作物学报 ›› 2024, Vol. 50 ›› Issue (2): 394-402.doi: 10.3724/SP.J.1006.2023.34064
LI Wan1,*(), LI Cheng2, CHENG Min3, WU Fang4
摘要:
植物通过磷转运蛋白吸收和转运磷元素, 充足的磷元素能够提高作物产量、品质和抗逆性。高温是影响马铃薯生长发育的重要环境因子, 严重时会造成减产甚至绝收。本研究利用农杆菌介导, 在马铃薯(Solanum tuberosum L.)中过表达磷转运蛋白基因StPHO1.2, 比较转基因株系和野生型株系在高温(35℃)和常温(22℃±1℃)环境下的生长状况。结果表明, 过表达StPHO1.2能够提高马铃薯耐热性, 促进其生长, 且磷元素浓度越高, 抗性越强, 长势越好。本氏烟草中的亚细胞定位结果显示, StPHO1.2在细胞膜上表达, 因此, 选择膜系统文库质粒筛选StPHO1.2的互作蛋白。通过酵母双杂交试验和BiFC试验, 本研究证明磷转运蛋白StPHO1.2与钙离子转运相关蛋白(StCAX1)和光系统II蛋白亚基(StPsbR)均有相互作用。综上所述, 过表达StPHO1.2可能通过影响光合作用和信号转导, 从而提高马铃薯耐热性, 促进马铃薯生长。这些结果为深入理解磷转运蛋白的功能提供了理论依据和参考, 对马铃薯新品种的选育具有促进作用。
[1] |
Rafael R B A, Fernández-Marcos M L, Cocco S, Ruello M L, Fornasier F, Corti G. Increased phosphorus availability to corn resulting from the simultaneous applications of phosphate rock, calcareous rock, and biochar to an acid sandy soil. Pedosphere, 2020, 30: 719-733.
doi: 10.1016/S1002-0160(20)60034-0 |
[2] |
Guo B, Irigoyen S, Fowler T B, Versaw W K. Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues. Plant Signal Behav, 2008, 3: 784-790.
doi: 10.4161/psb.3.10.6666 pmid: 19513231 |
[3] | 于人杰. 响应低磷干旱胁迫磷转运蛋白基因在大豆组织中的表达及功能分析. 吉林农业大学博士学位论文, 吉林长春, 2019. |
Yu R J. Expression and Functional Analysis of Phosphorus Transporter Genes Responding to Low Phosphorus and Drought Stress in Soybean Tissues. PhD Dissertation of Jilin Agricultural University, Changchun, Jilin, China, 2019 (in Chinese with English abstract). | |
[4] | Karthikeyan A S, Varadarajan D K, Mukatira U T, D’Urzo M P, Damsz B, Raghothama K G. Regulated expression of Arabidopsis phosphate transporters. Plant Physiol, 2002, 130: 221-233. |
[5] |
Mudge S R, Rae A L, Diatloff E, Smith F W. Expression analysis suggests novel roles for members of Pht1 family of phosphate transporters in Arabidopsis. Plant J, 2002, 31: 341-353.
doi: 10.1046/j.1365-313X.2002.01356.x |
[6] |
Remy E, Cabrito T, Batista R A, Teixeira M C, Sá-Correia I, Duque P. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol, 2012, 195: 356-371.
doi: 10.1111/j.1469-8137.2012.04167.x pmid: 22578268 |
[7] |
Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol, 2011, 156: 1164-1175.
doi: 10.1104/pp.111.175240 pmid: 21502185 |
[8] | 张琳淳, 李越, 沈锦纯, 赵竑博. 番茄PHT1家族磷转运蛋白研究进展. 农业与技术, 2021, 41(13): 1-6. |
Zhang L C, Li Y, Shen J C, Zhao H B. Research progress of PHT1 family phosphorus transporters in tomato. Agric Technol, 2021, 41(13): 1-6 (in Chinese with English abstract). | |
[9] |
Guo C, Guo L, Li X, Gu J, Zhao M, Duan W, Ma C, Lu W, Xiao K. TaPT2, a high-affinity phosphate transporter gene in wheat (Triticum aestivum L.), is crucial in plant Pi uptake under phosphorus deprivation. Acta Physiol Plant, 2014, 36: 1373-1384.
doi: 10.1007/s11738-014-1516-x |
[10] | 付禹. 大豆磷转运蛋白GmPHT2家族成员的功能分析. 吉林农业大学硕士学位论文, 吉林长春, 2021. |
Fu Y. Functional Analysis of Phosphate Transporter GmPHT2 Family Members in Soybean. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2021 (in Chinese with English abstract). | |
[11] |
Ferreira G C, Pratt R D, Pedersen P L. Energy-linked anion transport. cloning, sequencing, and characterization of a full length cDNA encoding the rat liver mitochondrial proton/phosphate symporter. J Biol Chem, 1989, 264: 15628-15633.
pmid: 2670944 |
[12] |
Qin L, Guo Y, Chen L, Liang R, Gu M, Xu G, Zhao J, Walk T, Liao H. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS One, 2012, 7: e47726.
doi: 10.1371/journal.pone.0047726 |
[13] | 刘恒志. 马铃薯StPHT4;2磷转运蛋白基因的克隆及功能研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020. |
Liu H Z. Cloning and Functional Research of StPHT4;2 Phosphate Transporter Genes in Potato. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract). | |
[14] | 韩贝. 甘蓝型油菜PHT5家族基因鉴定及PHT5;1s调控磷稳态的功能研究. 华中农业大学博士学位论文, 湖北武汉, 2022. |
Han B. Identification of Brassica napus PHT5 Family Genes and Functional Characterization of BnPHT5;1s Involved in Phosphate Homeostasis. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract). | |
[15] |
Wang Y, Secco D, Poirier Y. Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens. Plant Physiol, 2008, 146: 646-656.
doi: 10.1104/pp.107.108548 |
[16] |
Rouached H, Stefanovic A, Secco D, Arpat B, Gout E, Bligny R, Poirier Y. Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis. Plant J, 2011, 65: 557-570.
doi: 10.1111/tpj.2011.65.issue-4 |
[17] |
Arpat B, Magliano P, Wege S, Rouached H, Stefanovic A, Poirier Y. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Plant J, 2012, 71: 479-491.
doi: 10.1111/tpj.2012.71.issue-3 |
[18] |
Cao F, Li H, Wang S, Li X, Dai H, Zhang Z. Expression and functional analysis of FaPHO1;H9 gene of strawberry (Fragaria×ananassa). J Integr Agric, 2017, 16: 580-590.
doi: 10.1016/S2095-3119(16)61433-8 |
[19] |
Liu B, Zhao S, Wu X, Wang X, Nan Y, Wang D, Chen Q. Identification and characterization of phosphate transporter genes in potato. J Biotechnol, 2017, 264: 17-28.
doi: S0168-1656(17)31707-8 pmid: 29055693 |
[20] | 窦海鸥. AtCBF3 提高转基因马铃薯耐热性的研究. 山东农业大学硕士学位论文, 山东泰安, 2014. |
Dou H O. Arabidopsis thaliana CBF3 Enhances the Tolerance of Potato to High Temperature. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2014 (in Chinese with English abstract). | |
[21] | 张超. 茉莉酸调控基因GH3家族的鉴定及在马铃薯中抗病及损伤分析. 西北农林科技大学博士学位论文, 陕西杨凌, 2021. |
Zhang C. Identification of Jasmonic Acid Regulatory Gene GH3 Family and Analysis of Disease Resistance and Wounding in Potato. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract). | |
[22] | 李万, 杨明明, 高翔, 董剑, 赵万春. 西农538LMW-GS基因的克隆,原核表达及功能鉴定. 麦类作物学报, 2017, 37: 445-451. |
Li W, Yang M, Gao X, Dong J, Zhao W. Isolation, prokaryotic expression and functional analysis of LMW-GS from Xinong 538 (Triticum aestivum L.). J Triticeae Crop, 2017, 37: 445-451 (in Chinese with English abstract). | |
[23] |
Li W, Dong J, Cao M, Gao X, Wang D, Liu B, Chen Q. Genome-wide identification and characterization of HD-ZIP genes in potato. Gene, 2019, 697: 103-117.
doi: S0378-1119(19)30149-0 pmid: 30776460 |
[24] | 叶明辉, 赵朋, 牛洋, 王冬冬, 陈勤. 马铃薯同源异形框基因家族的鉴定和表达分析. 农业生物技术学报, 2021, 29(2): 224-239. |
Ye M H, Zhao P, Niu Y, Wang D D, Chen Q. Identification and expression analysis of homeobox gene family in potato (Solanum tuberosum). J Agric Biotechnol, 2021, 29(2): 224-239 (in Chinese with English abstract). | |
[25] | 陆孙杰. 水稻基因功能研究及用酵母双杂筛选互作蛋白. 浙江大学博士学位论文, 浙江杭州, 2012. |
Lu S J. Functional Characterization of OsMADS15 and Screening its Interactors by Yeast Two Hybrid System. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2012 (in Chinese with English abstract). | |
[26] | 林郑和, 陈荣冰, 郭少平. 植物对缺磷的生理适应机制研究进展. 作物杂志, 2010, (5): 5-9. |
Lin Z H, Chen R B, Guo S P. Research progress on physiological adaptability of plants to phosphorus deficiency. Crops, 2010, (5): 5-9 (in Chinese with English abstract). | |
[27] |
Williamson L C, Ribrioux S P C P, Fitter A H, Ottoline L H M. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol, 2001, 126: 875-882.
doi: 10.1104/pp.126.2.875 pmid: 11402214 |
[28] | 明凤, 米国华, 张福锁, 郑先武, 朱立煌. 水稻对低磷反应的基因型差异及其生理适应机制的初步研究. 应用与环境生物学报, 2000, 6: 138-141. |
Ming F, Mi G H, Zhang F S, Zheng X W, Zhu L H. Studies on varietal difference of rice in response to low-P stress and its physiological adaptive mechanism. Chin J Appl Environ Biol, 2000, 6: 138-141 (in Chinese with English abstract). | |
[29] | 曹黎明, 潘晓华. 水稻不同耐低磷基因基因型的评价指标分析. 上海农业学报, 2000, 16(4): 31-34. |
Cao L M, Pan X H. Analysis of some indexes used for evaluating tolerance of different rice genotypes to low phosphorus treatment in sand culture. Acta Agric Shanghai, 2000, 16(4): 31-34 (in Chinese with English abstract). | |
[30] |
Qiu J, Israel D W. Diurnal starch accumulation and utilization in phosphorus-deficient soybean plants. Plant Physiol, 1992, 98: 316-323.
doi: 10.1104/pp.98.1.316 pmid: 16668630 |
[31] | 吴俊江, 刘丽君, 钟鹏, 林蔚刚, 董德建. 低磷胁迫对不同基因型大豆保护酶活性的影响. 大豆科学, 2008, 27: 437-441. |
Wu J J, Liu L J, Zhong P, Lin W G, Dong D J. Effects of low phosphorus stress on activities of cell defense enzymes of different P-efficiency. Soybean Sci, 2008, 27: 437-441 (in Chinese with English abstract). | |
[32] |
Ciereszko I, Johansson H, Hurry V, Kleczkowski L A. Phosphate status affects the gene expression, protein content and enzymatic activity of UDP glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta, 2001, 212: 598-605.
pmid: 11525517 |
[33] |
van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U I, Kunze R. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol, 2006, 141: 776-792.
doi: 10.1104/pp.106.079293 pmid: 16603661 |
[34] |
Khan G A, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H. Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis. J Exp Bot, 2014, 65: 871-884.
doi: 10.1093/jxb/ert444 |
[35] |
Ribot C, Wang Y, Poirier Y. Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta, 2008, 227: 1025-1036.
doi: 10.1007/s00425-007-0677-x pmid: 18094993 |
[36] |
Ribot C, Zimmerli C, Farmer E E, Reymond P, Poirier Y. Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiol, 2008, 147: 696-706.
doi: 10.1104/pp.108.119321 |
[37] |
Cao M, Liu H, Zhang C, Wang D, Liu X, Chen Q. Functional analysis of StPHT1;7, a Solanum tuberosum L. phosphate transporter gene, in growth and drought tolerance. Plants, 2020, 9: 1384.
doi: 10.3390/plants9101384 |
[38] |
Zhou X, Zha M, Huang J, Li L, Imran M, Zhang C. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J Exp Bot, 2017, 68: 1265-1281.
doi: 10.1093/jxb/erx026 pmid: 28338870 |
[39] |
Bokszczanin K L, Fragkostefanakis S. Perspectives on deciphering mechanisms unde rlying plant heat stress response and thermotolerance. Front Plant Sci, 2013, 4: 315-335.
doi: 10.3389/fpls.2013.00315 pmid: 23986766 |
[40] |
Gong M, Van der Luit A H, Knight M R, Trewavas A J. Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol, 1998, 116: 429-437.
doi: 10.1104/pp.116.1.429 |
[1] | 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471. |
[2] | 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224. |
[3] | 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870. |
[4] | 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001. |
[5] | 王硕, 鲍天旸, 刘建刚, 段绍光, 简银巧, 李广存, 金黎平, 徐建飞. 基于RGB颜色空间评价马铃薯块茎绿化程度[J]. 作物学报, 2023, 49(4): 1102-1110. |
[6] | 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995. |
[7] | 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005. |
[8] | 王瑞, 李向岭, 郭栋, 王新兵, 马玮, 李从锋, 赵明, 周宝元. 增施氮肥对夏玉米花后高温胁迫下籽粒碳氮代谢的影响[J]. 作物学报, 2023, 49(12): 3342-3351. |
[9] | 赵朋, 陈广侠, 张宴萍, 杨晓慧, 刘芳, 董道峰. 马铃薯苗期耐碱性鉴定方法及86份种质资源耐碱性综合评价[J]. 作物学报, 2023, 49(11): 2923-2934. |
[10] | 朱金勇, 刘震, 曾钰婷, 李志涛, 陈丽敏, 李泓阳, 史田斌, 张俊莲, 白江平, 刘玉汇. 马铃薯PAL基因家族的全基因组鉴定及其在非生物胁迫下和块茎花色素苷合成中的表达分析[J]. 作物学报, 2023, 49(11): 2978-2990. |
[11] | 巩慧玲, 林红霞, 任小丽, 李彤, 王晨霞, 白江平. StvacINV1负调控马铃薯的耐旱性[J]. 作物学报, 2023, 49(11): 3007-3016. |
[12] | 赵富贵, 张龙, 李丹, 韩固, 王楠, 侯贤清. 不同气候年型下耕作覆盖对宁南旱区土壤水热及马铃薯产量的影响[J]. 作物学报, 2023, 49(10): 2806-2819. |
[13] | 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653. |
[14] | 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45. |
[15] | 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征[J]. 作物学报, 2023, 49(1): 167-176. |
|