欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (02): 295-302.doi: 10.3724/SP.J.1006.2016.00295

• 研究简报 • 上一篇    下一篇

两个谷子CIPK基因在非生物逆境胁迫下的表达分析

余爱丽1,2,赵晋锋1,2,王高鸿2,杜艳伟2,李颜方2,张正2,郭二虎2,梁爱华1,*   

  1. 1山西大学生物技术研究所, 山西太原030006;2山西省农业科学院谷子研究所 / 特色杂粮种质资源发掘与育种山西省重点实验室, 山西长治046011
  • 收稿日期:2015-07-20 修回日期:2015-11-20 出版日期:2016-02-12 网络出版日期:2015-12-07
  • 通讯作者: 梁爱华, E-mail: aliang@sxu.edu.cn
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-07-12.5-A10), 山西省生物工程重点实验室开放基金项目和山西省农业科学院科技自主创新能力提升工程项目(2015ZZCX-09)资助。

Expression Analysis of Two CIPK genes under Abiotic Stress in Foxtail Millet

U Ai-Li1,2,ZHAO Jin-Feng1,2,WANG Gao-Hong2,DU Yan-Wei2,LI Yan-Fang2,ZHANG Zheng2,GUO Er-Hu2,LIANG Ai-Hua1,*   

  1. 1Insitute of Biotechnology, Shanxi University, Taiyuan 030006, China; 2 Millet Research Institute, Shanxi Academy of Agricultural Sciences / Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi 046011, China
  • Received:2015-07-20 Revised:2015-11-20 Published:2016-02-12 Published online:2015-12-07
  • Contact: 梁爱华, E-mail: aliang@sxu.edu.cn
  • Supported by:

    This study was supported by the grants from the Modern Agro-industry Technology System (CARS-07-12.5-A10), the Key Laboratory Open Fund Project of Bio-engineering in Shanxi Provincial, and the Enhance Technology Independent Innovation Ability Project in Shanxi Academy of Agricultural Sciences (2015ZZCX-09).

摘要:

CIPK是一类丝氨酸/苏氨酸蛋白激酶,该蛋白在植物响应逆境胁迫过程中发挥重要作用。本文利用生物信息学方法从谷子基因组中鉴定出2个CIPK基因, 命名为SiCIPK6SiCIPK16。序列分析表明SiCIPK6基因组序列长1994 bp,编码451个氨基酸;SiCIPK16基因组序列长1885 bp,编码473个氨基酸,2个基因均无内含子和可变剪切。生物信息学分析显示这2个基因在蛋白质序列和结构上与其他物种CIPK基因一样非常保守。实时定量PCR分析表明SiCIPK6SiCIPK16在ABA、低温、高温、干旱、高盐诱导下表达量均有所上调, SiCIPK6基因在ABA、干旱和盐处理时表达量上调幅度较大,而SiCIPK16基因在低温、干旱和高温处理时表达量上调幅度较大。半定量PCR检测结果表明SiCIPK6SiCIPK16两个基因在拔节、孕穗、灌浆期时均有表达,在相应生育时期受到干旱胁迫时它们表达量均有所提高。推测SiCIPK6SiCIPK16基因在谷子的干旱或其他逆境胁迫中起一定作用。

关键词: 谷子, CIPK基因, 逆境

Abstract:

CIPK (CBL interacting protein kinase) is a type of serine or threonine protein kinases, which plays an important role in response to stress. In this study, we identified two CIPK genes designated as SiCIPK6 and SiCIPK16 from foxtail millet (Setaria italica) genome using bioinformatics methods. The sequence analysis showed that SiCIPK6 has a length of 1994 bp in the genome, encoding 513 amino acids residues, and SiCIPK16 is 1885 bp, encoding 473 amino acids residues. These two genes have no alternative splicing and intron. The characters predicted based on the bioinformatics analysis revealed that the protein sequences and structure of the two SiCIPK genes were very conservative just like CIPK genes in other species. Real-time PCR analysis discovered that the expression of SiCIPK6 and SiCIPK16 was up-regulated by ABA, cold, heat, drought and salt stress, respectively. The expression was strongly induced by ABA, drought and salt treatments for SiCIPK6, and by cold, drought and heat treatments for SiCIPK16. The semi-quantitative PCR analysis showed that SiCIPK6 and SiCIPK16 were expressed at the jointing, booting and filling stages, and induced by drought stress in the corresponding growth period. Foxtail millet CIPK genes reported in this study would enrich CIPK members in plant kingdom and provides important information for further elucidating the function and mechanisms of the CBL/CIPK network system responsing to stresses in foxtail millet.

Key words: Foxtail millet, Calcineurin B-like-interacting protein kinase, Stress

[1] 智慧, 牛振刚, 贾冠清, 柴杨, 李伟, 王永芳, 李海权, 陆平, 白素兰, 刁现民. 谷子干草饲用品质性状变异及相关性分析. 作物学报, 2012, 38: 800−807



Zhi H, Niu Z G, Jia G Q, Chai Y, Li W, Wang Y F, Li H Q, Lu P, Bai S L, Diao X M. Variation and correlation analysis of hay forage quality traits of foxtail millet [Setaria italica (L.) Beauv.]. Acta Agron Sin , 2012, 38: 800−807 (in Chinese with English abstract)



[2] Devos K M, Wang Z M, Beales J, Sasaki T, Gale M D. Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor Appl Genet, 1998, 96: 63–68



[3] Jayaraman A, Puranik S, Rai N K, Vidapu S, Sahu P P, Lata C, Prasad M. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol, 2008, 40: 241–251



[4] Zhao D, Oosterhuis D, Bednarz C. Influence of potassium deficiency on photosynthesis, chlorophyll content and chloroplast ultrastructure of cotton plants. Photosynthetica, 2001, 9:103–109



[5] Zhou J, Wang J, Bi Y, Wang L, Tang L, Yu X, Ohtani M, Demura T, Zhuge Q. Overexpression of PtSOS2 enhances salt tolerance in transgenic poplars. Plant Mol Biol Report, 2014, 32: 185–197



[6] Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperature: towards genetic engineering for stress tolerance. Planta, 2003, 2: 1–14



[7] Sanders D, Brownlee C, Harper J. Communicating with calcium. Plant Cell, 1999, 11: 691–706



[8] Choi W G, Toyota M, Kim S H, Hilleary R, Gilroy S. Salt stress-induced Ca2+waves are associated with rapid, longdistance root-to-shoot signaling in plants. Proc Natl Acad Sci USA, 2014, 111: 6497–6502



[9] BatisticO, Kudla J. Analysis of calcium signaling pathways in plants. Biochim Biophys Acta, 2012, 1820: 1283–293



[10] Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL–CIPK signaling networks. Plant Physiol, 2004,134: 43–58



[11] Zhang H, Yang B, Liu W Z, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang Y Q. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol, 2014, 14: 8



[12] Kleist T J, Spencley A L, Luan S. Comparative phylogenomics of the CBL–CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. Front Plant Sci, 2014, 5: 1–17



[13] 沈金秋, 郑仲仲, 潘伟槐, 潘建伟. 植物CBL-CIPK信号系统的功能及其作用机理. 植物生理学报, 2014, 50: 641–650



Shen J Q, Zheng Z Z, Pan W H, Pan J W. Functions and action mechanisms of CBL-CIPK signaling system in plants. Plant Physiol J, 2014, 50: 641–650 (in Chinese with English abstract)



[14] Wu S J, Ding L, Zhu J K. SOS1: a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 1996, 8: 617–627



[15] Liu J, Zhu J K. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci USA, 1997, 94: 14960–14964



[16] Gong D, Guo Y, Jagendorf A T, Zhu J K. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol, 2002, 130: 256–264



[17] Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA, 2000, 97:3735–3740



[18] Quintero F J, Ohta M, Shi H, Zhu J K, Pardo J M. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA, 2002, 99: 9061–9066



[19] Qiu Q S, Guo Y, Quintero F J, Pardo J M, Schumaker K S, Zhu J K.. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem, 2004, 279 (1): 207-215



[20] Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347–1360



[21] Lee S C, Lan W Z, Kim B G, Li L, Cheong Y H, Pandey G K, Lu G, Buchanan B B, Luan S. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci USA, 2007, 104: 15959–15964



[22] Hu H C, Wang Y Y, Tsay Y F. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J, 2009, 57: 264–278



[23] Deng X, Zhou S, Hu W, Feng J, Zhang F, Chen L, Huang C, Luo Q, He Y, Yang G, He G. Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol Plant, 2013, 149: 367–377



[24] Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J,Fang B, Luo Q, Li S, Liu Y, Yang G, He G. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One, 2013, 8: e69881



[25] Chen X, Huang Q, Zhang F, Wang B, Wang J, Zheng J. ZmCIPK21, a maize CBL-interacting kinase, enhances salt stress tolerance in Arabidopsis thaliana. Int J Mol Sci, 2014, 15: 14819–14834



[26] Li J, Long Y, Qi G N, Xu Z J, Wu WH, Wang Y. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1–CIPK23 complex. Plant Cell, 2014, 26: 3387–3402



[27] Cuellar T, Pascaud F, Verdeil J L, Torregrosa L, Adam-Blondon A F, Thibaud J B, Sentenac H, Gaillard I. A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J, 2010, 61: 58–69



[28] Cuellar T, Azeem F, Andrianteranagna M, Pascaud F, Verdeil J L, Sentenac H, Zimmermann S, Gaillard I. Potassium transport in developing fleshy fruits: the grapevine inward K+channel VvK1.2 is activated by CIPK–CBL complexes and induced in ripening berry flesh cells. Plant J, 2013, 73: 1006–1018



[29] Zhao J F, Sun Z F, Zheng J, Guo X Y, Dong Z G, Huai J L, Gou M Y, He J G, Jin Y S, Wang J H, Wang G Y. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol Biol, 2009, 69: 661–674



[30] 赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013, 39: 360–367



Zhao J F, Yu A L, Tian G, Du Y W, Guo E H, Diao X M. Identification of CBL genes from foxtail millet (Setaria italica [L.] Beauv. ) and its expression under drought and salt stresses. Acta Agron Sin, 2013, 39: 360–367 (in Chinese with English abstract)



[31] Zheng J, Zhao J F, Tao Y Z, Wang J H, Liu Y J, Fu J J, Jin Y, Gao P, Zhang J P, Bai Y F, Wang G Y. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol, 2004, 55: 807–823



[32] 尹恒, 余琴鸯, 安利佳, 李文利. 一个快速响应干旱的F-box基因的克隆和表达分析. 作物学报, 2014, 40: 1531–1539



Yu Q Y, Yin H, An L J, Li W L. Cloning and expression analysis of a calcium-dependent protein kinase gene SiCDPK1 in Setaria italica. Acta Agron Sin , 2014, 40: 1531–1539 (in Chinese with English abstrac)



[33] Zhang J P, Liu T S, Fu J J, Zhu Y, Jia J P, Zheng J, Zhao Y H, Zhang Y, Wang G Y. Construction and application of EST library from Setaria italica in response to dehydration stress. Genomics, 2007, 90: 121–131



[34] Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual, 3rd Edn. New York: Cold Spring Harbor Laboratory Press, 2001. pp 581–585



[35] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software Version 4.0. Mol Biol Evol, 2007, 24: 1596–1599



[36] Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402–408



[37] Chen L, Wang Q Q, Zhou L, Ren F, Li D D, Li X B. Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol Biol Rep, 2013, 40: 4759–4767



[38] Tripathi V1, Parasuraman B, Laxmi A, Chattopadhyay D. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J, 2009, 58: 778–790



[39] Roy S J, Huang W, Wang X J, Evrard A, Schmöckel S M, Zafar Z U, Tester M. A novel protein kinase involved in Na (+) exclusion revealed from positional cloning. Plant Cell Environ, 2013, 36: 553–568



[40] 赵晋锋, 余爱丽, 王高鸿, 田岗, 王寒玉, 杜艳伟, 常海霞. 植物CBL/CIPK网络系统逆境应答研究进展. 中国农业科技导报, 2011, 13(4): 32–38



Zhao J F, Yu A L, Wang G H, Tian G, Wang H Y, Du Y W, Chang H X. Progress of CBL/CIPK signal system in response to stresses in plant. J Agric Sci Technol, 2011, 13(4): 32–38 (in Chinese with English abstract)



[41] Xiang Y, Huang Y, Xiong L. Characterization of stressresponsive CIPK genes in rice for stress tolerance improvement. Plant Physiol, 2007, 144: 1416–1428

[1] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[4] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[5] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[6] 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148.
[7] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[8] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[9] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[10] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[11] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[12] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[13] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[14] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
[15] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!