欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1420-1434.doi: 10.3724/SP.J.1006.2024.33060

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米ZmGRAS13基因的克隆及功能研究

折萌1,2(), 郑登俞2, 柯照2, 吴忠义2, 邹华文1,*(), 张中保2,*()   

  1. 1长江大学农学院, 湖北荆州 434025
    2北京市农林科学院生物技术研究所 / 农业基因资源与生物技术北京市重点实验室, 北京 100097
  • 收稿日期:2023-10-18 接受日期:2024-01-12 出版日期:2024-06-12 网络出版日期:2024-02-19
  • 通讯作者: * 邹华文, E-mail: zouhuawen@yangtzeu.edu.cn; 张中保, E-mail: zhangzhongbao@baafs.net.cn
  • 作者简介:E-mail: shemeng0403@163.com
  • 基金资助:
    北京市自然科学基金项目(6222009);北京市农林科学院创新能力建设专项(KJCX20230203);北京市农林科学院生物技术共享平台2023项目

Cloning and functional analysis of ZmGRAS13 gene in maize

SHE Meng1,2(), ZHENG Deng-Yu2, KE Zhao2, WU Zhong-Yi2, ZOU Hua-Wen1,*(), ZHANG Zhong-Bao2,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2023-10-18 Accepted:2024-01-12 Published:2024-06-12 Published online:2024-02-19
  • Contact: * E-mail: zouhuawen@yangtzeu.edu.cn;E-mail: zhangzhongbao@baafs.net.cn
  • Supported by:
    Beijing Natural Science Foundation(6222009);Beijing Academy of Agricultural and Forestry Sciences(KJCX20230203);Beijing Academy of Agricultural and Forestry Sciences Biotechnology Sharing Platform in 2023

摘要:

GRAS家族是植物特有的一类转录因子, 在调控植物生长发育和响应逆境胁迫等方面发挥着重要作用。探究玉米(Zea mays L.) GRAS家族基因功能将为玉米新种质创制提供重要的基因资源。本研究克隆获得了ZmGRAS13基因(Zm00001eb401210), 利用生物信息学分析、实时荧光定量PCR (qPCR)等技术对该基因的基本特性、组织表达特性及逆境胁迫下表达模式等进行分析。生物信息学分析结果显示, 该基因编码序列全长为1638 bp, 编码545个氨基酸; ZmGRAS13蛋白不具有跨膜结构, 分子量为60.79 kD, 理论等电点为5.86, 具有GRAS家族所特有的保守结构域。对基因启动子上游2 kb序列进行分析, 发现该序列含有与逆境胁迫、激素响应及光响应等相关的顺式作用元件。qPCR分析表明, ZmGRAS13基因在玉米不同组织中均有表达, 且茎中的表达量最高; 同时该基因在不同非生物胁迫处理条件下均有不同程度的诱导表达。玉米原生质体瞬时表达实验表明, ZmGRAS13蛋白定位于细胞核。在分别含有不同浓度梯度的NaCl、甘露醇(mannitol)、脱落酸(abscisic acid, ABA)、茉莉酸(jasmonic acid, JA)和水杨酸(salicylic acid, SA)的1/2 MS固体培养基上, 转ZmGRAS13基因拟南芥株系的根长均显著长于野生型拟南芥; 在土壤中, 高盐和干旱处理下转基因拟南芥株系较野生型拟南芥生长状态更好, 且绿叶率高于野生型。转ZmGRAS13基因拟南芥与野生型相比, 抗逆生理指标MDA含量降低、叶绿素含量增加、POD和CAT活性增强, 且差异均显著。由此推测, ZmGRAS13基因可能参与玉米生长发育调控和对逆境胁迫应答及激素信号转导途径。本研究为进一步解析ZmGRAS13在玉米中的生物学功能提供了重要的参考依据。

关键词: 玉米, ZmGRAS13, 转录因子, 渗透胁迫, 盐胁迫, 异源表达

Abstract:

GRAS family is a plant-specific transcription factor, which plays an important role in regulating plant growth and development and responding to stresses. Exploring the function of GRAS family genes in maize (Zea mays L.) provides the important genetic resources for the creation of new maize germplasm. In this study, ZmGRAS13 gene (Zm00001eb401210) was cloned, and its basic characteristics, tissue expression characteristics, and the relative expression patterns under stresses were analyzed by bioinformatics and qRT-PCR. Bioinformatics showed that the full-length coding sequence of this gene was 1638 bp, encoding 545 amino acids. ZmGRAS13 protein had no transmembrane structure, and the molecular weight of 60.79 kD, the theoretical isoelectric point of 5.86, and had a conserved domain unique to the GRAS family. The analysis of 2 kb sequence upstream of the gene promoter indicated that the sequence contained cis-acting elements related to stresses, hormone response, and light response. The qRT-PCR analysis showed that ZmGRAS13 gene was expressed in different tissues of maize, and the relative expression level in stem was the highest. At the same time, the gene has different degrees of induced expression under different abiotic stress treatment conditions. The transient expression experiment of maize protoplasts demonstrated that ZmGRAS13 protein was localized in the nucleus. On 1/2 MS solid medium containing different concentrations of NaCl, mannitol, abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA), respectively, the root length of ZmGRAS13 transgenic Arabidopsis lines was significantly longer than the control. In the soil, transgenic Arabidopsis lines grew better than the control under high salt and drought treatments, and the green leaf rate was higher than the control. Compared with the wild type, the content of stress resistance physiological index MDA decreased, the chlorophyll content increased, and the activities of POD and CAT increased in the transgenic ZmGRAS13 Arabidopsis thaliana, and the difference was significant difference. In conclusion, ZmGRAS13 gene may be involved in the regulation of maize growth and development, response to stresses and hormone signal transduction pathway. This study provides an important reference for the further analysis of the biological function of ZmGRAS13 in maize.

Key words: maize, ZmGRAS13, transcription factors, osmotic stress, salt stress, heterologous expression

表1

本实验所用的引物"

引物名称Primer name 引物序列Primer sequence (5'-3')
pZmGRAS13-FP ACCCGGGCTGCAGAATTCATGCCCATAAAATTTGCACTAG (EcoR I)
pZmGRAS13-RP CATGGTACCCTCGAGAAGCTTGCACCAGGCAGAAGATACGAC (Hind III)
pZmGRAS13RT-FP ATAGGTAGCCCTGACAGTTCCT
pZmGRAS13RT-RP TCCAACATGTAAGCTCCCAGAC
pZmGRAS13T-FP AGGCAGGTAATTGTAGCATG
pZmGRAS13T-RP TCTGTCCAACCATATCCAG
pGAPDHRT-FP
pGAPDHRT-RP
CCCTTCATCACCACGGACTAC
AACCTTCTTGGCACCACCCT
pActin-FP
pActin-RP
TACGAGATGCCTGATGGTCAGGTCA
TGGAGTTGTACGTGGCCTCATGGAC

图1

ZmGRAS13基因的克隆及生物信息学分析 (a): ZmGRAS13基因的克隆(M: DL2000 DNA marker; 1, 2: ZmGRAS13扩增片段); (b): 跨膜结构预测; (c): 蛋白空间结构预测; (d): 蛋白亲疏水性预测; (e): 保守结构域预测; (f): 启动子区顺式作用元件分析。"

图2

ZmGRAS13基因在玉米不同组织中的相对表达量 不同小写字母表示差异显著(P < 0.05)。"

图3

ZmGRAS13基因在玉米不同胁迫处理下的相对表达量 (a)~(d) ZmGRAS13基因分别在脱水、高盐、渗透、低温处理后的相对表达量; (e) ZmGRAS13基因分别在JA、ABA、GA、SA、2,4-D处理后的相对表达量; *: P < 0.05; **: P < 0.01。"

图4

ZmGRAS13蛋白在玉米原生质体中的亚细胞定位 GFP: 绿色荧光通道; DAPI: DAPI通道; Bright: 明场通道; Merged: GFP、DAPI和Bright通道叠加; pYBA1132:EGFP: 转入空载体的原生质体; pYBA1132:ZmGRAS13:EGFP: 转入目的基因的原生质体。"

图5

T3代ZmGRAS13转基因拟南芥鉴定 (a): T3代转基因拟南芥PCR鉴定(M: DL2000 DNA marker; P: 阳性对照; N: 阴性对照; W: 水对照); (b): T3代转基因拟南芥qPCR鉴定(WT: 野生型拟南芥; L-1~L-7: T3代转基因拟南芥株系); *: P < 0.05; **: P < 0.01。"

图6

不同盐、甘露醇浓度处理下野生型和转基因拟南芥根长比较 (A): a~d: 0、0.10、0.15和0.18 mol L-1盐处理拟南芥的生长情况; e: 不同盐浓度处理下拟南芥平均主根长度。(B): a~d: 0、0.15、0.20和0.30 mol L-1甘露醇处理拟南芥的生长情况; e: 不同甘露醇浓度处理下拟南芥平均主根长度。WT: 野生型拟南芥; L-3、L-5、L-7: 转ZmGRAS13基因拟南芥株系; *: P < 0.05; **: P < 0.01。"

图7

不同ABA、JA和SA浓度处理下野生型和转基因拟南芥根长比较 (A): a~d: 0、10、25和50 μmol L-1 ABA处理拟南芥的生长情况; e: 不同ABA浓度处理下拟南芥平均主根长度。(B): a~d: 0、50、75和100 μmol L-1 JA处理拟南芥的生长情况; e: 不同JA浓度处理下拟南芥平均主根长度。(C): a~d: 0、25、50和75 μmol L-1 SA处理拟南芥的生长情况; e: 不同SA浓度处理下拟南芥平均主根长度。缩写同图6; *: P < 0.05; **: P < 0.01。"

图8

高盐处理下转基因拟南芥表型分析 (a): 拟南芥表型; (b): 高盐处理后绿叶率; (c): MDA含量; (d): POD活性; (e): 叶绿素含量; (f): CAT活性。缩写同图6; *: P < 0.05; **: P < 0.01。"

图9

干旱处理下转基因拟南芥表型分析 (a): 拟南芥表型; (b): 干旱处理前后绿叶率; (c): MDA含量; (d): POD活性; (e): 叶绿素含量; (f): CAT活性。缩写同图6; *: P < 0.05; **: P < 0.01。"

[1] Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation: a review. Plant Biol, 2022, 24: 404-416.
[2] Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta, 2004, 218: 683-692.
doi: 10.1007/s00425-004-1203-z pmid: 14760535
[3] Guiltinan M J, Miller L. Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-1. Plant Mol Biol, 1994, 26: 1041-1053.
pmid: 7811964
[4] Heery D M, Kalkhoven E, Hoare S, Parker M G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 1997, 387: 733-736.
[5] Guo Y, Wu H, Li X, Li Q, Zhao X, Duan X, An Y, Lyu W, An H. Identification and expression of GRAS family genes in maize (Zea mays L.). PLoS One, 2017, 12: e0185418.
[6] 张文霞, 刁志娟, 吴为人. 植物GRAS蛋白研究的新进展. 分子植物育种, 2016, 14: 1159-1165.
Zhang W X, Diao Z J, Wu W R. New advances in the study of plant GRAS proteins. Mol Plant Breed, 2016, 14: 1159-1165. (in Chinese with English abstract)
[7] Tian C, Wan P, Sun S, Li J, Chen M. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol, 2004, 54: 519-532.
[8] Heo J O, Chang K S, Kim I A, Lee M H, Lee S A, Song S K, Lee M M, Lim J. Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root. Proc Natl Acad Sci USA, 2011, 108: 2166-2171.
[9] Tanabe S, Onodera H, Hara N, Ishii-Minami N, Day B, Fujisawa Y, Hagio T, Toki S, Shibuya N, Nishizawa Y, Minami E. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23. Biosci Biotech Bioch, 2016, 80: 145-151.
[10] Mayrose M, Ekengren S K, Melech-Bonfil S, Martin G B, Sessa G. A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. Mol Plant Pathol, 2006, 7: 593-604.
doi: 10.1111/j.1364-3703.2006.00364.x pmid: 20507472
[11] 周莲洁, 杨中敏, 张富春, 王艳. 新疆盐穗木GRAS转录因子基因克隆及表达分析. 西北植物学报, 2013, 33: 1091-1097.
Zhou L J, Yang Z M, Zhang F Q, Wang Y. Expression analysis and cloning of GRAS transcription factor gene from Halostachys capsica. Acta Bot Boreal-Occident Sin, 2013, 33: 1091-1097. (in Chinese with English abstract)
[12] 郭鹏, 邢新, 金华, 董燕. 玉米ZmSCL7的克隆及功能研究. 中国农业科学, 2013, 46: 2584-2591.
doi: 10.3864/j.issn.0578-1752.2013.12.020
Guo P, Xing X, Jin H, Dong Y. Cloning and functional study of ZmSCL7 in Zea mays. Sci Agric Sin, 2013, 46: 2584-2591. (in Chinese with English abstract)
[13] Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd N P. Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006, 311: 91-94.
doi: 10.1126/science.1118642 pmid: 16400150
[14] Huang W, Xian Z, Kang X, Tang N, Li Z. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biol, 2015, 15: 209.
doi: 10.1186/s12870-015-0590-6 pmid: 26302743
[15] Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell, 2008, 20: 2117-2129.
doi: 10.1105/tpc.108.058941 pmid: 18757556
[16] 郭华军. 拟南芥转录因子GRAS家族SCL15基因对干旱胁迫的响应分析. 西北农林科技大学硕士学位论文,陕西杨凌, 2011.
Guo H J. Analysis of Arabidopsis GRAS Family Gene SCL15 Responded to Drought Stress. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2011. (in Chinese with English abstract)
[17] 丁雪峰, 刘鸿艳, 罗利军. 水稻OsGRAS1启动子的克隆及多样性分析. 上海农业学报, 2010, 26(4): 8-14.
Ding X F, Liu H Y, Luo L J. Cloning and diversity analysis of OsGRAS1 promoter in rice. Acta Agric Shanghai, 2010, 26(4): 8-14. (in Chinese with English abstract)
[18] 廖文彬, 彭明. 木薯赤霉素途径DELLA蛋白基因克隆及其对干旱胁迫的响应. 热带生物学报, 2012, 3: 298-304.
Liao W B, Peng M. Gene cloning of DELLA protein from cassava and its expression patterns under drought stress. J Trop Biol, 2012, 3: 298-304. (in Chinese with English abstract)
[19] Weng Y, Chen X, Hao Z, Lu L, Wu X, Zhang J, Wu J, Shi J, Chen J. Genome-wide analysis of the GRAS gene family in Liriodendron chinense reveals the putative function in abiotic stress and plant development. Front Plant Sci, 2023, 14: 1211853.
[20] Battaglia M, Rípodas C, Clúa J, Baudin M, Aguilar O M, Niebel A, Zanetti M E, Blanco F A. A nuclear factor Y interacting protein of the GRAS family is required for nodule organogenesis, infection thread progression, and lateral root growth. Plant Physiol, 2014, 164: 1430-1442.
doi: 10.1104/pp.113.230896 pmid: 24424321
[21] Gobbato E, Marsh J F, Vernié T, Wang E, Maillet F, Kim J, Miller J B, Sun J, Bano S A, Ratet P, Mysore K S, Dénarié J, Schultze M, Oldroyd G E. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol, 2012, 22: 2236-2241.
doi: 10.1016/j.cub.2012.09.044 pmid: 23122845
[22] Bolle C, Koncz C, Chua N H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Gene Dev, 2000, 14: 1269-1278.
pmid: 10817761
[23] Torres-Galea P, Hirtreiter B, Bolle C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A Signal transduction. Plant Physiol, 2013, 161: 291-304.
doi: 10.1104/pp.112.206607 pmid: 23109688
[24] Fode B, Siemsen T, Thurow C, Weigel R, Gatz C. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell, 2008, 20: 3122-3135.
[25] Gao M J, Li X, Huang J, Gropp G M, Gjetvaj B, Lindsay D L, Wei S, Coutu C, Chen Z, Wan X C, Hannoufa A, Lydiate D J, Gruber M Y, Chen Z J, Hegedus D D. SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Nat Commun, 2015, 6: 7243.
[26] Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J, 2009, 58: 803-816.
[27] Li X, Qian Q, Fu Z, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J. Control of tillering in rice. Nature, 2003, 422: 618-621.
[28] Meng F, Zheng X, Wang J, Qiu T, Yang Q, Fang K, Bhadauria V, Peng Y L, Zhao W. The GRAS protein OsDLA involves in brassinosteroid signalling and positively regulates blast resistance by forming a module with GSK2 and OsWRKY53 in rice. Plant Biotechnol J, 2024, 22: 363-378.
[29] Morohashi K, Minami M, Takase H, Hotta Y, Hiratsuka K. Isolation and characterization of a novel GRAS gene that regulates meiosis-associated gene expression. J Biol Chem, 2003, 278: 20865-20873.
doi: 10.1074/jbc.M301712200 pmid: 12657631
[30] Li M, Sun B, Xie F, Gong R, Luo Y, Zhang F, Yan Z, Tang H. Identification of the GRAS gene family in the Brassica juncea genome provides insight into its role in stem swelling in stem mustard. PeerJ, 2019, 7: e6682.
[31] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Prot, 2007, 2: 1565-1572.
[32] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[33] Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol, 2015, 15: 141.
doi: 10.1186/s12870-015-0532-3 pmid: 26067440
[34] 王晓冬. 玉米GRAS转录因子基因ZmSCL14功能分析. 山东农业大学硕士学位论文,山东泰安, 2020.
Wang X D. Functional Analysis of Maize GRAS Transcription Factor ZmSCL14 Gene. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2020. (in Chinese with English abstract)
[35] 殷龙飞, 王朝阳, 吴忠义, 张中保, 于荣. 玉米ZmGRAS31基因的克隆及功能研究. 作物学报, 2019, 45: 1029-1037.
doi: 10.3724/SP.J.1006.2019.83070
Yin L F, Wang C Y, Wu Z Y, Zhang Z B, Yu R. Cloning and functional analysis of ZmGRAS31 gene in maize. Acta Agron Sin, 2019, 45: 1029-1037. (in Chinese with English abstract)
[36] Czikkel B E, Maxwell D P. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. J Plant Physiol, 2007, 164: 1220-1230.
[37] Ma H S, Liang D, Shuai P, Xia X L, Yin W L. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot, 2010, 61: 4011-4019.
[38] Wang T T, Yu T F, Fu J D, Su H G, Chen J, Zhou Y B, Chen M, Guo J, Ma Y Z, Wei W L, Xu Z S. Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance. Front Plant Sci, 2020, 11: 604690.
[39] Yuan Y, Fang L, Karungo S K, Zhang L, Gao Y, Li S, Xin H. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Rep, 2016, 35: 655-666.
[40] Zhang S, Li X, Fan S, Zhou L, Wang Y. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis. Plant Physiol Bioch, 2020, 151: 243-254.
[1] 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761.
[2] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[3] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[4] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[5] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[6] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[7] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
[8] 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123.
[9] 苏帅, 刘孝伟, 牛群凯, 时子文, 侯雨微, 冯开洁, 荣廷昭, 曹墨菊. 玉米多叶矮化突变体lyd1的鉴定与基因克隆[J]. 作物学报, 2024, 50(5): 1124-1135.
[10] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
[11] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[12] 岳海旺, 魏建伟, 刘朋程, 陈淑萍, 卜俊周. 基于GYT双标图分析对黄淮海生态区玉米品种综合评价[J]. 作物学报, 2024, 50(4): 836-856.
[13] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[14] 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612.
[15] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .