欢迎访问作物学报,今天是

作物学报

• •    

玉米果穗相关性状QTL定位及重要候选基因分析

郑雪晴1,王兴荣2,张彦军2,龚佃明1,*,邱法展1,*   

  1. 1华中农业大学作物遗传改良全国重点实验室 / 湖北洪山实验室,湖北武汉430070; 2甘肃省农业科学院作物研究所, 甘肃兰州730070
  • 收稿日期:2023-10-25 修回日期:2024-01-12 接受日期:2024-01-12 网络出版日期:2024-02-19
  • 基金资助:
    本研究由科技兴蒙行动重点专项项目(2022EEDSKJXM011, 2022EEDSKJXM011-1)和山东省重点研发计划项目(2022CXPT014)资助。

Mapping of QTLs for ear-related traits and prediction of key candidate genes in maize

ZHENG Xue-Qing1,WANG Xing-Rong2,ZHANG Yan-Jun2,GONG Dian-Ming1,*,QIU Fa-Zhan1,*   

  1. 1 National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Wuhan, 430070, China; 2 Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2023-10-25 Revised:2024-01-12 Accepted:2024-01-12 Published online:2024-02-19
  • Supported by:
    This study was supported by the Key Program of Action Plan to Revitalize Inner Mongolia through Science and Technology (2022EEDSKJXM011, 2022EEDSKJXM011-1) and the National Key Research and Development Program of Shandong Province (2022CXPT014).

摘要:

玉米果穗相关性状与产量直接相关,其遗传基础解析对于指导玉米遗传改良意义重大。本研究对3年6个环境下的168份高代回交重组自交系(AB-RILs)的穗长、穗行数和百粒重等8个性状进行表型鉴定,结合玉米10 K芯片产生的覆盖全基因组的11,407个SNP(Single Nucleotide Polymorphisms)标记对8个性状进行QTL定位。共鉴定到32个与8个果穗性状相关的QTL,其中包含5个环境一致性的QTL,3个多效性QTL。进一步利用507份关联群体的基因型与表型数据对主效QTL候选区间进行关联分析,鉴定到19个可能与果穗性状相关的重要候选基因,结合候选基因的进化分析和表达分析等,初步确定其中4个为关键候选基因。以上结果为玉米育种中果穗性状的遗传改良提供了重要的标记信息,同时也为果穗性状相关基因克隆提供指导。

关键词: 玉米, AB-RIL群体, 果穗, 籽粒, QTL定位, 候选区间关联分析

Abstract:

Maize ear related traits are directly related to yield, and the analysis of their genetic basis is of great significance for guiding maize genetic improvement. In this study, the phenotypic characteristics of eight traits were identified in 168 high generation backcross recombinant inbred lines (AB-RILs) in six environments over three years. QTLs for eight traits were mapped with 11,407 SNP markers generated by 10 K liquid chip in maize. A total of 32 QTL related to eight ear traits were identified in this study, including five environmentally consistent QTLs and three pleiotropic QTL. Further, we used the genotypic and phenotypic data of 507 maize inbred lines to analyze the candidate regions of major QTL and identified 19 candidate genes that might be related to ear shape. We finally speculated four genes as candidate genes based on the analysis of evolution and expression of the genes. These results provide the important marker information for the genetic improvement of ear traits in maize breeding and offered guidance for the cloning of genes related to ear traits. 

Key words: maize, AB-RIL population, ear, kernel, QTL mapping, candidate regional association analysis

[1] Zhang H W, Lu Y T, Ma Y T, Fu J J, Wang G Y. Genetic and molecular control of grain yield in maize. Mol Breed, 2021, 41: 18.

[2] 李燕, 谭君, 李红梅, 魏明, 何立群, 赵后娟, 杜林, 刘可心, 邓路长, 杨俊品, 唐海涛. 高赖氨酸玉米F2:3群体穗部性状与产量的相关及通径分析. 安徽农业科学, 2020, 48(8): 41-42.

Li Y, Tan J, Li H M, Wei M, He L Q, Zhao H J, Du L, Liu K X, Deng L C, Yang J P, Tang H T. Correlation and path analysis of ear character in F2:3 population derived from high lysine content maize hybrid Quanyu No. 9. J Anhui Agric Sci, 2020, 48(8): 41-42 (in Chinese with English abstract).

[3] Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S. An ultra-high-density bin-map for rapid QTL mapping for tassel and ear architecture in a large F₂ maize population. BMC Genomics, 2014, 15: 433.

[4] Huo D A, Ning Q, Shen X M, Liu L, Zhang Z X. QTL Mapping of kernel number-related traits and validation of one major QTL for ear length in maize. PLoS One, 2016, 11: e0155506.

[5] Chen J F, Zhang L Y, Liu S T, Li Z M, Huang R R, Li Y M, Cheng H L, Li X T, Zhou B, Wu S W, Chen W, Wu J Y, Ding J Q. The genetic basis of natural variation in kernel size and related traits using a four-way cross population in maize. PLoS One, 2016, 11: e0153428.

[6] Hao D R, Xue L, Zhang Z L, Cheng Y J, Chen G Q, Zhou G F, Li P C, Yang Z F, Xu C W. Combined linkage and association mapping reveal candidate loci for kernel size and weight in maize. Breed Sci, 2019, 69: 420-428.

[7] Liu C L, Zhou Q, Dong L, Wang H, Liu F, Weng J F, Li X H, Xie C X. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genomics, 2016, 17: 915.

[8] Liu M, Tan X L, Yang Y, Liu P, Zhang X X, Zhang Y C, Wang L, Hu Y, Ma L L, Li Z L, Zhang Y L, Zou C Y, Lin H J, Gao S B, Lee M, Lübberstedt T, Pan G T, Shen Y O. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol J, 2020, 18: 207-221.

[9] Yang C, Zhang L, Jia A M, Rong T Z. Identification of QTL for maize kernel yield and kernel-related traits. J Genet, 2016, 95: 239-247.

[10] Yang X H, Gao S B, Xu S T, Zhang Z X, M. Prasanna B, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed, 2011, 28: 511–526.

[11] Yang N, Liu J, Gao Q, Gui S T, Chen L, Yang L F, Huang J, Deng T Q, Luo J Y, He L J, Wang Y B, Xu P W, Peng Y, Shi Z X, Lan L, Ma Z Y, Yang X, Zhang Q Q, Bai M Z, Li S, Li W Q, Liu L, Jackson D, Yan J B. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet, 2019, 51: 1052–1059.

[12] Bernardi J, Lanubile A, Li Q B, Kumar D, Kladnik A, Cook S D, Ross J J, Marocco A, Chourey P S. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol, 2012, 160:1318-1328.

[13] 席先梅. 基于导入系群体玉米遗传图谱构建及重要农艺性状QTL定位. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2018.

Xi X M. Construction of Genetic Linkage Map and Identification of QTLs for Important Agronomic Traits in Introgression Lines of Maize. PhD Dissertation of Graduate School of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2018 (in Chinese with English abstract).

[14] Liu J, Huang J, Guo H, Lan L, Wang H Z, Xu Y C, Yang X H, Li W Q, Tong H, Xiao Y J, Pan Q C, Qiao F, Raihan M S, Liu H J, Zhang X H, Yang N, Wang X Q, Deng M, Jin M L, Zhao L J, Luo X, Zhou Y, Li X, Zhan W, Liu N N, Wang H, Chen G S, Li Q, Yan J B. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol, 2017, 175: 774-785.

[15] Lu X, Zhou Z Q, Yuan Z H, Zhang C S, Hao Z F, Wang Z H, Li M S, Zhang D G, Yong H J, Han J N, Li X H, Weng J F. Genetic dissection of the general combining ability of yield-related traits in maize. Front Plant Sci, 2020, 11: 788.

[16] Zhang X X, Guan Z R, Li Z L, Liu P, Ma L L, Zhang Y C, Pan L, He S J, Zhang Y L, Li P, Ge F, Zou C Y, He Y C, Gao S B, Pan G T, Shen Y O. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theor Appl Genet, 2020, 133: 2881-2895.

[17] Chen L, An Y X, Li Y X, Li C H, Shi Y S, Song Y C, Zhang D F, Wang T Y, Li Y. Candidate loci for yield-related traits in maize revealed by a combination of metaQTL analysis and regional association mapping. Front Plant Sci, 2017, 8: 2190.

[18] 郭海平. 玉米穗粗主效 QTL qED3 的精细定位和候选基因克隆. 河南农业大学硕士学位论文, 河南郑州, 2018.

Guo H P. Fine Mapping and Cloning of the Ear Diameter QTL qED3 in Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018 (in Chinese with English abstract).

[19] 涂亮, 高媛, 刘鹏飞, 郭向阳, 王安贵, 何兵, 刘颖, 祝云芳, 吴迅, 陈泽辉. 玉米穗长主效QTL q21EL-GZ 的精细定位. 植物遗传资源学报, 2021, 22: 13941401.

Tu L, Gao Y, Liu P F, Guo X Y, Wang A G, He B, Liu Y, Zhu Y F, Wu X, Chen Z H. Fine mapping of the ear length major QTL q21EL-GZ in maize. J Plant Genet Res, 2019, 22: 1394–1401 (in Chinese with English abstract).

[20] 赵强. 基于两个F2:3家系的玉米产量相关性状QTL定位及候选基因分析. 贵州大学硕士学位论文, 贵州贵阳, 2020

Zhao Q. QTL Mapping and Candidate Gene Analysis of Maize Yield-Related Traits by Using Two Maize F2:3 Families. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2020 (in Chinese with English abstract).

[21] 赵强, 陈柔屹, 王安贵, 郭向阳, 刘鹏飞, 祝云芳, 吴迅, 陈泽辉. 基于高密度 SNP 标记对玉米穗部相关性状的QTL定位及候选基因分析. 玉米科学, 2021, 29: 3641 (in Chinese with English abstract).

Zhao Q, Chen R Y, Wang A G, Guo X Y, Liu P F, Zhu Y F, Wu X, Chen Z H. QTL mapping and candidate gene analysis about ear-related traits in maize based on high density SNP markers. J Maize Sci, 2012, 29: 36–41 (in Chinese with English abstract).

[22] Gong D M, Tan Z D, Zhao H L, Pan Z Y, Sun Q, Qiu F Z. Fine mapping of a kernel length-related gene with potential value for maize breeding. Theor Appl Genet, 2021, 134: 1033-1045.

[23] Han X S, Qin Y, Sandrine AMN, Qiu F Z. Fine mapping of qKRN8, a QTL for maize kernel row number, and prediction of the candidate gene. Theor Appl Genet, 2020, 133: 3139-3150.

[24] Huang J, Lu G, Liu L, Raihan M S, Xu J T, Jian L M, Zhao L X, Tran T M, Zhang Q H, Liu J, Li W Q, Wei C X, Braun D M, Li Q, Fernie A R, Jackson D, Yan J B. The kernel size-related quantitative trait locus qKW9 encodes a pentatricopeptide repeat protein that affects photosynthesis and kernel filling. Plant Physiol, 2020, 183: 1696-1709.

[25] Li W L, Bai Q H, Zhan W M, Ma C Y, Wang S Y, Feng Y Y, Zhang M D, Zhu Y, Cheng M, Xi Z Y. Fine mapping and candidate gene analysis of qhkw5-3, a major QTL for kernel weight in maize. Theor Appl Genet, 2019, 132: 2579-2589.

[26] Nie N N, Ding X Y, Chen L, Wu X, An Y X, Li C H, Song Y C, Zhang D F, Liu Z Z, Wang T Y, Li Y, Li Y X, Shi Y S. Characterization and fine mapping of qkrnw4, a major QTL controlling kernel row number in maize. Theor Appl Genet, 2019, 132: 3321-3331.

[27] Wang G Y, Zhao Y M, Mao W B, Ma X J, Su C F. QTL analysis and fine mapping of a major QTL conferring kernel size in maize (Zea mays). Front Genet, 2020, 11: 603920.

[28] Wang C, Li H G, Long Y, Dong Z Y, Wang J H, Liu C, Wei X, Wan X Y. A systemic investigation of genetic architecture and gene resources controlling kernel size-related traits in maize. Int J Mol Sci, 2023, 24: 1025.

[29] Wang J, Lin Z L, Zhang X, Liu H Q, Zhou L N, Zhong S Y, Li Y, Zhu C, Lin Z W. krn1, a major quantitative trait locus for kernel row number in maize. New Phytol, 2019, 223: 1634–1646.

[30] Luo Y, Zhang M L, Liu Y, Liu J, Li W Q, Chen G S, Peng Y, Jin M, Wei W J, Jian L M, Yan J, Fernie A R, Yan J B. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol, 2022, 234: 513–526.

[31] Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z J, Tao Y S, Zheng Y L, Yan J B, Zhang Z X. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet, 2015, 11: e1005670.

[32] Chen L, Li YX, Li C, Shi Y, Song Y, Zhang D, Wang H, Li Y, Wang T. The retromer protein ZmVPS29 regulates maize kernel morphology likely through an auxin-dependent process(es). Plant Biotechnol J, 2020, 18: 1004–1014

[33] Jia H T, Li M F, Li W Y, Liu L, Jian Y N, Yang Z X, Shen X M, Ning Q, Du Y F, Zhao R, Jackson D, Yang X H, Zhang Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun, 2020, 11: 988.

[34] Ning Q, Jian Y N, Du Y F, Li Y F, Shen X M, Jia H T, Zhao R, Zhan J M, Yang F, Jackson D, Liu L, Zhang Z X. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat Commun, 2021, 12: 5832.

[35] Sun Q, Li Y F, Gong D M, Hu A Q, Zhong W S, Zhao H L, Ning Q, Tan Z D, Liang K, Mu L Y, Jackson D, Zhang Z X, Yang F, Qiu F Z. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nat Commun, 2022, 13: 5708.

[36] Zhang S, Deng L, Cheng R, Hu J, Wu C Y. RID1 sets rice heading date by balancing its binding with SLR1 and SDG722. J Integr Plant Biol, 2022, 64: 149-165.

[37] Stelpflug S C, Sekhon R S, Vaillancourt B, Hirsch C N, Buell C R, de Leon N, Kaeppler S M. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome, 2016, 9: plantgenome2015.04.0025.

[38] Walley J W, Sartor R C, Shen Z, Schmitz R J, Wu K J, Urich M A, Nery J R, Smith L G, Schnable J C, Ecker J R, Briggs S P. Integration of omic networks in a developmental atlas of maize. Science, 2016, 353: 814-818.

[39] Ohta M, Takaiwa F. OsERdj7 is an ER-resident J-protein involved in ER quality control in rice endosperm. J Plant Physiol, 2020, 245: 153109.

[40] Scholl S, Hillmer S, Krebs M, Schumacher K. ClCd and ClCf act redundantly at the trans-Golgi network/early endosome and prevent acidification of the Golgi stack. J Cell Sci, 2021, 134: jcs258807.

[41] Derkacheva M, Liu S J, Figueiredo DD, Gentry M, Mozgova I, Nanni P, Tang M, Mannervik M, Köhler C, Hennig L. H2A deubiquitinases UBP12/13 are part of the Arabidopsis polycomb group protein system. Nat Plants, 2016, 2: 16126.

[42] Cui X, Lu F L, Li Y, Xue Y M, Kang Y Y, Zhang S B, Qiu Q, Cui X K, Zheng S Z, Liu B, Xu X D, Cao X F. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant Physiol, 2013, 162: 897-906.

[1] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[2] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[3] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[4] 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化, 是偶然还是与农艺性状存在关联?——以历年国审普通品种为例[J]. 作物学报, 2024, 50(3): 771-778.
[5] 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612.
[6] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[7] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[8] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[9] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[10] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[11] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[12] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[13] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[14] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[15] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!