作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1710-1718.doi: 10.3724/SP.J.1006.2024.31060
韩丽1(), 汤胜胜1, 李佳1, 胡海斌2, 刘龙龙1,*(
), 吴斌2,*(
)
HAN Li1(), TANG Sheng-Sheng1, LI Jia1, HU Hai-Bin2, LIU Long-Long1,*(
), WU Bin2,*(
)
摘要:
β-葡聚糖是燕麦发挥保健作用的主要功能因子, 提高其含量对优质燕麦生产有着重要意义。为促进高β-葡聚糖燕麦种质资源的有效利用和相关基因发掘, 本研究以高β-葡聚糖品种夏莜麦和低β-葡聚糖品种赤38组配衍生的219个家系RIL8群体为材料, 利用重测序技术构建了包含21个连锁群, 5032个bin标记的遗传连锁图谱, 图谱总长2045.09 cM, 平均图距0.42 cM。利用标准酶法和近红外法对4个环境的RIL群体家系β-葡聚糖含量进行测定, 结合测定结果, 利用完备区间作图法对β-葡聚糖含量进行QTL定位分析, 结果显示不同环境条件下RIL群体β-葡聚糖含量呈正态分布, 并出现超亲后代家系, 4个环境下群体β-葡聚糖含量变异系数介于9.06%~16.63%之间。QTL定位检测到7个与燕麦β-葡聚糖含量相关的QTL, 分布于2D、3D、4C和4D染色体上, 其中贡献率最高为14.73%, 在2个环境中检测到同一个QTL, 其标记区间为Chr4C_mark8361257-Chr4C_mark8384831。研究结果将为燕麦β-葡聚糖分子标记辅助育种提供重要的理论依据。
[1] | 陆大彪. 燕麦. 作物杂志, 1985, (1): 28. |
Lu D B. Oats. Crops, 1985, (1): 28 (in Chinese). | |
[2] | Shewry P R, Piironen V, Lampi A M, Nyström L, Li L, Rakszegi M, Fraś A, Boros D, Gebruers K, Courtin C M, Delcour J A, Andersson A A, Dimberg L, Bedo Z, Ward J L. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem, 2008, 56: 9777-9784. |
[3] | Kendall C W C, Esfahani A, Jenkins D J A. The link between dietary fibre and human health. Food Hydrocoll, 2010, 24: 42-48. |
[4] | Beer M U, Wood P J, Weisz J, Fillion N. Effect of cooking and storage on the amount and molecular weight of (1→3) (1→4)-β- D-glucan extracted from oat products by an in vitro digestion system. Cereal Chem, 1997, 74: 705-709. |
[5] | Ballabio C, Uberti F, Manferdelli S, Vacca E G, Boggini G, Redaelli R, Catassi C, Lionetti E, Peñas E, Restani P. Molecular characterization of 36 oat varieties and in vitro assessment of their suitability for coeliacs’ diet. J Cereal Sci, 2011, 54: 110-115. |
[6] | Fincher G B, Stone B. Cell walls and their components in cereal grain technology. In: Advances in Cereal Science and Technology, USA, 1986, Vol. 8. |
[7] | Wang Y, Liu J, Chen F, Zhao G. Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan. J Agric Food Chem, 2013, 61: 4533-4538. |
[8] | Bacic A, Stone B. A (1→3)- and (1→4)-linked β-D-glucan in the endosperm cell-walls of wheat. Carbohydr Res, 1980, 82: 372-377. |
[9] | Saulnier L, Péneau N, Thibault J F. Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. J Cereal Sci, 1995, 22: 259-264. |
[10] |
Yun C H, Estrada A, Van Kessel A, Gajadhar A A, Redmond M J, Laarveld B. β-(1→3, 1→4) oat glucan enhances resistance to Eimeria vermiformis infection in immunosuppressed mice. Int J Parasitol, 1997, 27: 329-337.
doi: 10.1016/s0020-7519(96)00178-6 pmid: 9138036 |
[11] | 申瑞玲, 王章存, 董吉林, 姚惠源. 燕麦β-葡聚糖对小鼠结肠菌群及其功能的影响. 营养学报, 2006, 28: 430-433. |
Shen R L, Wang Z C, Dong J L, Yao H Y. Effect of oat β-glucan on colon flora and its function in mice. Acta Nutr Sin, 2006, 28: 430-433 (in Chinese with English abstract). | |
[12] |
Wood P J, Braaten J T, Scott F W, Riedel K D, Wolynetz M S, Collins M W. Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load. Brit J Nutr, 1994, 72: 731-743.
pmid: 7826996 |
[13] |
张勇, 郝元峰, 张艳, 何心尧, 夏先春, 何中虎. 小麦营养和健康品质研究进展. 中国农业科学, 2016, 49: 4284-4298.
doi: 10.3864/j.issn.0578-1752.2016.22.003 |
Zhang Y, Hao Y F, Zhang Y, He X Y, Xia X C, He Z H. Research progress in wheat nutrition and health quality. Chin Agric Sci, 2016, 49: 4284-4298 (in Chinese with English abstract). | |
[14] | Kianian S, Phillips R, Rines H, Fulcher R, Webster F, Stuthman D. Quantitative trait loci influencing β-glucan content in oat (Avena sativa, 2n = 6x = 42). Theor Appl Genet, 2000, 101: 1039-1048. |
[15] | Groh S, Kianian S, Phillips R, Rines H, Stuthman D, Wesenberg D, Fulcher R. Analysis of factors influencing milling yield and their association to other traits by QTL analysis in two hexaploid oat populations. Theor Appl Genet, 2001, 103: 9-18. |
[16] |
Tanhuanpää P, Manninen O, Beattie A, Eckstein P, Scoles G, Rossnagel B, Kiviharju E. An updated doubled haploid oat linkage map and QTL mapping of agronomic and grain quality traits from Canadian field trials. Genome, 2012, 55: 289-301.
doi: 10.1139/G2012-017 pmid: 22443510 |
[17] | Herrmann M H, Yu J Z, Steffen B, Wilhelm E W. Quantitative trait loci for quality and agronomic traits in two advanced backcross populations in oat (Avena sativa L.). Plant Breed, 2014, 133: 588-601. |
[18] |
吴斌, 张茜, 宋高原, 陈新, 张宗文. 裸燕麦SSR标记连锁群图谱的构建及β-葡聚糖含量QTL的定位. 中国农业科学, 2014, 47: 1208-1215.
doi: 10.3864/j.issn.0578-1752.2014.06.017 |
Wu B, Zhang Q, Song G Y, Chen X, Zhang Z W. Construction of SSR marked linkage group map for bare oats and its application β-localization of QTL for glucan content. Sci Agric Sci, 2014, 47: 1208-1215 (in Chinese with English abstract). | |
[19] | Zimmer C M, McNish I G, Klos K E, Oro T, Arruda K M A, Gutkoski L C, Pacheco M T, Smith K P, Federizzi L C. Genome- wide association for β-glucan content, population structure, and linkage disequilibrium in elite oat germplasm adapted to subtropical environments. Mol Breed: New Strat Plant Improv, 2020, 40: 103. |
[20] | 吕耀昌, 王强, 赵炜, 邓万和. 燕麦、大麦中β-葡聚糖的酶法测定. 食品科学, 2005, 26: 180-182. |
Lyu Y C, Wang Q, Zhao W, Deng W H. Oats and barley β-enzymatic determination of dextran. Food Sci, 2005, 26: 180-182 (in Chinese with English abstract). | |
[21] | Henry R J. Near-infrared reflectance analysis of carbohydrates and its application to the determination of (1→3), (1→4)-β-D- glucan in barley. Carbohydr Res, 1985, 141: 13-19. |
[22] |
Meng L, Hui H L, Lu Y Z, Jian K W. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[23] | McCouch S, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13. |
[24] |
李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918 |
Li H H, Zhang L Y, Wang J K. Analysis and answers to several common problems in quantitative trait gene mapping research. Acta Agron Sin, 2010, 36: 918-931 (in Chinese with English abstract). | |
[25] |
O’Donoughue L S, Sorrells M E, Tanksley S D, Autrique E, Deynze A V, Kianian S F, Phillips R L, Wu B, Rines H W, Rayapati P J, Lee M, Penner G A, Fedak G, Molnar S J, Hoffman D, Salas C A. A molecular linkage map of cultivated oat. Genome, 1995, 38: 368-380.
pmid: 18470176 |
[26] | Chaffin A, Huang Y, Smith S M, Bekele W A, Babiker E M, Gnanesh B N, Foresman B J, Blanchard S G, Jay J J, Reid R W, Wight C P, Chao S, Oliver R E, Islamovic E, Kolb F L, McCartney C A, Mitchell Fetch J W, Beattie A D, Bjornstad Å, Bonman J M, Langdon T, Howarth C J, Brouwer C R, Jellen E N, Klos K E, Poland J A, Hsieh T, Brown R H, Jackson E W, Schlueter J, Tinker N A. A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. Plant Genom, 2016, 9(2): 1-21. |
[27] | Huang Y F, Poland J A, Wight C P, Jackson E W, Tinker N A. Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One, 2014, 9: e102448. |
[28] |
Bekele W A, Wight C P, Chao S, Howarth C J, Tinker N A. Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnol J, 2018, 16: 1452-1463.
doi: 10.1111/pbi.12888 pmid: 29345800 |
[29] |
Kono T J, Seth K, Poland J A, Morrell P L. SNPMeta: SNP annotation and SNP metadata collection without a reference genome. Mol Ecol Resour, 2014, 14: 419-425.
doi: 10.1111/1755-0998.12183 pmid: 24237904 |
[30] |
Du Z, Huang Z, Li J, Bao J, Tu H, Zeng C, Wu Z, Fu H, Xu J, Zhou D, Zhu C, Fu J, He H. qTGW12a, a naturally varying QTL, regulates grain weight in rice. Theor Appl Genet, 2021, 134: 2767-2776.
doi: 10.1007/s00122-021-03857-4 pmid: 34021769 |
[31] | Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6: e17595. |
[32] | Fogarty M C, Smith S M, Sheridan J L, Hu G, Islamovic E, Reid R, Jackson E W, Maughan P J, Ames N P, Jellen E N, Hsieh T. Identification of mixed linkage β-glucan quantitative trait loci and evaluation of AsCslF6 homeologs in hexaploid oat. Crop Sci, 2020, 60: 914-933. |
[33] | Tinker N A, Wight C P, Bekele W A, Yan W, Jellen E N, Renhuldt N T, Sirijovski N, Lux T, Spannagl M, Mascher M. Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Commun Biol, 2022, 5: 474. |
[34] |
Burton R A, Wilson S M, Hrmova M, Harvey A J, Shirley N J, Medhurst A, Stone B A, Newbigin E J, Bacic A, Fincher G B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science, 2006, 311: 1940-1942.
doi: 10.1126/science.1122975 pmid: 16574868 |
[35] | Doblin M S, Pettolino F A, Wilson S M, Campbell R, Burton R A, Fincher G B, Newbigin E, Bacic A. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA, 2009, 106: 5996-6001. |
[36] |
Little A, Schwerdt J G, Shirley N J, Khor S F, Neumann K, O’Donovan L A, Lahnstein J, Collins H M, Henderson M, Fincher G B, Burton R A. Revised phylogeny of the cellulose synthase gene superfamily: insights into cell wall evolution. Plant Physiol, 2018, 177: 1124-1141.
doi: 10.1104/pp.17.01718 pmid: 29780036 |
[37] | Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, Kang L, Zhou P, Yu K, Dong X, Liu X, Sun Z, Peng Y, Zhao J, Deng D, Xu Y, Li Y, Jiang Q, Li Y, Wei L, Wang J, Ma J, Hao M, Li W, Kang H, Peng Z, Liu D, Jia J, Zheng Y, Ma T, Wei Y, Lu F, Ren C. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet, 2022, 54: 1248-1258. |
[38] | Bernal A J, Jensen J K, Harholt J, Sørensen S, Moller I, Blaukopf C, Johansen B, Lotto R D, Pauly M, Scheller H V, Willats W G. Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis. Plant J, 2007, 52: 791-802. |
[1] | 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683. |
[2] | 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727. |
[3] | 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383. |
[4] | 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450. |
[5] | 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123. |
[6] | 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896. |
[7] | 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542. |
[8] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
[9] | 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632. |
[10] | 南金生, 安江红, 柴明娜, 蒋屿潋, 朱志强, 杨燕, 韩冰. 淀粉特性及其表面结合蛋白与裸燕麦籽粒硬度的关系研究[J]. 作物学报, 2023, 49(9): 2552-2561. |
[11] | 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104. |
[12] | 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170. |
[13] | 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561. |
[14] | 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600. |
[15] | 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714. |
|