欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (02): 303-310.doi: 10.3724/SP.J.1006.2016.00303

• 研究简报 • 上一篇    

大豆不同环境下脂肪酸组分含量的QTL分析

雷雅坤1,2,**,刘兵强1,**,邸锐1,闫龙1,杨春燕1,郝东旭3,张孟臣1,*   

  1. 1 河北省农林科学院粮油作物研究所 / 国家大豆改良中心石家庄分中心 / 河北省遗传育种重点实验室, 河北石家庄 050031; 2 河北省农林科学院农业信息与经济研究所, 河北石家庄 050051; 3 河北经济管理学校, 河北石家庄 050071
  • 收稿日期:2015-07-09 修回日期:2015-11-20 出版日期:2016-02-12 网络出版日期:2015-12-08
  • 通讯作者: 张孟臣, E-mail: zhangmengchen@hotmail.com, Tel: 0311-87670653
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z1B3, 2012AA101106),国家自然科学基金项目(31000719), 国家转基因生物新品种培育重大专项(2014ZX0800402B),国家现代农业产业技术体系建设专项(CARS-004-PS06),河北省博士基金项目(F13E006)和河北省青年拔尖人才支持计划资助。

Analysis of QTL for Fatty Acid Contents under Different Environments in Soybean

LEI Ya-Kun1,2,**,LIU Bing-Qiang1,**,DI Rui1,YAN Long1,YANG Chun-Yan1,HAO Dong-Xu3,ZHANG Meng-Chen1,*   

  1. 1 Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / Shijiazhuang Branch Center of National Center for Soybean Improvement / Hebei Genetic Breeding Laboratory, Shijiazhuang 050031, China; 2 Institute of Agricultural Information and Economy, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; 3 Hebei Econmy Management School, Shijiazhuang 050071, China
  • Received:2015-07-09 Revised:2015-11-20 Published:2016-02-12 Published online:2015-12-08
  • Contact: 张孟臣, E-mail: zhangmengchen@hotmail.com, Tel: 0311-87670653
  • Supported by:

    This study was support by the National High Technology Research and Development Program of China (863 Program) (2006AA10Z1B3, 2012AA101106) and the National Natural Science Foundation of China (31000719), the Major Project of China on New Varieties of GMO Cultivation (2014ZX0800402B) and the Special Program of Modern Agro-industry Technology System (CARS-004-PS06), the Doctoral Scientific Research Foundation of Hebei Province (F13E006) and the Program for Excellent Young Talents in Hebei Province.

摘要:

大豆油的品质取决于脂肪酸各组分在大豆中的比例, 为发掘控制大豆5种脂肪酸含量的数量性状位点(QTL), 利用冀豆12和黑豆重组自交系群体构建遗传图谱, 采用Windows QTL Cartographer 2.5和QTL Network-2.0软件的CIM和MCIM法对大豆5种脂肪酸组分进行数量性状定位。结果表明,在石家庄和三亚各环境下共检测到16个QTL, 位于连锁群A2、B2、C2、F、G、I、L上。对2个环境联合分析, 检测到13个QTL, 其中9个用2种方法被检测到, 但这13个位点与环境互作的贡献率明显小于加性效应。其中在B2连锁群Satt168~Satt556控制硬脂酸的QTL Ste-1在河北石家庄和海南三亚均能被检测到, 贡献率均为12%, 在双尾群体和间隔挑选群体中也能检测到控制硬脂酸的QTL Ste-1, 说明这一QTL稳定存在于本组合群体中, 为今后大豆硬脂酸的QTL精细定位奠定了基础。

关键词: 大豆, 脂肪酸, 数量性状位点, 环境

Abstract:

Soybean is an important crop which contributes about 60% of the world’s oilseed production. The quality of soybean oil depends on the relative composition of fatty acid in seeds. A population of recombinant inbred lines  derived from a cross of Jidou 12 × Heidou was grown in two environments and the seed samples from the environments were evaluated for fatty acid contents. Simple sequence repeat (SSR) markers were used to construct genetic linkage map. A total of 16 QTLs underlying fatty acid contents were identified by CIM and MCIM methods using Windows QTL cartographer 2.5 and QTL Network-2.0 software at Sanya and Shijiazhuang locations, respectively. These QTLs were scattered on linkage groups A2, B2, C2, F, G, I, L. According to the two environment combined data, 13 QTLs were detected using two mapping methods. Nine of them were common in the results from two methods. Another QTL associated with stearic acid content, named as Ste-1, located on LG B2 and flanked by Satt168 and Satt556, was stable across two locations, also. QTL Ste-1 could explain 12% of the phenotypic variation at both locations. This study is helpful to improve fatty acid composition in soybean.

Key words: Soybean, Fatty acids, Quantitative trait loci, Environment

[1] 宋晓昆, 张颖君, 闫龙, 杨春燕, 郑艳艳, 蒋春志, 荆慧贤, 张孟臣, 黄占景. 大豆脂肪酸组份相关、变异特点分析. 华北农学报, 2010, 25 (增刊): 68–73



Song X K, Zhang Y J, Yan L, Yang C Y, Zheng Y Y, Jiang C Z, Jing H X, Zhang M C, Huang Z J. A study on correlation and variability of fatty acid composition contents of soybean cultivars. Acta Agric Boreali-Sin, 2010, 25(suppl): 68–73 (in Chinese with English abstract)



[2] 吕景良, 邵荣春, 吴百灵, 梁岐, 吴桂荣. 东北地区大豆品种资源脂肪酸组成的分析研究. 作物学报, 1990, 16: 349–355



Lü J L, Shao R C, Wu B L, Liang Q, Wu G R. Fatty acid compo-sition analysis of soybean germplasm resources in Northeast. Acta Agron Sin, 1990, 16: 349–355 (in Chinese with English abstract)



[3] Brummer E C , Graef G L, Orf J, Wilcox J R, Shoemaker R C. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci, 1997, 37: 370–378



[4] Diers B W, Shoemaker R C. Restriction fragment length polymorphism analysis of soybean fatty acid content. J Am Oil Chem Soc, 1992, 69: 1242–1244



[5] Li Z L, Wilson R F, Rayford W E, Boerma H R. Molecular mapping genes conditioning reduced palmitic acid content in N87-2122-4 soybean. Crop Sci, 2002, 42: 373–378



[6] Spencer M M, Pantalone V R, Meyer E J. Mapping the Fas locus controlling stearic acid content in soybean. Theor Appl Genet, 2003, 106: 615–619



[7] 郑永战, 盖钧镒, 卢为国, 李卫东, 周瑞宝, 田少君. 大豆脂肪及脂肪酸组分含量的QTL定位. 作物学报, 2006, 32: 1823–1830



Zheng Y Z, Gai J Y, Lu W G, Li W D, Zhou R B, Tian S J. QTL mapping for fat and fatty acid composition contents in soybean. Acta Agron Sin, 2006, 32: 1823–1830 (in Chinese with English abstract)



[8] Orf J H, Diers B W, Boerma H R. Genetic improvement:conventionaland molecular based strategies. In: Boerma H R, Specht J E, eds. Soybeans: Improvement, Production, and Uses, 3rd Edn. 出版地: American Society of Agronomy Inc., 2004. pp 417–450



[9] 宋万坤, 王晶, 朱命喜, 齐照明, 刘春燕, 陈庆山, 胡国华. 大豆脂肪酸组分相关QTL元分析. 大豆科学, 2009, (5): 774–778



Song W K, Wang J, Zhu M X, Qi Z M, Liu C Y, Chen Q S, Hu G H. Meta-analysis of fatty acid QTLs in soybean. Soybean Sci, 2009, (5): 774–778 (in Chinese with English abstract)



[10] 于福宽. 大豆种质脂肪酸主要组分鉴定与QTL标记定位. 中国农业科学院硕士学位论文, 北京, 2011



Yu F K. Mapping QTLs and Screening Germplasm for the Major Fatty Acid Components in Soybean Seeds. MS Thesis of Graduate School of Chinese Academy of Agricultural Sciences, Beijng, China, 2011 (in Chinese with English abstract)



[11] 朱军. 运用混合线性模型定位复杂数量性状基因的方法. 浙江大学学报(自然科学版), 1999, 33: 327–335



Zhu J. Methods for locating complex quantitative trait genes using hybrid linear model. J Zhejiang Univ (Nat Sci), 1999, 33: 327–335 (in Chinese with English abstract)



[12] 单大鹏, 齐照明, 邱红梅, 单彩云, 刘春燕, 胡国华, 陈庆山. 大豆油分含量相关的QTL间的上位效应和QE互作效应. 作物学报, 2008, 34: 952–957



Shan D P, Qi Z M, Qiu H M, Shan C Y, Liu C Y, Hu G H, Chen Q S. Epistatic effects of QTLs and QE interaction effects on oil content in soybean. Acta Agron Sin, 2008, 34: 952–957 (in Chinese with English abstract)



[13] 苗兴芬. 多年多点条件下大豆脂肪酸含量QTL分析. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2010



Miao X F. QTL Analysis of Fatty Acids Content of Soybean in Multiple Years and Sites. MS Thesis of Northeast Agricultural University, Heilongjiang, China, 2010 (in Chinese with English abstract)



[14] 张颖君, 高慧敏, 蒋春志, 胡梦芸, 刘兵强, 李辉. 大豆种子脂肪酸含量的快速测定. 大豆科学, 2008, 27: 859–862



Zhang Y J, Gao H M, Jiang C Z, Hu M Y, Liu B Q, Li H. Fast analysis on fatty acids of soybean seed by gas chromatography. Soybean Sci, 2008, 27: 859–862 (in Chinese with English abstract)



[15] Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, van Toai T T, Lohnes D G, Chung J. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464–1490



[16] 雷雅坤, 闫龙, 杨春燕, 宋晓昆, 张孟臣, 黄占景. 大豆公共遗传图谱C1连锁群SSR标记空白区段的填补. 华北农学报, 2012, 27(6): 5–10



Lei Y K, Yan L, Yang C Y, Song X K, Zhang M C, Huang Z J. Complete the blank section with SSR markers on linkage group C1 of public genetic map in soybean. Acta Agric Boreali-Sin, 2012, 27(6): 5–10 (in Chinese with English abstract)



[17] Maria J M, Joseph W B, Roger H B. Molecular mapping and conrmation of QTLs associated with oleic acid content in N00-3350 soybean. Crop Sci, 2008, 48: 2223–2234



[18] 宋晓昆. 大豆脂肪酸组分遗传及QTL分析. 河北师范大学硕士学位论文, 河北石家庄, 2010



Song X K. Genetic Analysis and QTL Mapping of Fatty Acid Composition Contents in Soybean. MS Thesis of Hebei Normal University, Shijiazhuang, China, 2010 (in Chinese with English abstract)



[19] 邹筱. 大豆脂肪和脂肪酸主要组分含量QTL定位. 中国农业科学院研究生院, 北京, 2014



Zou Y. Quantitative Trait Loci of Oil and Main Fatty Acid Components in Soybean. MS Thesis of Gratude School of Chinese Academy of Agricultural Sciences, Beijing, 2014 (in Chinese with English abstract)



[20] Fulton T M, Beck Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S D. QTL analysis of an advanced backcross of Lycopersicon peruvianumto the cultivated tomato and comparisons with QTLs found in otherwild species. Theor Appl Genet, 1997, 95: 881–894



[21] Jansen R C, Van Ooijen J W, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multi-ple quantitative trait loci. Theor Appl Genet, 1995, 91: 33–37



[22] 陈霞. 黑龙江省主栽大豆品种脂肪、脂肪酸组份的测定及其相关性的分析. 大豆科学, 1996, 15: 92–95



Chen X. Determination of fat and fatty acid composition of soybean cultivars in eilongjiang province and analysis of their correlation. Soybean Sci, 1996, 15: 92–95 (in Chinese with English abstract)



[23] 李文滨, 郑宇宏, 韩英鹏. 大豆种质资源脂肪酸组分含量及品质性状的相关性分析. 大豆科学, 2008, 27(5): 740–745



Li W B, Zheng Y H, Han Y P. Analysis of fatty acid composition and other quality traits in soybean varieties developed in heilongjiang province. Soybean Sci, 2008, 27: 740–745 (in Chinese with English abstract)



[24]  徐豹, 庄炳昌, 路琴华, 胡传璞. 中国大豆主要生产品种蛋白质、脂肪及其组份的相关分析. 大豆科学, 1988, 7: 175–183



Xu B, Zhuang B C, Lu Q H, Hu C P. Correlation analysis between protein content and its composition, fat content and its composition in current soybean cultivar seeds in China. Soybean Sci, 1988, 7: 175–183 (in Chinese with English abstract)



[25]  张忠臣, 战秀玲, 陈庆山, 滕卫丽, 杨庆凯, 李文滨, 刘迎雪, 郭强, 张丽娜. 大豆QTL定位的研究进展. 大豆科学, 2004, 23: 222–227



Zhang Z Y, Zhan X L, Chen Q S, Teng W L, Yang Q K, Li W B, Liu Y X, Guo Q, Zhang L N. A review of QTL research in soybean. Soybean Sci, 2004, 23: 222–227



[26] 单大鹏, 朱荣胜, 陈立君, 齐照明, 刘春燕, 胡国华, 陈庆山. 大豆蛋白质含量相关QTL间的上位效应和QE互作效应. 作物学报, 2009, 35: 41–47



Shan D Y, Zhu R S, Chen L J, Qi Z M, Liu C Y, Hu G H, Chen Q S. Epistatic effects and QE interaction effects of QTLs for protein content in soybean. Acta Agron Sin, 2009, 35: 41–47 (in Chinese with English abstract)

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!