作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1719-1727.doi: 10.3724/SP.J.1006.2024.34186
秦娜1(), 叶珍言2, 朱灿灿1, 付森杰1, 代书桃1, 宋迎辉1, 景雅1, 王春义1, 李君霞1,*()
QIN Na1(), YE Zhen-Yan2, ZHU Can-Can1, FU Sen-Jie1, DAI Shu-Tao1, SONG Ying-Hui1, JING Ya1, WANG Chun-Yi1, LI Jun-Xia1,*()
摘要:
谷子(Setaria italica L.)是我国北方地区重要的粮食作物, 籽粒营养丰富, 且富含多种类黄酮物质, 对生长发育和品质形成发挥着重要作用。目前谷子籽粒类黄酮合成及粒色形成相关调控机制研究较少。分析谷子类黄酮含量及粒色性状相关的QTL, 为类黄酮合成关键基因的精细定位、克隆及功能研究奠定基础, 同时, 也为揭示谷子类黄酮合成及代谢机制和培育富含类黄酮谷子品种提供技术支撑。本研究以红粒色高类黄酮品种金苗红酒谷和黄粒色低类黄酮品种豫谷28为亲本构建的包含150个家系的重组自交系(RIL)群体为试验材料, 在谷子成熟期对籽粒粒色和类黄酮含量相关性状进行分析。同时, 采用复合区间作图法(composite interval mapping, CIM)对粒色和类黄酮含量进行QTL定位与分析, 并对QTL置信区间内的候选基因进行预测。相关性分析表明, 类黄酮含量与粒色呈显著正相关。共定位到4个与类黄酮含量相关和11个与粒色相关的QTL, 分别位于1号、2号、5号、6号、7号、8号和9号染色体上, 单个QTL的表型贡献率为2.01%~29.25%, 6个为主效QTL, 其中, qSC1-2和qFLA1-1、qSC7-1和qFLA7-1、qSC9-3和qFLA9-1为2个性状下共同定位到的QTL。通过基因预测与功能注释, 筛选出QTL置信区间内5个与类黄酮物质合成及代谢相关的候选基因, 表明类黄酮物质的合成、代谢及利用相关基因极有可能控制了这些基因的表达。15个QTL分别聚集于7条染色体上, 基于基因功能注释, 共筛选了5个与谷子类黄酮合成及代谢相关的候选基因, 表明不同QTL位点参与到了共同遗传机制, 并可通过分子标记辅助选择进行类黄酮合成及代谢等有利基因的聚合育种。
[1] |
Yang X Y, Wan Z W, Perry L, Lu H Y, Wang Q, Zhao C H, Li J, Xie F, Yu J C, Cui T X, Wang T, Ge Q S. Early millet use in northern China. Proc Natl Acad Sci USA, 2012, 109: 3726-3730.
doi: 10.1073/pnas.1115430109 pmid: 22355109 |
[2] |
Lu H, Zhang J, Liu K B, Wu N Q, Li Y M, Zhou K S, Ye M L, Zhang T Y, Zhang H J, Yang X Y, Shen L C, Xu D K, Li Q. Earliest domestication of common millet (Panicum miliaceum) in east Asia extended to 10,000 years ago. Proc Natl Acad Sci USA, 2009, 106: 7367-7372.
doi: 10.1073/pnas.0900158106 pmid: 19383791 |
[3] | Diao X M. Foxtail millet production in China and its future development tendency. In: Chai Y, Wan F S, eds. The Industrial Development of China Special Crops. Beijing: China Agricultural Science and Technology Press, 2007. pp 32-43. |
[4] | 李建锐. 谷子SiASR4基因参与植物响应干旱和盐胁迫的功能研究. 中国农业大学博士学位论文, 北京, 2018. |
Li J R. Function Analysis of the Foxtail Millet (Setaria italica) Gene, SiASR4, in Response to Drought and Salt Stresses of Plants. PhD Dissertation of China Agricultural University, Beijing, China, 2018 (in Chinese with English abstract). | |
[5] | 张文英. 谷子种质资源抗旱性评价. 中国农业科学院硕士学位论文, 北京, 2014. |
Zhang W Y. Evaluation of the Drought Tolerance of Germplasm Resources in Foxtail Millet, Setaria italica L. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with English abstract). | |
[6] |
Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Jeremy-Spencer P E. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr, 2008, 3: 115-126.
doi: 10.1007/s12263-008-0091-4 pmid: 18937002 |
[7] | Pandey K B, Rizvi S I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidat Med Cell Longev, 2009, 2: 270-278. |
[8] | 张丽玲, 郄倩茹, 罗韶凡, 牛文康, 朱喆标, 高雨柔, 李旭凯, 韩渊怀. 谷子12种黄酮类代谢物合成通路分析. 山西农业大学学报(自然科学版), 2020, 40(4): 10-18. |
Zhang L L, Qie Q R, Luo S F, Niu W K, Zhu Z B, Gao Y R, Li X K, Han Y H. Analysis of synthesis pathway of twelve flavonoid metabolites in foxtail millet. J Shanxi Agric Univ (Nat Sci Edn), 2020, 40(4): 10-18 (in Chinese with English abstract). | |
[9] | Zhang Y K, Gao J H, Qie Q R, Yang Y L, Hou S Y, Wang X C, Li X K, Han Y H. Comparative analysis of flavonoid metabolites in foxtail millet (Setaria italica) with different eating quality. Life (Basel), 2021, 11: 578. |
[10] |
韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因. 作物学报, 2022, 48: 1645-1657.
doi: 10.3724/SP.J.1006.2022.14107 |
Han S L, Huo Y Q, Li H, Han H R, Hou S Y, Sun Z X, Han Y H, Li H Y. Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet. Acta Agron Sin, 2022, 48: 1645-1657 (in Chinese with English abstract). | |
[11] | 张瑞杰. 基于转录组水平对谷子叶片花青素积累机制的初探. 山西农业大学硕士学位论文, 山西太谷, 2019. |
Zhang R J. Preliminary Study on the Mechanism of Anthocyanin Accumulation in Foxtail Millet Leaves Based on the Transcriptome. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2019 (in Chinese with English abstract). | |
[12] | Wang F, Ji G S, Xu Z B, Feng B, Zhou Q, Fan X L, Wang T. Metabolomics and transcriptomics provide insights into anthocyanin biosynthesis in the developing grains of purple wheat (Triticum aestivum L.). J Agric Food Chem, 2021, 69: 11171-11184. |
[13] |
Li J R, Todd T C, Trick H N. Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep, 2010, 29: 113-123.
doi: 10.1007/s00299-009-0803-2 pmid: 20012965 |
[14] | 陈衡, 潘相文, 王飞飞, 刘长锴, 王雪, 李彦生, 张秋英. 大豆异黄酮生物合成与调控的分子机制研究进展. 土壤与作物, 2021, 10(2): 126-142. |
Chen H, Pan X W, Wang F F, Liu C K, Wang X, Li Y S, Zhang Q Y. Molecular mechanisms of isoflavone biosynthesis and regulation in soybean: a review. Soil Crops, 2021, 10(2): 126-142 (in Chinese with English abstract). | |
[15] | 李海权, 耿玲玲, 智慧, 王永芳, 李振侠, 相金英, 刁现民, 刘国庆. 基于谷子剩余杂合体的谷子颖壳颜色基因精细定位. 见: 中国作物学会2015年学术年会论文摘要集. 北京: 中国作物学会, 2015. p 35. |
Li H Q, Geng L L, Zhi H, Wang Y F, Li Z X, Xiang J Y, Diao X M, Liu G Q. Fine mapping of glume shell colour genes based on residual heterozygote in foxtail millet. In: Proceedings of 2015 Annual Conference of the Crop Science Society of China. Beijing: Crop Science Society of China, 2015. p 35 (in Chinese). | |
[16] | 高俊华, 王润奇, 毛丽萍, 刁现民. 安矮3号谷子矮秆基因的染色体定位. 作物学报, 2003, 29: 152-154. |
Gao J H, Wang R Q, Mao L P, Diao X M. Chromosome locating of dwarf gene in foxtail millet An’ai 3. Acta Agron Sin, 2003, 29: 152-154 (in Chinese with English abstract). | |
[17] | 张义茹. 基于代谢组学对小米蒸煮风味、脂质及谷子籽粒灌浆期代谢物累积特征的研究. 山西农业大学博士学位论文, 山西太谷, 2019. |
Zhang Y R. Study on the Cooking Aroma, Lipid Change Patterns and Metabolite Accumulation during Grain Filling based on Metabolomics in Foxtail Millet. PhD Dissertation of Shanxi Agricultural University, Taigu, Shanxi, China, 2019 (in Chinese with English abstract). | |
[18] |
邵丽华, 王莉, 白文文, 刘雅娟. 山西谷子资源叶酸含量分析及评价. 中国农业科学, 2014, 47: 1265-1272.
doi: 10.3864/j.issn.0578-1752.2014.07.003 |
Shao L H, Wang L, Bai W W, Liu Y J. Evaluation and analysis of folic acid content in millet from different ecological regions in Shanxi province. Sci Agric Sin, 2014, 47: 1265-1272 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.07.003 |
|
[19] |
Zhang S, Tang C J, Zhao Q, Li J, Yang L F, Qie L F, Fan X K, Li L, Zhang N, Zhao M C, Liu X T, Chai Y, Zhang X, Wang H L, Li Y T, Li W, Zhi H, Jia G Q, Diao X M. Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics, 2014, 15: 78.
doi: 10.1186/1471-2164-15-78 pmid: 24472631 |
[20] |
Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X W, Wu X M, Mitros T, Triplett J, Yang X H, Ye C Y, Mauro- Herrera M, Wang L, Li P H, Sharma M, Sharma R, Ronald P C, Panaust O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant setaria. Nat Biotechnol, 2012, 30: 555-564.
doi: 10.1038/nbt.2196 pmid: 22580951 |
[21] | Bai H, Cao Y H, Quan J Z, Dong L, Li Z Y, Zhu Y B, Zhu L H, Dong Z P, Li D Y. Identifying the genome-wide sequence variations and developing new molecular markers for genetics research by re-sequencing a landrace cultivar of foxtail millet. PLoS One, 2013, 8: e73514. |
[22] | Yin C B, Li H H, Li S S, Xu L D, Zhao Z G, Wang J K. Genetic dissection on rice grain shape by the two-dimensional image analysis in one japonica × indica population consisting of recombinant inbred lines. Theor Appl Genet, 2015, 128: 1969-1986. |
[23] |
孙子淇, 李慧慧, 张鲁燕, 王健康. QTL作图中零假设检验统计量分布特征及LOD临界值估计方法. 作物学报, 2013, 39: 1-11.
doi: 10.3724/SP.J.1006.2013.00001 |
Sun Z Q, Li H H, Zhang L Y, Wang J K. Properties of the test statistic under null hypothesis and the calculation of LOD threshold in quantitative trait loci (QTL) mapping. Acta Agron Sin, 2013, 39: 1-11 (in Chinese with English abstract). | |
[24] | Li S S, Wang J K, Zhang L Y. Inclusive composite interval mapping of QTL by environment interactions in biparental populations. PLoS One, 2015, 10: e0132414. |
[25] | 李慕男, 兰凤英. 小米的营养成分及保健功能研究进展. 河北北方学院学报, 2017, 33(7): 56-60. |
Li M N, Lan F Y. Nutritional health function and product development of millet. J Hebei North Univ, 2017, 33(7): 56-60 (in Chinese with English abstract). | |
[26] |
王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民. 谷子核心种质表型遗传多样性分析及综合评. 作物学报, 2016, 42: 19-30.
doi: 10.3724/SP.J.1006.2016.00019 |
Wang H G, Jia G Q, Zhi H, Wen Q F, Dong J L, Chen L, Wang J J, Cao X N, Liu S C, Wang L, Qiao Z J, Diao X M. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agron Sin, 2016, 42: 19-30 (in Chinese with English abstract). | |
[27] | 薛其勤, 别茹, 常宇涵, 邢明, 杨会, 张昆, 刘风珍, 万勇善. 花生种皮颜色及花青素含量的遗传分析. 花生学报, 2020, 49(1): 19-24. |
Xue Q Q, Bie R, Chang Y H, Xing M, Yang H, Zhang K, Liu F Z, Wan Y S. Genetic analysis of peanut testa color and anthocyanin content. J Peanut Sci, 2020, 49(1): 19-24 (in Chinese with English abstract). | |
[28] | 宋健. 大豆种皮色相关基因的图位克隆及功能解析. 中国农业科学院博士学位论文, 北京, 2019. |
Song J. Map-Based Cloning and Functional Analysis of Genes Controlling Seed Coat Color in Soybean (Glycine max (L.) Merr.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2019 (in Chinese with English abstract). | |
[29] |
白春明, 王春语, 王平, 朱振兴, 陆晓春. 高粱子粒单宁含量和颜色QTL分析. 植物遗传资源学报, 2017, 18: 860-866.
doi: 10.13430/j.cnki.jpgr.2017.05.007 |
Bai C M, Wang C Y, Wang P, Zhu Z X, Lu X C. QTLs analysis of tannin content and color of grain in sorghum. J Plant Genet Resour, 2017, 18: 860-866 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2017.05.007 |
|
[30] | 王艳花. 大黄油菜粒色性状候选基因的定位克隆及功能分析. 青海大学博士学位论文, 青海西宁, 2017. |
Wang Y H. Positional Cloning and Functional Study of Seed Coat Color Gene in Dahuang (a landrace of Brassica rapa L.). PhD Dissertation of Qinghai University, Xining, Qinghai, China, 2017 (in Chinese with English abstract). | |
[31] | Meyer P, Heidmann I, Forkmann G, Saedler H. A new petunia a flower colour generated by transformation of a mutant with a maize gene. Nature, 1987, 330: 677-678. |
[32] | Vanderkrol A R, Lenting P E, Veenstra J, Vandermeer I M, Koes R E, Gerats A G M, Mol J N M, Stuitije A R. An anti-sense chalcone synthases gene in transgenic plants inhibits flower pigmentation. Nature, 1988, 333: 866-869. |
[33] |
李秋琳, 李燕, 陈伟, 姚金波, 朱守鸿, 袁黎, 张永山. 基于广泛靶向代谢组学的不同颜色棉花花瓣中类黄酮成分差异分析. 棉花学报, 2021, 33: 482-492.
doi: 10.11963/cs20210036 |
Li Q L, Li Y, Chen W, Yao J B, Zhu S H, Yuan L, Zhang Y S. Metabolomics reveals the variation of flavonoids content in petals of cotton with different colors. Cotton Sci, 2021, 33: 482-492 (in Chinese with English abstract).
doi: 10.11963/cs20210036 |
|
[34] | Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael A J, Tohge T, Yamazaki M, Saito K. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J, 2014, 77: 367-379. |
[35] |
Gouot J C, Smith J P, Holzapfel B P, Walker A R, Barril C. Grape berry flavonoids: a review of their biochemical responses to high and extreme high temperatures. J Exp Bot, 2019, 70: 397-423.
doi: 10.1093/jxb/ery392 pmid: 30388247 |
[36] | 潘俊倩, 佟曦然, 郭宝林. 光对植物黄酮类化合物的影响研究进展. 中国中药杂志, 2016, 41: 3897-3903. |
Pan J Q, Tong X R, Guo B L. Progress of effects of light on plant flavonoids. China J Chin Mater Med, 2016, 41: 3897-3903 (in Chinese with English abstract). | |
[37] |
葛诗蓓, 张学宁, 韩文炎, 李青云, 李鑫. 植物类黄酮的生物合成及其抗逆作用机制研究进展. 园艺学报, 2023, 50: 209-224.
doi: 10.16420/j.issn.0513-353x.2021-1186 |
Ge S B, Zhang X N, Han W Y, Li Q Y, Li X. Research progress on plant flavonoids biosynthesis and their anti-stress mechanism. Acta Hortic Sin, 2023, 50: 209-224 (in Chinese with English abstract).
doi: 10.16420/j.issn.0513-353x.2021-1186 |
|
[38] | Chen Y Y, Lu H Q, Jiang K X, Wang Y R, Wang Y P, Jiang J J. The favonoid biosynthesis and regulation in Brassica napus: a review. Int J Mol Sci, 2022, 24: 357. |
[1] | 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718. |
[2] | 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683. |
[3] | 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450. |
[4] | 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235. |
[5] | 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad YOUSOF, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103. |
[6] | 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886. |
[7] | 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835. |
[8] | 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542. |
[9] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
[10] | 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708. |
[11] | 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279. |
[12] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[13] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[14] | 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104. |
[15] | 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121. |
|