欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 394-402.doi: 10.3724/SP.J.1006.2023.34064

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

磷转运蛋白StPHO1.2提高马铃薯耐热性

李万1,*(), 李成2, 程敏3, 吴芳4   

  1. 1商洛学院生物医药与食品工程学院, 陕西商洛 726000
    2西安润壮稼农业科技有限公司, 陕西西安 710003
    3商洛学院科技处, 陕西商洛 726000
    4商洛学院国内合作与校友工作处, 陕西商洛 726000
  • 收稿日期:2023-03-24 接受日期:2023-06-29 出版日期:2024-02-12 网络出版日期:2023-07-20
  • 通讯作者: *李万, E-mail: 599092122@qq.com
  • 基金资助:
    陕西省自然科学基础研究计划资助项目(2022JQ-223);陕西省高校科协青年人才托举计划项目(20220213);商洛学院博士启动项目(21SKY112);陕西省科技创新团队项目(2022TD-56)

Phosphorus transporter StPHO1.2 improving heat tolerance in potato

LI Wan1,*(), LI Cheng2, CHENG Min3, WU Fang4   

  1. 1School of Biomedicine and Food Engineering, Shangluo University, Shangluo 726000, Shaanxi, China
    2Xi’an Runzhuangjia Agricultural Technology Co., Ltd, Xi’an 710003, Shaanxi, China
    3Science and Technology Division, Shangluo University, Shangluo 726000, Shaanxi, China
    4Domestic Cooperation and the Schoolfellow Bureau, Shangluo University, Shangluo 726000, Shaanxi, China
  • Received:2023-03-24 Accepted:2023-06-29 Published:2024-02-12 Published online:2023-07-20
  • Contact: *E-mail: 599092122@qq.com
  • Supported by:
    Natural Science Basic Research Program of Shaanxi(2022JQ-223);Young Talent fund of University Association for Science and Technology in Shaanxi, China(20220213);Research Fund for the Doctoral Program of Shangluo University(21SKY112);Science and Technology Innovation Team Project of Shaanxi(2022TD-56)

摘要:

植物通过磷转运蛋白吸收和转运磷元素, 充足的磷元素能够提高作物产量、品质和抗逆性。高温是影响马铃薯生长发育的重要环境因子, 严重时会造成减产甚至绝收。本研究利用农杆菌介导, 在马铃薯(Solanum tuberosum L.)中过表达磷转运蛋白基因StPHO1.2, 比较转基因株系和野生型株系在高温(35℃)和常温(22℃±1℃)环境下的生长状况。结果表明, 过表达StPHO1.2能够提高马铃薯耐热性, 促进其生长, 且磷元素浓度越高, 抗性越强, 长势越好。本氏烟草中的亚细胞定位结果显示, StPHO1.2在细胞膜上表达, 因此, 选择膜系统文库质粒筛选StPHO1.2的互作蛋白。通过酵母双杂交试验和BiFC试验, 本研究证明磷转运蛋白StPHO1.2与钙离子转运相关蛋白(StCAX1)和光系统II蛋白亚基(StPsbR)均有相互作用。综上所述, 过表达StPHO1.2可能通过影响光合作用和信号转导, 从而提高马铃薯耐热性, 促进马铃薯生长。这些结果为深入理解磷转运蛋白的功能提供了理论依据和参考, 对马铃薯新品种的选育具有促进作用。

关键词: 马铃薯, 磷转运蛋白, 高温胁迫, 酵母双杂交, 双分子荧光互补

Abstract:

Plants absorb and transport phosphorus through phosphorus transporters, and sufficient phosphorus can improve crop yield, quality, and stress resistance. High temperature is an important environmental factor affecting the growth and development of potato. In this study, we overexpressed the phosphorus transporter StPHO1.2 in potato mediated by Agrobacterium tumefaciens, and then compared the growth of transgenic strains and wild-type strains at high temperature (35℃) and normal temperature (22℃±1℃). The results showed that overexpression of StPHO1.2 could improve the heat resistance and promote the growth of potato. And the higher the phosphorus concentration, the stronger the resistance, the better the growth. Subcellular localization in tobacco showed that StPHO1.2 was expressed on cell membrane. Therefore, the membrane system library plasmid was selected to screen the interacting proteins of StPHO1.2. This study demonstrated that the phosphorus transporter StPHO1.2 interacted with both the calcium ion transporter associated protein (StCAX1) and the photosynthetic system II protein subunit (StPsbR) by the yeast two-hybrid and BiFC. In conclusion, overexpression of StPHO1.2 may improve the heat tolerance and promote the growth of potato by affecting photosynthesis and signal transduction in potato. These results provide theoretical basis and reference for further understanding of the function of phosphorus transporters and promote the breeding of new potato varieties.

Key words: Solanum tuberosum L., phosphorus transporter, high temperature stress, yeast two-hybrid, BiFC

表1

引物、酶切位点、重组质粒名称和载体抗性"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
酶切位点
Endonuclease
site
重组质粒名称
Recombinant
plasmid name
载体抗性
Vector resistance
Ox2F GAACACGGGGGACTCTAGAGGATCCATGGTGAAGTTTTCTAAAGAACTTG BamH I
Sac I
pBI121-StPHO1.2 Kan+
Ox2R AACGATCGGGGAAATTCGAGCTCCTAGCCATCAGAGTCTGTCTCG
RFP2F GTTCCAGATTACGCTGAGCTCATGGTGAAGTTTTCTAAAGAACTTG Sac I
Sac I
p1300-RFP-StPHO1.2 Kan+
RFP2R CGATCGGGGAAATTCGAGCTCCTAGCCATCAGAGTCTGTCTCG
STE2F TTTTATGTAATGGCCATTACGGCCATGGTGAAGTTTTCTAAAGAACTT Sfi I
Sfi I
pBT3-STE-StPHO1.2 Kan+
STE2R# TCCTGCAGATGGCCGAGGCGGCGCCATCAGAGTCTGTCTCGCG
SUC2F TATCTGCAATGGCCATTACGGCCATGGTGAAGTTTTCTAAAGAACTT Sfi I
Sfi I
pBT3-SUC-StPHO1.2 Kan+
SUC2R# TCCTGCAGATGGCCGAGGCGGCGCCATCAGAGTCTGTCTCGCG
pBT3-N2F ATTCCTGCAGGGCCATTACGGCCATGGTGAAGTTTTCTAAAGAACTTGA Sfi I
Sfi I
pBT3-N-StPHO1.2 Kan+
pBT3-N2R# ACTTACCATGGGGCCGAGGCGGCGCCATCAGAGTCTGTCTCGCG
pBT3-C2F TAATCTAGACGGCCATTACGGCCATGGTGAAGTTTTCTAAAGAACTTGA Sfi I
Sfi I
pBT3-C-StPHO1.2 Kan+
pBT3-C2R# TGGAGGCCTTTGGCCGAGGCGGCGCCATCAGAGTCTGTCTCGCG
NY2F CGCCACAACATCGAGGGATCCATGGTGAAGTTTTCTAAAGAACTTG BamH I
Sma I
NY-StPHO1.2 Kan+
NY2R GAATTCGAGCTCTATCCCGGGCTAGCCATCAGAGTCTGTCTCG

表2

载体筛选"

序号
Serial number
质粒1
Plasmid 1
质粒2
Plasmid 2
目的
Purpose
1 pNubG-Fe65 pTSU2-APP 阳性对照 Positive control
2 NMY51 阴性对照 Negative control
3 pPR3N pBT3-STE-StPHO1.2 自激活检测 Self-activation detection
4 pPR3N pBT3-SUC-StPHO1.2 自激活检测 Self-activation detection
5 pPR3N pBT3-N-StPHO1.2 自激活检测 Self-activation detection
6 pPR3N pBT3-C-StPHO1.2 自激活检测 Self-activation detection
7 pOST1-NubI pBT3-STE-StPHO1.2 功能检测 Functional detection
8 pOST1-NubI pBT3-SUC-StPHO1.2 功能检测 Functional detection
9 pOST1-NubI pBT3-N-StPHO1.2 功能检测 Functional detection
10 pOST1-NubI pBT3-C-StPHO1.2 功能检测 Functional detection

图1

抗性基因PCR鉴定阳性转基因株系 M: DNA分子量标记; 1: StPHO1.2-Desiree; 2: pBI121空载质粒; 3: Desiree。"

图2

定量PCR鉴定阳性转基因株系"

图3

StPHO1.2-Desiree和Desiree的表型分析 A: 无磷(0 mmol L-1 Pi); B: 缺磷(0.1 mmol L-1 Pi); C: 富含磷(1.0 mmol L-1 Pi); 1: Desiree; 2: StPHO1.2-Desiree。“1”和“2”中, 左侧植株为高温下(35℃)生长, 右侧植株为常温下(22℃±1℃)生长。"

图4

StPHO1.2的亚细胞定位"

图5

酵母双杂质粒的筛选"

图6

酵母双杂交筛选StPHO1.2的互作蛋白 箭头表示代表性显色菌斑。"

图7

StPHO1.2与互作蛋白的“一对一”验证 1~5表示不同重复。"

图8

StPHO1.2与互作蛋白的BiFC验证"

[1] Rafael R B A, Fernández-Marcos M L, Cocco S, Ruello M L, Fornasier F, Corti G. Increased phosphorus availability to corn resulting from the simultaneous applications of phosphate rock, calcareous rock, and biochar to an acid sandy soil. Pedosphere, 2020, 30: 719-733.
doi: 10.1016/S1002-0160(20)60034-0
[2] Guo B, Irigoyen S, Fowler T B, Versaw W K. Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues. Plant Signal Behav, 2008, 3: 784-790.
doi: 10.4161/psb.3.10.6666 pmid: 19513231
[3] 于人杰. 响应低磷干旱胁迫磷转运蛋白基因在大豆组织中的表达及功能分析. 吉林农业大学博士学位论文, 吉林长春, 2019.
Yu R J. Expression and Functional Analysis of Phosphorus Transporter Genes Responding to Low Phosphorus and Drought Stress in Soybean Tissues. PhD Dissertation of Jilin Agricultural University, Changchun, Jilin, China, 2019 (in Chinese with English abstract).
[4] Karthikeyan A S, Varadarajan D K, Mukatira U T, D’Urzo M P, Damsz B, Raghothama K G. Regulated expression of Arabidopsis phosphate transporters. Plant Physiol, 2002, 130: 221-233.
[5] Mudge S R, Rae A L, Diatloff E, Smith F W. Expression analysis suggests novel roles for members of Pht1 family of phosphate transporters in Arabidopsis. Plant J, 2002, 31: 341-353.
doi: 10.1046/j.1365-313X.2002.01356.x
[6] Remy E, Cabrito T, Batista R A, Teixeira M C, Sá-Correia I, Duque P. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol, 2012, 195: 356-371.
doi: 10.1111/j.1469-8137.2012.04167.x pmid: 22578268
[7] Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol, 2011, 156: 1164-1175.
doi: 10.1104/pp.111.175240 pmid: 21502185
[8] 张琳淳, 李越, 沈锦纯, 赵竑博. 番茄PHT1家族磷转运蛋白研究进展. 农业与技术, 2021, 41(13): 1-6.
Zhang L C, Li Y, Shen J C, Zhao H B. Research progress of PHT1 family phosphorus transporters in tomato. Agric Technol, 2021, 41(13): 1-6 (in Chinese with English abstract).
[9] Guo C, Guo L, Li X, Gu J, Zhao M, Duan W, Ma C, Lu W, Xiao K. TaPT2, a high-affinity phosphate transporter gene in wheat (Triticum aestivum L.), is crucial in plant Pi uptake under phosphorus deprivation. Acta Physiol Plant, 2014, 36: 1373-1384.
doi: 10.1007/s11738-014-1516-x
[10] 付禹. 大豆磷转运蛋白GmPHT2家族成员的功能分析. 吉林农业大学硕士学位论文, 吉林长春, 2021.
Fu Y. Functional Analysis of Phosphate Transporter GmPHT2 Family Members in Soybean. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2021 (in Chinese with English abstract).
[11] Ferreira G C, Pratt R D, Pedersen P L. Energy-linked anion transport. cloning, sequencing, and characterization of a full length cDNA encoding the rat liver mitochondrial proton/phosphate symporter. J Biol Chem, 1989, 264: 15628-15633.
pmid: 2670944
[12] Qin L, Guo Y, Chen L, Liang R, Gu M, Xu G, Zhao J, Walk T, Liao H. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS One, 2012, 7: e47726.
doi: 10.1371/journal.pone.0047726
[13] 刘恒志. 马铃薯StPHT4;2磷转运蛋白基因的克隆及功能研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020.
Liu H Z. Cloning and Functional Research of StPHT4;2 Phosphate Transporter Genes in Potato. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract).
[14] 韩贝. 甘蓝型油菜PHT5家族基因鉴定及PHT5;1s调控磷稳态的功能研究. 华中农业大学博士学位论文, 湖北武汉, 2022.
Han B. Identification of Brassica napus PHT5 Family Genes and Functional Characterization of BnPHT5;1s Involved in Phosphate Homeostasis. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).
[15] Wang Y, Secco D, Poirier Y. Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens. Plant Physiol, 2008, 146: 646-656.
doi: 10.1104/pp.107.108548
[16] Rouached H, Stefanovic A, Secco D, Arpat B, Gout E, Bligny R, Poirier Y. Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis. Plant J, 2011, 65: 557-570.
doi: 10.1111/tpj.2011.65.issue-4
[17] Arpat B, Magliano P, Wege S, Rouached H, Stefanovic A, Poirier Y. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Plant J, 2012, 71: 479-491.
doi: 10.1111/tpj.2012.71.issue-3
[18] Cao F, Li H, Wang S, Li X, Dai H, Zhang Z. Expression and functional analysis of FaPHO1;H9 gene of strawberry (Fragaria×ananassa). J Integr Agric, 2017, 16: 580-590.
doi: 10.1016/S2095-3119(16)61433-8
[19] Liu B, Zhao S, Wu X, Wang X, Nan Y, Wang D, Chen Q. Identification and characterization of phosphate transporter genes in potato. J Biotechnol, 2017, 264: 17-28.
doi: S0168-1656(17)31707-8 pmid: 29055693
[20] 窦海鸥. AtCBF3 提高转基因马铃薯耐热性的研究. 山东农业大学硕士学位论文, 山东泰安, 2014.
Dou H O. Arabidopsis thaliana CBF3 Enhances the Tolerance of Potato to High Temperature. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2014 (in Chinese with English abstract).
[21] 张超. 茉莉酸调控基因GH3家族的鉴定及在马铃薯中抗病及损伤分析. 西北农林科技大学博士学位论文, 陕西杨凌, 2021.
Zhang C. Identification of Jasmonic Acid Regulatory Gene GH3 Family and Analysis of Disease Resistance and Wounding in Potato. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract).
[22] 李万, 杨明明, 高翔, 董剑, 赵万春. 西农538LMW-GS基因的克隆,原核表达及功能鉴定. 麦类作物学报, 2017, 37: 445-451.
Li W, Yang M, Gao X, Dong J, Zhao W. Isolation, prokaryotic expression and functional analysis of LMW-GS from Xinong 538 (Triticum aestivum L.). J Triticeae Crop, 2017, 37: 445-451 (in Chinese with English abstract).
[23] Li W, Dong J, Cao M, Gao X, Wang D, Liu B, Chen Q. Genome-wide identification and characterization of HD-ZIP genes in potato. Gene, 2019, 697: 103-117.
doi: S0378-1119(19)30149-0 pmid: 30776460
[24] 叶明辉, 赵朋, 牛洋, 王冬冬, 陈勤. 马铃薯同源异形框基因家族的鉴定和表达分析. 农业生物技术学报, 2021, 29(2): 224-239.
Ye M H, Zhao P, Niu Y, Wang D D, Chen Q. Identification and expression analysis of homeobox gene family in potato (Solanum tuberosum). J Agric Biotechnol, 2021, 29(2): 224-239 (in Chinese with English abstract).
[25] 陆孙杰. 水稻基因功能研究及用酵母双杂筛选互作蛋白. 浙江大学博士学位论文, 浙江杭州, 2012.
Lu S J. Functional Characterization of OsMADS15 and Screening its Interactors by Yeast Two Hybrid System. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2012 (in Chinese with English abstract).
[26] 林郑和, 陈荣冰, 郭少平. 植物对缺磷的生理适应机制研究进展. 作物杂志, 2010, (5): 5-9.
Lin Z H, Chen R B, Guo S P. Research progress on physiological adaptability of plants to phosphorus deficiency. Crops, 2010, (5): 5-9 (in Chinese with English abstract).
[27] Williamson L C, Ribrioux S P C P, Fitter A H, Ottoline L H M. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol, 2001, 126: 875-882.
doi: 10.1104/pp.126.2.875 pmid: 11402214
[28] 明凤, 米国华, 张福锁, 郑先武, 朱立煌. 水稻对低磷反应的基因型差异及其生理适应机制的初步研究. 应用与环境生物学报, 2000, 6: 138-141.
Ming F, Mi G H, Zhang F S, Zheng X W, Zhu L H. Studies on varietal difference of rice in response to low-P stress and its physiological adaptive mechanism. Chin J Appl Environ Biol, 2000, 6: 138-141 (in Chinese with English abstract).
[29] 曹黎明, 潘晓华. 水稻不同耐低磷基因基因型的评价指标分析. 上海农业学报, 2000, 16(4): 31-34.
Cao L M, Pan X H. Analysis of some indexes used for evaluating tolerance of different rice genotypes to low phosphorus treatment in sand culture. Acta Agric Shanghai, 2000, 16(4): 31-34 (in Chinese with English abstract).
[30] Qiu J, Israel D W. Diurnal starch accumulation and utilization in phosphorus-deficient soybean plants. Plant Physiol, 1992, 98: 316-323.
doi: 10.1104/pp.98.1.316 pmid: 16668630
[31] 吴俊江, 刘丽君, 钟鹏, 林蔚刚, 董德建. 低磷胁迫对不同基因型大豆保护酶活性的影响. 大豆科学, 2008, 27: 437-441.
Wu J J, Liu L J, Zhong P, Lin W G, Dong D J. Effects of low phosphorus stress on activities of cell defense enzymes of different P-efficiency. Soybean Sci, 2008, 27: 437-441 (in Chinese with English abstract).
[32] Ciereszko I, Johansson H, Hurry V, Kleczkowski L A. Phosphate status affects the gene expression, protein content and enzymatic activity of UDP glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta, 2001, 212: 598-605.
pmid: 11525517
[33] van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U I, Kunze R. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol, 2006, 141: 776-792.
doi: 10.1104/pp.106.079293 pmid: 16603661
[34] Khan G A, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H. Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis. J Exp Bot, 2014, 65: 871-884.
doi: 10.1093/jxb/ert444
[35] Ribot C, Wang Y, Poirier Y. Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta, 2008, 227: 1025-1036.
doi: 10.1007/s00425-007-0677-x pmid: 18094993
[36] Ribot C, Zimmerli C, Farmer E E, Reymond P, Poirier Y. Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiol, 2008, 147: 696-706.
doi: 10.1104/pp.108.119321
[37] Cao M, Liu H, Zhang C, Wang D, Liu X, Chen Q. Functional analysis of StPHT1;7, a Solanum tuberosum L. phosphate transporter gene, in growth and drought tolerance. Plants, 2020, 9: 1384.
doi: 10.3390/plants9101384
[38] Zhou X, Zha M, Huang J, Li L, Imran M, Zhang C. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J Exp Bot, 2017, 68: 1265-1281.
doi: 10.1093/jxb/erx026 pmid: 28338870
[39] Bokszczanin K L, Fragkostefanakis S. Perspectives on deciphering mechanisms unde rlying plant heat stress response and thermotolerance. Front Plant Sci, 2013, 4: 315-335.
doi: 10.3389/fpls.2013.00315 pmid: 23986766
[40] Gong M, Van der Luit A H, Knight M R, Trewavas A J. Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol, 1998, 116: 429-437.
doi: 10.1104/pp.116.1.429
[1] 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471.
[2] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[3] 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870.
[4] 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001.
[5] 王硕, 鲍天旸, 刘建刚, 段绍光, 简银巧, 李广存, 金黎平, 徐建飞. 基于RGB颜色空间评价马铃薯块茎绿化程度[J]. 作物学报, 2023, 49(4): 1102-1110.
[6] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995.
[7] 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005.
[8] 王瑞, 李向岭, 郭栋, 王新兵, 马玮, 李从锋, 赵明, 周宝元. 增施氮肥对夏玉米花后高温胁迫下籽粒碳氮代谢的影响[J]. 作物学报, 2023, 49(12): 3342-3351.
[9] 赵朋, 陈广侠, 张宴萍, 杨晓慧, 刘芳, 董道峰. 马铃薯苗期耐碱性鉴定方法及86份种质资源耐碱性综合评价[J]. 作物学报, 2023, 49(11): 2923-2934.
[10] 朱金勇, 刘震, 曾钰婷, 李志涛, 陈丽敏, 李泓阳, 史田斌, 张俊莲, 白江平, 刘玉汇. 马铃薯PAL基因家族的全基因组鉴定及其在非生物胁迫下和块茎花色素苷合成中的表达分析[J]. 作物学报, 2023, 49(11): 2978-2990.
[11] 巩慧玲, 林红霞, 任小丽, 李彤, 王晨霞, 白江平. StvacINV1负调控马铃薯的耐旱性[J]. 作物学报, 2023, 49(11): 3007-3016.
[12] 赵富贵, 张龙, 李丹, 韩固, 王楠, 侯贤清. 不同气候年型下耕作覆盖对宁南旱区土壤水热及马铃薯产量的影响[J]. 作物学报, 2023, 49(10): 2806-2819.
[13] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
[14] 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45.
[15] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征[J]. 作物学报, 2023, 49(1): 167-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .