欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1373-1383.doi: 10.3724/SP.J.1006.2024.31051

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证

张智源1**(), 周界光1**(), 刘家君1,2, 王素容1, 王同著1, 赵聪豪1, 尤佳宁1,3, 丁浦洋1,4, 唐华苹1, 刘燕林1, 江千涛1, 陈国跃1, 魏育明1, 马建1,*()   

  1. 1四川农业大学小麦研究所, 四川成都 611130
    2四川文理学院四川革命老区发展研究中心, 四川达州 635000
    3四川省农业科学院经济作物研究所, 四川成都 610300
    4绵阳师范学院生命科学与技术学院, 四川绵阳 621000
  • 收稿日期:2023-09-08 接受日期:2024-01-12 出版日期:2024-06-12 网络出版日期:2024-02-19
  • 通讯作者: * 马建, E-mail: jianma@sicau.edu.cn
  • 作者简介:张智源, E-mail: 1048105542@qq.com;周界光, E-mail: 351062153@qq.com

    ** 同等贡献

  • 基金资助:
    国家自然科学基金项目(31971937);四川省国际合作交流项目(2021YFH0083)

Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat

ZHANG Zhi-Yuan1**(), ZHOU Jie-Guang1**(), LIU Jia-Jun1,2, WANG Su-Rong1, WANG Tong-Zhu1, ZHAO Cong-Hao1, YOU Jia-Ning1,3, DING Pu-Yang1,4, TANG Hua-Ping1, LIU Yan-Lin1, JIANG Qian-Tao1, CHEN Guo-Yue1, WEI Yu-Ming1, MA Jian1,*()   

  1. 1Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2Research Center of Sichuan Old Revolutionary Areas Development, Sichuan University of Arts and Science, Dazhou 635000, Sichuan, China
    3Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, Sichuan, China
    4College of Life Science & Biotechnology, Mianyang Teachers’ College, Mianyang 621000, Sichuan, China
  • Received:2023-09-08 Accepted:2024-01-12 Published:2024-06-12 Published online:2024-02-19
  • Contact: * E-mail: jianma@sicau.edu.cn
  • About author:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31971937);International Cooperation and the Exchanges Program of Sichuan Province(2021YFH0083)

摘要:

有效分蘖数可直接影响小麦的成穗数, 与产量关系极为密切。挖掘小麦分蘖数相关数量性状位点, 解析分蘖数与其他重要农艺性状之间的相关性, 可为分子育种提供理论依据。本研究首先提出和建立了“多个环境评价-单个性状深入-综合性状兼顾-友好标记开发-不同背景验证”的遗传解析新模式。进一步利用该模式, 以寡分蘖自然变异植株msf和川农16 (CN16)构建的F6代重组自交系群体(MC群体)为实验材料, 以多年多点的有效分蘖数作为表型数据, 借助基于16K芯片构建的遗传连锁图谱成功定位和验证了寡分蘖遗传调控位点。QTL定位结果显示, 1A、5A和6D染色体上有4个控制寡分蘖的QTL。其中Qltn.sau-MC-1A为稳定主效的寡分蘖QTL, 解释了13.39%~60.40%的表型变异, 其正效应位点来源于msf。表型分析发现, 携带Qltn.sau-MC-1A正效应位点株系的有效分蘖数显著少于携带Qltn.sau-MC-1A负效应位点株系的有效分蘖数。相关性分析表明, 有效分蘖数和株高之间存在极显著的正相关, 与千粒重、每穗粒数、每穗粒重、旗叶宽之间存在显著的负相关, 有效分蘖数与旗叶长、开花期之间无显著相关。遗传分析结果表明, Qltn.sau-MC-1A正效应位点显著增加每穗粒数、每穗粒重和千粒重, 但推迟开花期。不同遗传背景下的验证结果表明, 携带Qltn.sau-MC-1A正效应位点的株系确实能降低有效分蘖数。综上, 本研究建立了一种遗传解析新模式, 并基于此模式解析、定位和验证了一个控制寡分蘖的主效QTL Qltn.sau-MC-1A, 为进一步精细定位和了解分蘖形成机制奠定了基础。

关键词: 小麦, 遗传解析新模式, 16K SNP芯片, QTL, 寡分蘖, 产量

Abstract:

Effective tiller number (ETN) directly affects panicle number and is closely related to wheat grain yield. Mining quantitative trait loci (QTLs) associated with wheat tiller number and analyzing the correlation between tiller number and other important agronomic traits can provide the theoretical basis for molecular breeding. In this study, we first proposed and established a novel genetic analysis framework of “multiple environmental assessments-depth analysis of individual traits-comprehensive evaluation of various traits-friendly marker development-verification in different backgrounds”. Using this approach, low-tillering QTLs were identified and validated base on an F6 recombinant inbred line population (MC population) derived from the low-tillering plant msf and Chuannong 16 (CN16), phenotypic data of effective tillers from multiple environments, and a 16K chip-based constructed genetic linkage map. QTL mapping results showed that there were four QTLs controlling tillering on chromosomes 1A, 5A, and 6D, respectively. Qltn.sau-MC-1A was a stable and major low-tillering QTL explaining 13.39%-60.40% of the phenotypic variation rate, and its positive allele was from msf. Phenotypic analysis showed that ETN of the lines carrying the positive allele of Qltn.sau-MC-1A was significantly less than those with the negative alleles. Correlation analysis showed that ETN had a significantly positive correlation with plant height (PH), and a significantly negative correlation with thousand kernel weight (TKW), kernel number per spike (KNPS), kernel weight per spike (KWPS), and flag leaf width (FLW), but no significantly correlation with flag leaf length (FLL) and anthesis date (AD). Genetic analysis showed that positive allele of Qltn.sau-MC-1A had a significant effect on increasing KNPS, KWPS, and TKW, but delaying AD. Validation results in different backgrounds suggested that the ETN of lines carrying positive alleles from Qltn.sau-MC-1A could be significantly decreased. Collectively, we established a new genetic mapping approach and further used it to identify and validate a major QTL controlling low-tiller number, Qltn.sau-MC-1A, which laid a foundation for further fine mapping and understanding the mechanism of tiller formation.

Key words: wheat, new genetic analysis model, 16K SNP array, QTL, low-tiller number, yield

图1

MC群体亲本和部分株系的表型"

表1

MC群体亲本及其RIL有效分蘖数表型变异"

生态环境
Environment
亲本 Parents 重组自交系 RILs 遗传力H2
msf CN16 平均值 Average 最小值 Min. 最大值 Max. 标准差 SD
2021WJ 3.90 9.00** 7.46 1.00 18.67 3.66 0.63
2021CZ 3.67 7.89** 4.75 1.00 10.75 2.06
2021YA 1.50 7.00N 3.36 1.00 13.00 2.29
2022WJ 2.38 8.00** 3.60 1.00 9.38 2.01
2022CZ 4.13 7.38* 4.31 1.00 13.50 2.85
BLUP 3.52 7.04 4.69 2.08 8.02 1.37

图2

不同环境MC群体有效分蘖数的分位数-分位数(Q-Q)图 mu: 平均值; sigma: 标准差。"

表2

MC群体的有效分蘖数在不同环境中的相关性"

生态环境
Environment
2021WJ 2021CZ 2021YA 2022WJ 2022CZ
2021WJ 1
2021CZ 0.50** 1
2021YA 0.31** 0.10 1
2022WJ 0.38** 0.42** 0.35** 1
2022 CZ 0.32** 0.27** 0.42** 0.75** 1

表3

MC群体寡分蘖相关的QTL"

数量性状位点
QTL
生态环境
Environment
遗传位置
Position
标记范围
Marker interval
阈值
LOD
表型变异
PVE (%)
Qltn.sau-MC-1A 2021WJ 1 1A_3911208-1A_10060497 8.74 17.96
2021CZ 1 1A_3911208-1A_10060497 7.97 17.05
2021YA 1 1A_3911208-1A_10060497 4.78 13.39
2022WJ 1 1A_3911208-1A_10060497 42.10 60.40
2022CZ 1 1A_3911208-1A_10060497 26.70 45.86
BLUP 1 1A_3911208-1A_10060497 39.86 54.36
Qltn.sau-MC-5A.1 2022WJ 97 5A_556727472-5A_558969437 4.37 3.81
Qltn.sau-MC-5A.2 BLUP 108 5A_572980290-5A_575428307 5.92 5.07
Qltn.sau-MC-6D 2022CZ 60 6D_455134794-6D_463743339 3.92 5.02

表4

MC群体有效分蘖数相关的多环境QTL"

遗传位置
Position
标记范围
Marker interval
阈值
LOD
LOD
(A)
LOD
(AbyE)
表型变异
PVE
PVE
(A)
PVE
(AbyE)
1 1A_3911208-1A_10060497 90.21 58.65 31.56 35.01 31.23 3.78
30 1A_23131668-1A_39616563 3.10 1.67 1.43 1.91 0.67 1.24
100 2A_717144670-2A_720056407 3.52 3.26 0.27 2.29 1.30 1.00
177 3A_730807251-3A_732757911 3.22 1.59 1.63 1.91 0.65 1.27
18 4A_618529916-4A_623834197 3.30 0.75 2.55 1.90 0.30 1.60
97 5A_556727472-5A_558969437 8.54 5.30 3.24 2.28 2.17 0.11
108 5A_572980290-5A_575428307 5.65 5.24 0.41 2.85 2.13 0.72
0 1B_489269981-1B_510813813 3.23 1.47 1.76 2.80 0.61 2.19
36 1B_619666190-1B_624217667 3.04 1.11 1.94 1.22 0.45 0.77
27 2B_18638491-2B_26062934 3.48 0.90 2.58 1.85 0.33 1.52
103 4B_648178224-4B_649491388 3.12 1.52 1.60 1.17 0.58 0.58
56 6B_687067128-6B_692736644 4.31 0.93 3.38 1.94 0.38 1.55
0 1D_304194-1D_12332065 3.32 0.01 3.31 0.93 0.00 0.93
84 1D_408180035-1D_431188242 3.07 2.14 0.93 2.13 0.81 1.33
57 3D_16429915-3D_39118733 3.75 0.15 3.60 0.73 0.06 0.67
0 3D_588334228-3D_594062466 3.71 3.29 0.42 1.71 1.35 0.36
53 4D_481390193-4D_484488681 3.07 1.66 1.42 1.31 0.65 0.66
88 5D_394108741-5D_403477419 3.23 0.97 2.25 1.56 0.40 1.16
60 6D_455134794-6D_463743339 4.95 2.28 2.67 1.74 0.93 0.82

图3

Qltn.sau-MC-1A的遗传连锁图谱及Qltn.sau-MC-1A在MC群体种的遗传效应 A: 遗传图谱(cM); B: LOD值; C: Qltn.sau-MC-1A在MC群体种的遗传效应。图谱左边为遗传位置(cM), 右边为标记名称。+和-: 携带和不携带对应QTL正效应位点的株系; n: 株系数。"

图4

有效分蘖数主效QTL对产量的影响"

图5

Qltn.sau-MC-1A在不同遗传背景下的验证"

图6

主效QTL遗传解析模式图"

[1] 居辉, 熊伟, 许吟隆, 林而达. 气候变化对我国小麦产量的影响. 作物学报, 2005, 31: 1340-1343.
Ju H, Xiong W, Xu Y L, Lin E D. Impacts of climate change on wheat yield in China. Acta Agron Sin, 2005, 31: 1340-1343. (in Chinese with English abstract)
[2] An D, Su J, Liu Q, Zhu Y, Tong Y, Li J, Jing R, Li B, Li Z. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil, 2006, 284: 73-84.
[3] Tshikunde N M, Mashilo J, Shimelis H, Odindo A. Agronomic and physiological traits, and associated quantitative trait loci (QTL) affecting yield response in wheat (Triticum aestivum L.): a review. Front Plant Sci, 2019, 10: 1428.
[4] Naruoka Y, Talbert L E, Lanning S P, Blake N K, Martin J M, Sherman J D. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet, 2011, 123: 1043-1053.
doi: 10.1007/s00122-011-1646-0 pmid: 21751014
[5] 杨林, 邵慧, 吴青霞, 余静, 冉从福, 李立群, 李学军. 小麦分蘖数和单株穗数QTL定位及上位性分析. 麦类作物学报, 2013, 33: 875-882.
Yang L, Shao H, Wu Q X, Yu J, Ran C F, Li L Q, Li X J. QTLs mapping and epistasis analysis for the number of tillers and spike number per plant in wheat. J Triticeae Crops, 2013, 33: 875-882. (in Chinese with English abstract)
[6] 陈悦, 王同著, 郑跃婷, 杨雨露, 王盈, 张香粉, 陈锋, 赵磊. 小麦分蘖性状分子遗传研究进展. 麦类作物学报, 2022. 42: 564-571.
Chen Y, Wang T Z, Zheng Y T, Yang Y L, Wang Y, Zhang X F, Chen F, Zhao L. Advances in molecular genetics of tillering characters in wheat. J Triticeae Crops, 2022, 42: 564-571. (in Chinese with English abstract)
[7] 申雪懿, 李东升, 陈琛, 曲朝喜, 郭瑞, 姚维成, 刘家俊, 邓垚, 温明星. 小麦分蘖数目遗传研究进展与展望. 麦类作物学报, 2023, 43: 1344-1350.
Shen X Y, Li D S, Chen C, Qu C X, Guo R, Yao W C, Liu J J, Deng Y, Wen M X. Progress and prospect of genetic research on tiller number wheat. J Triticeae Crops, 2023, 43: 1344-1350. (in Chinese with English abstract)
[8] Spielmeyer W, Richards R A. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet, 2004, 109: 1303-1310.
doi: 10.1007/s00122-004-1745-2 pmid: 15448895
[9] Peng Z S, Yen C, Yang J L. Genetic control of oligo-culms in common wheat. Wheat Inf Serv, 1998, 86: 19-24.
[10] Kuraparthy V, Sood S, Dhaliwal H S, Chhuneja P, Gill B S. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet, 2007, 114: 285-294.
doi: 10.1007/s00122-006-0431-y pmid: 17115129
[11] Si Y Q, Lu Q, Tian S Q, Niu J Q, Cui M, Liu X L, Gao Q, Shi X L, Ling H Q, Zheng S S. Fine mapping of the tiller inhibition gene TIN5 in Triticum urartu. Theor Appl Genet, 2022, 135: 2665-2673.
[12] Schoen A, Yadav I, Wu S Y, Poland J, Rawat N, Tiwari V. Identification and high-resolution mapping of a novel tiller number gene (tin6) by combining forward genetics screen and MutMap approach in bread wheat. Funct Integr Genom, 2023, 23: 157.
[13] Zhang J P, Wu J, Liu W H, Lu X, Yang X M, Gao A N, Li X Q, Lu Y Q, Li L H. Genetic mapping of a fertile tiller inhibition gene, ftin, in wheat. Mol Breed, 2013, 31: 441-449.
[14] Wang Z Q, Liu Y X, Shi H R, Mo H J, Wu F K, Lin Y, Gao S, Wang J R, Wei Y M, Liu C J, Zheng Y L. Identification and validation of novel low-tiller number QTL in common wheat. Theor Appl Genet, 2016, 129: 603-612.
doi: 10.1007/s00122-015-2652-4 pmid: 26804619
[15] Wang Z Q, Wu F K, Chen X D, Zhou W L, Shi H R, Lin Y, Hou S, Yu S F, Zhou H, Li C X, Liu Y X. Fine mapping of the tiller inhibition gene TIN4 contributing to ideal plant architecture in common wheat. Theor Appl Genet, 2022, 135: 527-535.
[16] Liu J J, Luo W, Qin N N, Ding P Y, Zhang H, Yang C C, Mu Y, Tang H P, Liu Y X, Li W, Jiang Q T, Chen G Y, Wei Y M, Zheng Y L, Liu C J, Lan X J, Ma J. A 55K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor Appl Genet, 2018, 131: 2439-2450.
[17] Liu J J, Tang H P, Qu X R, Liu H, Li C, Tu Y, Li S Q, Habib A, Mu Y, Dai S F, Deng M, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Chen G D, Li W, Jiang Y F, Wei Y M, Lan X J, Zheng Y L, Ma J. A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. Plant Mol Biol, 2020, 104: 173-185.
doi: 10.1007/s11103-020-01035-6 pmid: 32734417
[18] Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 2006, 112: 787-796.
doi: 10.1007/s00122-005-0159-0 pmid: 16463062
[19] Wang R, Liu Y X, Isham K, Zhao W, Wheeler J, Klassen N, Hu Y G, Bonman J M, Chen J L. QTL identification and KASP marker development for productive tiller and fertile spikelet numbers in two high-yielding hard white spring wheat cultivars. Mol Breed, 2018, 38: 135.
[20] Hyles J, Vautrin S, Pettolino F, MacMillan C, Stachurski Z, Breen J, Berges H, Wicker T, Spielmeyer W. Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. J Exp Bot, 2017, 68: 1519-1529.
doi: 10.1093/jxb/erx051 pmid: 28369427
[21] Dong C H, Zhang L C, Zhang Q, Yang Y X, Li D P, Xie Z C, Cui G Q, Chen Y Y, Wu L F, Li Z, Liu G X, Zhang X Y, Liu C M, Chu J F, Zhao G Y, Xia C, Jia J Z, Sun J Q, Kong X Y, Liu X. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat Commun, 2023, 14: 836.
[22] Souissi A, Bahri H, M’hamed H C, Chakroun M, Benyoussef S, Frija A, Annabi M. Effect of tillage, previous crop, and N fertilization on agronomic and economic performances of durum wheat (Triticum durum Desf.) under rainfed semi-arid environment. Agronomy, 2020, 10: 1161.
[23] Zhang J M, Zhang S Q, Cheng M, Jiang H, Zhang X Y, Peng C H, Lu X H, Zhang M X, Jin J X. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health, 2018, 15: 839.
[24] Lu K, Wu B W, Wang J, Zhu W, Nie H P, Qian J J, Huang W T, Fang Z M. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J, 2018, 16: 1710-1722.
[25] Ajmal S U, Zakir N, Mujahid M Y. Estimation of genetic parameters and character association in wheat. J Agric Biol Sci, 2009, 1: 15-18.
[26] Jung W J, Lee Y J, Kang C S, Seo Y W. Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis. BMC Plant Biol, 2021, 21: 418.
doi: 10.1186/s12870-021-03180-6 pmid: 34517837
[27] Zhou J G, Li W, Yang Y Y, Xie X L, Liu J J, Liu Y L, Tang H P, Deng M, Xu Q, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Chen G D, He Y J, Ren Y, Tang L W, Gou L L, Zheng Y L, Wei Y M, Ma J. A promising QTL QSns.sau-MC-3D.1 likely superior to WAPO1 for the number of spikelets per spike of wheat shows no adverse effects on yield-related traits. Theor Appl Genet, 2023, 136: 181.
[28] Ma J, Qin N N, Cai B, Chen G Y, Ding P Y, Zhang H, Yang C C, Huang L, Mu Y, Tang H P, Liu Y X, Wang J R, Qi P F, Jiang Q T, Zheng Y L, Liu C J, Lan X J, Wei Y M. Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theor Appl Genet, 2019, 132: 1363-1373.
doi: 10.1007/s00122-019-03283-7 pmid: 30680420
[29] Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S Q, Liu J J, Ding P Y, Habib A, Mu Y, Tang H P, Liu Y X, Jiang Q T, Chen G Y, Wang J R, Li W, Pu Z E, Zheng Y L, Wei Y M, Kang H Y, Chen G D, Lan X J. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theor Appl Genet, 2020, 133: 297-315.
doi: 10.1007/s00122-019-03458-2 pmid: 31628527
[30] 陈黄鑫, 李聪, 吴坤燕, 王岳, 牟杨, 唐华苹, 唐力为, 兰秀锦, 马建. 四倍体小麦株高和穗长性状的QTL定位及其遗传效应分析. 麦类作物学报, 2022, 42: 799-807.
Chen H X, Li C, Wu K Y, Wang Y, Mu Y, Tang H P, Tang L W, Lan X J, Ma J. Detection of QTLs for plant height and spike length in tetraploid wheat and analysis of their genetic effect. J Triticeae Crops, 2022, 42: 799-807. (in Chinese with English abstract)
[31] 唐华苹, 陈黄鑫, 李聪, 苟璐璐, 谭翠, 牟杨, 唐力为, 兰秀锦, 魏育明, 马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析. 中国农业科学, 2022, 55: 1492-1502.
doi: 10.3864/j.issn.0578-1752.2022.08.002
Tang H P, Chen H X, Li C, Gou L L, Tan C, Mu Y, Tang L W, Lan X J, Wei Y M, Ma J. Unconditional and conditional QTL analysis of wheat spike length in common wheat based on 55K SNP array. Sci Agric Sin, 2022, 55: 1492-1502 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.08.002
[32] McIntosh R, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R. Catalogue of Gene Symbols for Wheat. In:Proceedings of the 12th International Wheat Genetics Symposium. Yokohama Japan, 2013. pp 8-13.
[33] Wang S R, Wang T Y, Xuan Q J, Qu X R, Xu Q, Jiang Q T, Pu Z E, Li Y, Jiang Y F, Chen G Y, Deng M, Liu Y L, Tang H P, Chen G D, He Y J, Gou L L, Wei Y M, Zheng Y L, Ma J. Major and stably expressed QTL for traits related to the mature wheat embryo independent of kernel size. Theor Appl Genet, 2023, 136: 90.
doi: 10.1007/s00122-023-04346-6 pmid: 37000252
[34] Qu X R, Li C, Liu H, Liu J J, Luo W, Xu Q, Tang H P, Mu Y, Deng M, Pu Z E, Ma J, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Wei Y M, Zheng Y L, Lan X J, Ma J. Quick mapping and characterization of a co-located kernel length and thousand-kernel weight-related QTL in wheat. Theor Appl Genet, 2022, 135: 2849-2860.
doi: 10.1007/s00122-022-04154-4 pmid: 35804167
[35] Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2019, 132: 3155-3167.
doi: 10.1007/s00122-019-03415-z pmid: 31435704
[36] Liu J J, Zhou J G, Tang H P, Tu Y, Mu Y, Gou L L, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Qi P F, Li W, Jiang Y F, Yan Z H, Kang H Y, Wei Y M, Lan X J, Zheng Y L, Ma J. A major vernalization-independent QTL for tiller angle on chromosome arm 2BL in bread wheat. Crop J, 2022, 10: 185-193.
doi: 10.1016/j.cj.2021.02.013
[37] Tu Y, Liu H, Liu J J, Tang H P, Mu Y, Deng M, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Qi P F, Pu Z E, Chen G D, Peng Y Y, Jiang Y F, Xu Q, Kang H Y, Lan X J, Wei Y M, Zheng Y L, Ma J. QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds. Theor Appl Genet, 2021, 134: 261-278.
doi: 10.1007/s00122-020-03695-w pmid: 33026461
[38] Ma S W, Wang M, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant, 2021, 14: 1965-1968.
doi: 10.1016/j.molp.2021.10.006 pmid: 34715393
[39] Richards R. A tiller inhibitor gene in wheat and its effect on plant growth. Aust J Agric Res, 1988, 39: 749-757.
[40] Yu M, Liu Z H, Yang B, Chen H, Zhang H, Hou D B. The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Sci Rep, 2020, 10: 12261.
doi: 10.1038/s41598-020-69138-0 pmid: 32703989
[41] 姚琦馥, 陈黄鑫, 周界光, 马瑞莹, 邓亮, 谭陈芯雨, 宋靖涵, 吕季娟, 马建. 基于16K SNP芯片的小麦株高QTL鉴定及其遗传分析. 中国农业科学, 2023, 56: 2237-2248.
doi: 10.3864/j.issn.0578-1752.2023.12.001
Yao Q F, Chen H X, Zhou J G, Ma R Y, Deng L, Tan C X Y, Song J H, Lyu J J, Ma J. QTL Identification and genetic analysis of plant height in wheat based on 16K SNP array. Sci Agric Sin, 2023, 56: 2237-2248. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2023.12.001
[42] Yao F Q, Li X H, Wang H, Song Y N, Li Z Q, Li X G, Gao X Q, Zhang X S, Bie X M. Down-expression of TaPIN1s increases the tiller number and grain yield in wheat. BMC Plant Biol, 2021, 21: 443.
[43] 张晶, 张定一, 王姣爱, 党建友. 小麦单株有效分蘖数与农艺性状的相关性研究. 山西农业科学, 2009, 37(6): 17-19.
Zhang J, Zhang D Y, Wang J A, Dang J Y. The dependence study of the effective tillers per plant and agronomic characters in wheat. J Shanxi Agric Sci, 2009, 37(6): 17-19. (in Chinese with English abstract)
[44] 倪永静, 姜晓君, 卢祖权, 朱培培, 胡新, 韩同进. 30份国内外小麦种质资源主要农艺性状的分析与评价. 中国农学通报, 2020, 36(3): 16-22.
doi: 10.11924/j.issn.1000-6850.casb20190700380
Ni Y J, Jiang X J, Lu Z Q, Zhu P P, Hu X, Han T J. 30 worldwide wheat germplasm resources: analysis and evaluation of main agronomic traits. Chin Agric Sci Bull, 2020, 36(3): 16-22. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb20190700380
[45] Kebrom T H, Chandler P M, Swain S M, King R W, Richards R A, Spielmeyer W. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol, 2012, 160: 308-318.
[1] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[2] 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884.
[3] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[4] 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718.
[5] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[6] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[7] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[8] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[9] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[10] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[11] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[12] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[13] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[14] 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1420.
[15] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .