欢迎访问作物学报,今天是

作物学报

• •    

燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位

韩丽1,汤胜胜1,李佳1,胡海斌2,刘龙龙1,*,吴斌2,*   

  1. 山西农业大学农业基因资源研究中心 / 农业部黄土高原作物基因资源与种质创新重点实验室,山西太原 030031;2中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2023-10-24 修回日期:2024-01-31 接受日期:2024-01-31 网络出版日期:2024-03-07
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-07-A)和国家自然科学基金项目(30800699)资助。

Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats

HAN Li1,TANG Sheng-Sheng1,LI Jia1,HU Hai-Bin2,LIU Long-Long1,*,WU Bin2,*   

  1. Germplasm Enhancement on Loess Plateau, Taiyuan 030031, Shanxi, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-10-24 Revised:2024-01-31 Accepted:2024-01-31 Published online:2024-03-07
  • Supported by:
    This study was supported by the Earmarked Fund for China Agriculture Research System of MOF and MARA (CARS-07-A) and the National Natural Science Foundation of China (30800699).

摘要:

β-葡聚糖是燕麦发挥保健作用的主要功能因子,提高其含量对优质燕麦生产有着重要意义。为促进高β-葡聚糖燕麦种质资源的有效利用和相关基因发掘,本研究以高β-葡聚糖品种夏莜麦和低β-葡聚糖品种38组配衍生的219个家系RIL8群体为材料,利用重测序技术构建了包含21个连锁群,5032bin标记的遗传连锁图谱,图谱总长2045.09 cM,平均图距0.42 cM。利用标准酶法和近红外法对4个环境的RIL群体家系β-葡聚糖含量进行测定,结合测定结果,利用完备区间作图法β-葡聚糖含量进行QTL定位分析,结果显示不同环境条件下RIL群体β-葡聚糖含量呈正态分布,并出现超亲后代家系,4个环境下群体β-葡聚糖含量变异系数介于9.06%~16.63%之间。QTL定位检测到7个与燕麦β-葡聚糖含量相关的QTL,分布于2D3D4C4D染色体上,其中贡献率最高为14.73%,在2个环境中检测到同QTL,其标记区间为Chr4C_mark8361257-Chr4C_mark8384831。研究结果将为燕麦β-葡聚糖分子标记辅助育种提供重要的理论依据。

关键词: 燕麦, SNP, 遗传图谱, β-葡聚糖, QTL定位

Abstract:

β-glucan is the main functional component of oats for health care, and improving its content is of great significance to the production of high-quality oats. In this study, in order to promote the effective utilization of high β-glucan oat germplasm resources and the discovery of related genes, a genetic linkage map containing 21 linkage groups and 5032 bin markers was constructed by using resequencing technology with the 223 RIL8 populations derived from the high β-glucan variety Xiayoumai and the low β-glucan resource Chi38. The total length of the map was 2045.09 cM, and the average plot distance was 0.42 cM. The β-glucan content of RIL populations in 4 environments was determined by standard enzyme method and near infrared method. Combined with the determination results, QTL analysis of β-glucan content was performed by complete interval mapping method. The results showed that the β-glucan content of RIL populations was normally distributed under different environmental conditions, and there were superparent descendants. The coefficient of variation of β-glucan content in the four environments ranged from 9.06% to 16.63%. Seven QTLs related to β-glucan content in oat were detected by QTL mapping, distributed on 2D, 3D, 4C, and 4D chromosomes, with the highest contribution rate of 14.73%. The same QTL was detected in two environments with a marker interval of Chr4C_mark8361257–Chr4C_mark8384831. The results of this study provide an important theoretical basis for molecular marker-assisted breeding of oat β-glucan.

Key words: oat, SNP, genetic map, β-glucan, QTL mapping

[1] 陆大彪. 燕麦. 作物杂志, 1985, (1): 28.

Lu D B. Oats. J Crops, 1985, (1): 28 (in Chinese with English abstract).

[2] Shewry P R, Piironen V, Lampi A M, Nyström L, Li L, Rakszegi M, Fraś A, Boros D, Gebruers K, Courtin C M, Delcour J A, Andersson A A, Dimberg L, Bedo Z, Ward J L. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem, 2008, 56: 9777‒9784.

[3] Kendall C W C, Esfahani A, Jenkins D J A. The link between dietary fibre and human health. Food Hydrocoll, 2010, 24: 42‒48.

[4] Beer M U, Wood P J, Weisz J, Fillion N. Effect of cooking and storage on the amount and molecular weight of (1→3) (1→4)-β-D-glucan extracted from oat products by an in vitro digestion system. Cereal Chem, 1997, 74: 705‒709.

[5] Ballabio C, Uberti F, Manferdelli S, Vacca E G, Boggini G, Redaelli R, Catassi C, Lionetti E, Peñas E, Restani P. Molecular characterization of 36 oat varieties and in vitro assessment of their suitability for coeliacs’ diet. J Cereal Sci, 2011, 54: 110‒115.

[6] Fincher G B, Stone B. Cell walls and their components in cereal grain technology. Adv Cereal Sci Technol, 1986.

[7] Wang Y, Liu J, Chen F, Zhao G. Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan. J Agric Food Chem, 2013, 61: 4533‒4538.

[8] Bacic A, Stone B. A (1→3)- and (1→4)-linked β-d-glucan in the endosperm cell-walls of wheat. Carbohydr Res, 1980, 82: 372‒377.

[9] Saulnier L, Péneau N, Thibault J F. Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. J Cereal Sci, 1995, 22: 259‒264.

[10] Yun C H, Estrada A, Van Kessel A, Gajadhar A A, Redmond M J, Laarveld B. β-(1→3, 1→4) Oat glucan enhances resistance to Eimeria vermiformis infection in immunosuppressed mice. Int J Parasitol, 1997, 27: 329‒337.

[11] 申瑞玲, 王章存, 董吉林, 姚惠源. 燕麦β-葡聚糖对小鼠结肠菌群及其功能的影响. 营养学报, 2006, 28: 430‒433.

Shen R L, Wang Z C, Dong J L, Yao H Y. Oats β- The effect of dextran on the colonic microbiota and its function in mice. J Nutr, 2006, 28: 430‒433 (in Chinese with English abstract).

[12] Wood P J, Braaten J T, Scott F W, Riedel K D, Wolynetz M S, Collins M W. Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load. Brit J Nutr, 1994, 72: 731‒743.

[13] 张勇, 郝元峰, 张艳, 何心尧, 夏先春, 何中虎. 小麦营养和健康品质研究进展. 中国农业科学, 2016, 49: 4284‒4298.

Zhang Y, Hao Y F, Zhang Y, He X Y, Xia X C, He Z H. Research progress in wheat nutrition and health quality. Chin Agric Sci, 2016, 49: 4284‒4298 (in Chinese with English abstract).

[14] Kianian S, Phillips R, Rines H, Fulcher R, Webster F, Stuthman D. Quantitative trait loci influencing β-glucan content in oat (Avena sativa, 2n = 6x = 42). Theor Appl Genet, 2000, 101: 1039‒1048.

[15] Groh S, Kianian S, Phillips R, Rines H, Stuthman D, Wesenberg D, Fulcher R. Analysis of factors influencing milling yield and their association to other traits by QTL analysis in two hexaploid oat populations. Theor Appl Genet, 2001, 103: 9‒18.

[16] Tanhuanpää P, Manninen O, Beattie A, Eckstein P, Scoles G, Rossnagel B, Kiviharju E. An updated doubled haploid oat linkage map and QTL mapping of agronomic and grain quality traits from Canadian field trials. Genome, 2012, 55: 289‒301.

[17] Herrmann, Matthias H, Yu J Z, Steffen B, Wilhelm E W. Quantitative trait loci for quality and agronomic traits in two advanced backcross populations in oat (Avena sativa L.). Plant Breed, 2014, 133: 588‒601.

[18] 吴斌, 张茜, 宋高原, 陈新, 张宗文. 裸燕麦SSR标记连锁群图谱的构建及β-葡聚糖含量QTL的定位. 中国农业科学, 2014, 47: 1208‒1215.

Wu B, Zhang Q, Song G Y, Chen X, Zhang Z W. Construction of SSR marked linkage group map for bare oats and its application β-localization of QTL for glucan content. Chin Agric Sci, 2014, 47: 1208‒1215 (in Chinese with English abstract).

[19] Zimmer C M, McNish I G, Klos K E, Oro T, Arruda K M A, Gutkoski L C, Pacheco M T, Smith K P, Federizzi L C. Genome-wide association for β-glucan content, population structure, and linkage disequilibrium in elite oat germplasm adapted to subtropical environments. Mol Breed: New Strat Plant Improv, 2020, 40: 103.

[20] 吕耀昌, 王强, 赵炜, 邓万和. 燕麦、大麦中β-葡聚糖的酶法测定. 食品科学, 2005, 26: 180‒182.

Lyu Y C, Wang Q, Zhao W, Deng W H. Oats and barley β-enzymatic determination of dextran. Food Sci, 2005, 26: 180‒182 (in Chinese with English abstract).

[21] Henry R J. Near-infrared reflectance analysis of carbohydrates and its application to the determination of (1→3), (1→4)-β-d-glucan in barley. Carbohydr Res, 1985, 141: 13‒19.

[22] Meng L, Hui H L, Lu Y Z, Jian K W. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283.

[23] McCouch S, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11‒13.

[24] 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918‒931.

Li H H, Zhang L Y, Wang J K. Analysis and answers to several common problems in quantitative trait gene mapping research. Acta Agron Sin, 2010, 36: 918‒931 (in Chinese with English abstract).

[25] O’Donoughue L S, Sorrells M E, Tanksley S D, Autrique E, Deynze A V, Kianian S F, Phillips R L, Wu B, Rines H W, Rayapati P J, Lee M, Penner G A, Fedak G, Molnar S J, Hoffman D, Salas C A. A molecular linkage map of cultivated oat. Genome, 1995, 38: 368‒380.

[26] Chaffin A, Huang Y, Smith S M, Bekele W A, Babiker E M, Gnanesh B N, Foresman B J, Blanchard S G, Jay J J, Reid R W, Wight C P, Chao S, Oliver R E, Islamovic E, Kolb F L, McCartney C A, Mitchell Fetch J W, Beattie A D, Bjornstad Å, Bonman J M, Langdon T, Howarth C J, Brouwer C R, Jellen E N, Klos K E, Poland J A, Hsieh T, Brown R H, Jackson E W, Schlueter J, Tinker N A. A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. Plant Genome, 2016, 9(2): 121.

[27] Huang Y F, Poland J A, Wight C P, Jackson E W, Tinker N A. Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One, 2014, 9: e102448.

[28] Bekele W A, Wight C P, Chao S, Howarth C J, Tinker N A. Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnol J, 2018, 16: 1452‒1463.

[29] Kono T J, Seth K, Poland J A, Morrell P L. SNPMeta: SNP annotation and SNP metadata collection without a reference genome. Mol Ecol Resour, 2014, 14: 419‒425.

[30] Du Z, Huang Z, Li J, Bao J, Tu H, Zeng C, Wu Z, Fu H, Xu J, Zhou D, Zhu C, Fu J, He H. qTGW12a, a naturally varying QTL, regulates grain weight in rice. Theor Appl Genet, 2021, 134: 2767‒2776.

[31] Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6: e17595.

[32] Fogarty M C, Smith S M, Sheridan J L, Hu G, Islamovic E, Reid R, Jackson E W, Maughan P J, Ames N P, Jellen E N, Hsieh T. Identification of mixed linkage β‐glucan quantitative trait loci and evaluation of AsCslF6 homeologs in hexaploid oat. Crop Sci, 2020, 60: 914‒933.

[33] Tinker N A, Wight C P, Bekele W A, Yan W, Jellen E N, Renhuldt N T, Sirijovski N, Lux T, Spannagl M, Mascher M. Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Commun Biol, 2022, 5: 474.

[34] Burton R A, Wilson S M, Hrmova M, Harvey A J, Shirley N J, Medhurst A, Stone B A, Newbigin E J, Bacic A, Fincher G B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science, 2006, 311: 1940‒1942.

[35] Doblin M S, Pettolino F A, Wilson S M, Campbell R, Burton R A, Fincher G B, Newbigin E, Bacic A. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA, 2009, 106: 5996‒6001.

[36] Little A, Schwerdt J G, Shirley N J, Khor S F, Neumann K, O'Donovan L A, Lahnstein J, Collins H M, Henderson M, Fincher G B, Burton R A. Revised phylogeny of the cellulose synthase gene superfamily: insights into cell wall evolution. Plant Physiol, 2018, 177: 1124‒1141.

[37] Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, Kang L, Zhou P, Yu K, Dong X, Liu X, Sun Z, Peng Y, Zhao J, Deng D, Xu Y, Li Y, Jiang Q, Li Y, Wei L, Wang J, Ma J, Hao M, Li W, Kang H, Peng Z, Liu D, Jia J, Zheng Y, Ma T, Wei Y, Lu F, Ren C. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet, 2022, 54: 1248‒58.

[38] Bernal A J, Jensen J K, Harholt J, Sørensen S, Moller I, Blaukopf C, Johansen B, Lotto R D, Pauly M, Scheller H V, Willats W G. Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis. Plant J, 2007, 52: 791‒802

[1] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
[2] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[3] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[4] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[5] 南金生, 安江红, 柴明娜, 蒋屿潋, 朱志强, 杨燕, 韩冰. 淀粉特性及其表面结合蛋白与裸燕麦籽粒硬度的关系研究[J]. 作物学报, 2023, 49(9): 2552-2561.
[6] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[7] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[8] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561.
[9] 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600.
[10] 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714.
[11] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[12] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[13] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[14] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[15] 陈冰嬬, 于淼, 葛占宇, 李洪奎, 黄炎, 李海青, 石贵山, 谢利, 徐宁, 闫峰, 高士杰, 周紫阳, 王鼐. 春播早熟区高粱杂种优势群及杂种优势模式分析[J]. 作物学报, 2023, 49(2): 343-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!