a 0.87±0.01 a 55.1±0.5 a
Shaandan 609 6.0 y=34.8/[1+exp(0.66-0.08x)]^5.4 0.9991 29.4±0.2 b 13.9±0.3 b 0.95±0.01 b 0.83±0.01 b 53.7±0.8 b
7.5 y=33.3/[1+exp(0.91-0.08x)]^4.4 0.9994 29.1±0.5 c 13.5±0.2 c 0.88±0.04 c 0.75±0.00 c 52.4±0.3 c
9.0 y=32.2/[1+exp(0.59-0.08x)]^5.5 0.9995 28.9±0.4 d 12.8±0.4 d 0.84±0.03 d 0.69±0.00 d 51.9±1.2 d
秦龙14 4.5 y=30.8/[1+exp(1.68-0.08x)]^1.1 0.9996 30.6±0.3 a 13.7±0.5 a 0.96±0.02 a 0.69±0.01 a 52.5±0.3 a
Qinlong 14 6.0 y=28.8/[1+exp(1.77-0.08x)]^1.1 0.9994 30.2±0.7 b 13.2±0.3 b 0.92±0.06 b 0.67±0.02 a 52.1±0.2 b
7.5 y=29.9/[1+exp(2.01-0.09x)]^2.3 0.9992 29.9±0.1 c 13.0±0.3 c 0.86±0.04 c 0.63±0.01 b 51.4±0.8 c
9.0 y=26.9/[1+exp(3.39-0.12x)]^1.4 0.9994 29.6±0.2 d 12.7±0.3 d 0.82±0.02 d 0.58±0.03 c 46.0±1.1 d
陕单8806 4.5 y=32.4/[1+exp(1.06-0.09x)]^4.3 0.9995 32.3±0.4 a 13.4±0.4 a 0.96±0.01 a 0.67±0.04 a 49.4±1.0 a
Shaandan 8806 6.0 y=31.1/[1+exp(1.75-0.10x)]^2.8 0.9993 32.1±0.2 a 13.2±0.1 a 0.95±0.01 a 0.65±0.01 a 48.1±0.3 a
7.5 y=29.8/[1+exp(1.30-0.09x)]^3.8 0.9994 31.8±0.3 b 12.3±0.3 b 0.91±0.00 b 0.61±0.01 b 46.6±0.5 b
9.0 y=28.8/[1+exp(0.68-0.08x)]^5.6 0.9903 31.5±0.5 c 11.5±0.2 c 0.80±0.07 c 0.51±0.02 c 45.5±0.4 c

表4

不同株型玉米花后干物质积累、分配及转运"

年份
Year
品种
Hybrid
密度
Density
(×104 plant hm-2)
吐丝期干物质
积累量DMAS
(kg hm-2)
成熟期干物质积累量DMAM
(kg hm-2)
花后干物质转运量TADM
(kg hm-2)
花后干物质转运对
籽粒的贡献CGDMT
(%)
2016 陕单609 4.5 7797.5±205 d 13689.1±894 d 1756.8±102 d 27.8±1.1 c
Shaandan 609 6.0 9756.1±189 c 15885.1±954 c 2812.5±135 c 29.5±1.6 b
7.5 10088.2±697 b 19356.0±1011 b 3048.5±205 b 35.0±0.5 a
9.0 11189.6±1035 a 20995.1±1242 a 4105.3±152 a 36.4±0.6 a
秦龙14 4.5 6791.6±305 c 11735.0±899 d 1665.8±88 c 14.0±0.5 d
Qinlong 14 6.0 7856.6±195 b 14659.2±1168 c 2020.2±105 b 21.0±0.9 c
7.5 9964.2±558 a 16185.1±942 b 3165.0±119 a 33.0±0.5 a
9.0 9285.8±386 a 18526.1±1049 a 2534.0±168 b 27.0±1.1 b
陕单8806 4.5 7761.3±411 d 11089.0±863 d 1687.0±99 c 11.9±0.1 d
Shaandan 8806 6.0 8397.0±414 c 13560.2±756 c 2812.0±136 a 22.3±0.6 a
7.5 9654.2±765 b 14996.1±1269 b 2630.3±166 b 19.2±0.4 b
9.0 9479.3±669 a 17200.8±1036 a 1942.2±104 c 16.6±0.6 c
2017 陕单609 4.5 8181.2±319 d 13058.4±693 d 2144.2±99 d 26.3±1.3 c
Shaandan 609 6.0 9547.5±406 c 16113.1±528 c 2765.8±188 c 31.6±0.8 b
7.5 9998.1±546 b 18859.1±1466 b 3326.4±205 b 34.2±0.5 a
9.0 10636.2±735 a 21144.0±1389 a 4023.6±86 a 35.0±0.6 a
秦龙14 4.5 6103.8±365 d 10996.2±1022 d 1896.3±68 d 17.6±0.4 d
Qinlong 14 6.0 7764.6±532 c 13986.2±689 c 2156.9±139 c 22.6±0.4 c
7.5 9688.5±489 a 16785.4±779 b 2989.0±125 a 30.5±1.5 a
9.0 9105.9±759 b 19205.3±823 a 2675.0±165 b 27.6±0.5 b
陕单8806 4.5 7722.6±532 c 11356.8±996 d 1612.3±131 c 14.1±0.3 c
Shaandan 8806 6.0 8180.3±418 b 14259.6±668 c 2655.2±158 a 21.4±1.1 a
7.5 9059.4±398 a 15119.6±1044 b 2388.9±201 b 19.5±0.5 b
9.0 9103.5±564 a 18004.2±916 a 2113.2±122 b 15.8±0.4 c

表5

物质转运、光能截获和籽粒形成参数的相关性分析"

项目
Item
光能截获率 The fraction of light interception
H1 H2 H3 H4
籽粒产量 Grain yield -0.101 0.020 0.631* 0.465*
平均灌浆速率 Average grain-filling rate 0.782** 0.803** 0.859** 0.541**
花后干物质积累量 Dry matter accumulation after silking -0.302 0.205 0.661** 0.527**
花后干物质转运量 Transfer amount of dry matter 0.478* 0.369 0.689* 0.696**

图1

种植密度对不同株型玉米不同叶位叶面积的影响(吐丝期) SD609: 陕单609; QL14: 秦龙14; SD8806: 陕单8806。"

图2

种植密度对不同株型玉米叶面积指数的影响 V6: 拔节期; V12: 大口期; VT: 吐丝期; R3: 灌浆期; R6: 成熟期。缩写同图1。"

图3

种植密度对不同株型玉米叶向值的影响缩写同图1和图2。Abbreviations are the same as those given in Figs. 1 and 2."

图4

种植密度对不同株型玉米冠层透光率的影响 H1、H2、H3、H4、H5分别为距地面15 cm、雌穗至地面中部、穗部、顶部至雌穗中部和顶部5个高度。缩写同图1。"

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明 . 中国玉米栽培研究进展与展望. 中国农业科学, 2017,50:1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M . Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017,50:1941-1959 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.001
[2] 王元东, 段民孝, 邢锦丰, 王继东, 张春原, 张雪原, 赵久然 . 玉米理想株型育种的研究进展与展望. 玉米科学, 2008,16(3):47-50.
Wang Y D, Duan M X, Xing J F, Wang J D, Zhang C Y, Zhang X Y, Zhao J R . Progress and prospect in ideal plant type bre eding in maize. J Maize Sci, 2008,16(3):47-50 (in Chinese with English abstract).
[3] 陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然 . 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012,38:80-85.
doi: 10.3724/SP.J.1006.2012.00080
Chen G P, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y H, Wang Y D, Song H X, Zhao J R . Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. Acta Agron Sin, 2012,38:80-85 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00080
[4] Pierik R, De Wit M . Shade avoidance: phytochrome signalling and other aboveground neighbour detection cues. J Exp Bot, 2014,65:2815.
doi: 10.1093/jxb/ert389
[5] Zhu J, Vos J, van der Werf W, van der Putten P E, Evers J B . Early competition shapes maize whole-plant development in mixed stands. J Exp Bot, 2014,65:641-653.
doi: 10.1093/jxb/ert408
[6] Xue J, Gou L, Zhao Y S, Yao M N, Yao H S, Tian J S, Zhang W F . Effects of light intensity within the canopy on maize lodging. Field Crops Res, 2016,188:133-141.
doi: 10.1016/j.fcr.2016.01.003
[7] Pepper G E, Pearce R B, Mock J J . Leaf orientation and yield of maize. Crop Sci, 1977,17:883-886.
doi: 10.2135/cropsci1977.0011183X001700060017x
[8] Huang S B, Gao Y B, Li Y B, Xu L N, Tao H B, Wang P . Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. Crop J, 2017,5:52-62.
doi: 10.1016/j.cj.2016.06.018
[9] Gou L, Xue J, Qi B Q, Ma B Y, Zhang W F . Morphological variation of maize cultivars in response to elevated plant densities. Agron J, 2017,109:1443.
doi: 10.2134/agronj2016.11.0675
[10] Yan P, Chen Y Q, Sui P, Vogel A, Zhang X P . Effect of maize plant morphology on the formation of apical kernels at different sowing dates and under different plant densities. Field Crops Res, 2018,223:83-92.
doi: 10.1016/j.fcr.2018.04.008
[11] Wei S S, Wang X Y, Jiang D, Dong S T . Physiological and proteome studies of maize (Zea mays L.) in response to leaf removal under high plant density. BMC Plant Biol, 2018,18:378.
doi: 10.1186/s12870-018-1607-8
[12] 魏珊珊, 王祥宇, 董树亭 . 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014,25:441-450.
Wei S S, Wang X Y, Dong S T . Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chin J Appl Ecol, 2014,25:441-450 (in Chinese with English abstract).
[13] Xu W J, Liu C W, Wang K R, Xie R Z, Ming B, Wang Y H, Zhang G Q, Liu G Z, Zhao R L, Fan P P, Li S K, Hou P . Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Res, 2017,212:126-134.
doi: 10.1016/j.fcr.2017.05.006
[14] Haro R J, Baldessari J, Otegui M E . Genetic improvement of peanut in Argentina between 1948 and 2004: light interception, biomass production and radiation use efficiency. Field Crops Res, 2017,204:222-228.
doi: 10.1016/j.fcr.2017.01.021
[15] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁 . 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性. 作物学报, 2018,44:414-422.
doi: 10.3724/SP.J.1006.2018.00414
Xu T J, Lyu T F, Zhao J R, Wang R H, Chen C Y, Liu Y E, Liu X Z, Wang Y D, Liu C G . Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agron Sin, 2018,44:414-422 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00414
[16] 张仁和, 王博新, 杨永红, 杨晓军, 马向峰, 张兴华, 郝引川, 薛吉全 . 陕西灌区高产春玉米物质生产与氮素积累特性. 中国农业科学, 2017,50:2238-2246.
doi: 10.3864/j.issn.0578-1752.2017.12.005
Zhang R H, Wang B X, Yang Y H, Yang X J, Ma X F, Zhang X H, Hao Y C, Xue J Q . Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi. Sci Agric Sin, 2017,50:2238-2246 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.12.005
[17] Mueller S M, Vyn T J . Maize plant resilience to N stress and post-silking N capacity changes over time: a review. Front Plant Sci, 2016,7(7):53.
[18] 肖万欣, 刘晶, 史磊, 赵海岩, 王延波 . 氮密互作对不同株型玉米形态、光合性能及产量的影响. 中国农业科学, 2017,50:3690-3701.
doi: 10.3864/j.issn.0578-1752.2017.19.006
Xiao W X, Liu J, Shi L, Zhao H Y, Wang Y B . Effect of nitrogen and density interaction on morphological traits, photosynthetic property and yield. Sci Agric Sin, 2017,50:3690-3701 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.19.006
[19] Richards F J . A flexible growth function for empirical use. J Exp Bot, 1959,10:290-301.
doi: 10.1093/jxb/10.2.290
[20] 郭江, 郭新宇, 郭程瑾, 张凤路, 赵春江, 肖凯 . 密度对不同株型玉米群体结构的调控效应. 华北农学报, 2008,23(1):149-153.
doi: 10.7668/hbnxb.2008.01.033
Guo J, Guo X Y, Guo C J, Zhang F L, Zhao C J, Xiao K . The effect of density on population structure of maize with different plant types. Acta Agric Boreali-Sin, 2008,23(1):149-153 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2008.01.033
[21] 徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军 . 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017,50:2463-2475.
doi: 10.3864/j.issn.0578-1752.2017.13.006
Xu Z G, Sun L, Wang H, Wang S L, Wang X L, Li J . Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Sci Agric Sin, 2017,50:2463-2475 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.13.006
[22] 胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭 . 密植条件下玉米品种混播对夏玉米光合性能及产量的影响. 作物学报, 2018,44:920-930.
doi: 10.3724/SP.J.1006.2018.00920
Hu D D, Zhang J W, Liu P, Zhao B, Dong S T . Effects of mixed-cropping with different varieties on photosynthetic characteristics and yield of summer maize under close planting condition. Acta Agron Sin, 2018,44:920-930 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00920
[23] 李荣发, 刘鹏, 杨清龙, 任昊, 董树亭, 张吉旺, 赵斌 . 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响. 作物学报, 2018,44:1032-1042.
Li R F, Liu P, Yang Q L, Ren H, Dong S T, Zhang J W, Zhao B . Effects of lower leaf senescence on carbon and nitrogen distribution and yield formation in maize (Zea mays L.) with high planting density. Acta Agron Sin, 2018,44:1032-1042 (in Chinese with English abstract).
[24] 黄润东, 董树亭, 刘鹏, 张吉旺, 赵斌 . 密植条件下去叶对夏玉米籽粒灌浆特性及产量的影响. 山东农业科学, 2017,49(11):29-36.
Huang R D, Dong S T, Liu P, Zhang J W, Zhao B . Effects of leaf removal on grain filling and yield of summer maize under high planting density. J Shandong Agric Sci, 2017,49(11):29-36 (in Chinese with English abstract).
[25] Lindquist J L, Arkebauer T J, Walters D T, Cassman K . Maize radiation use efficiency under optimal growth conditions. Agron J, 2005,97:72-78.
doi: 10.2134/agronj2005.0072
[26] Liu T N, Huang R D, Cai T, Han Q F . Optimum leaf removal increases nitrogen accumulation in kernels of maize grown at high density. Sci Rep, 2017,7:39601.
doi: 10.1038/srep39601
[27] Mao L L, Zhang L Z, Zhao X H, Dong L S . Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Res, 2014,155:67-76.
doi: 10.1016/j.fcr.2013.09.021
[28] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春 . 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014,47:3557-3565.
doi: 10.3864/j.issn.0578-1752.2014.18.004
Wang X H, Zhang L, Liu S L, Cao Y J, Wei W W, Liu C G, Wang Y J, Bian S F, Wang L C . Grain filling characteristics of maize hybrids differing in maturities. Sci Agric Sin, 2014,47:3557-3565 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.18.004
[29] 张丽, 张吉旺, 樊昕, 刘鹏, 董树亭 . 玉米籽粒比重与灌浆特性的关系. 中国农业科学, 2015,48:2327-2334.
doi: 10.3864/j.issn.0578-1752.2015.12.005
Zhang L, Zhang J W, Fan X, Liu P, Dong S T . Study on correlation between specific gravity of maize grains and grain filling characteristics. Sci Agric Sin, 2015,48:2327-2334 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.12.005
[30] 钱春荣, 王荣焕, 赵久然, 于洋, 郝玉波, 徐田军, 姜宇博, 宫秀杰, 李梁, 葛选良 . 不同熟期玉米品种的籽粒灌浆特性及其与温度关系研究. 中国农业科技导报, 2017,19(8):105-114.
Qian C R, Wang R H, Zhao J R, Yu Y, Hao Y B, Xu T J, Jiang Y B, Gong X J, Li L, Ge X L . Study on the grain filling characteristics and their relationship with temperature of maize hybrids differing in maturities. J Agric Sci & Technol, 2017,19(8):105-114 (in Chinese with English abstract).
[31] 高佳, 史建国, 董树亭, 刘鹏, 赵斌, 张吉旺 . 夏玉米籽粒胚乳细胞增殖及产量对不同光照的响应. 作物学报, 2017,43:1548-1558.
doi: 10.3724/SP.J.1006.2017.01548
Gao J, Shi J G, Dong S T, Liu P, Zhao B, Zhang J W . Response of endosperm cell proliferation and grain yield of summer maize to different light condition. Acta Agron Sin, 2017,43:1548-1558 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01548
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!