欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1750-1761.doi: 10.3724/SP.J.1006.2024.34171

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

亚麻LuWRI1a在旱盐胁迫响应中的功能分析

李闻娟(), 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平*()   

  1. 甘肃省农业科学院作物研究所, 甘肃兰州 730070
  • 收稿日期:2023-10-19 接受日期:2024-01-30 出版日期:2024-07-12 网络出版日期:2024-02-20
  • 通讯作者: *张建平, E-mail: zhangjpzw3@gsagr.ac.cn
  • 作者简介:E-mail: liwenjuan@gsagr.ac.cn
  • 基金资助:
    国家自然科学基金项目(31460388);国家自然科学基金项目(32360502);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-14-1-05);甘肃省农业科学院现代生物育种项目(2022GAAS04);兰州市科技计划项目(2023-3-37)

Functional analysis of flax LuWRI1a in response to drought and salt stresses

LI Wen-Juan(), WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping*()   

  1. Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2023-10-19 Accepted:2024-01-30 Published:2024-07-12 Published online:2024-02-20
  • Contact: *E-mail: zhangjpzw3@gsagr.ac.cn
  • Supported by:
    National Natural Science Foundation of China(31460388);National Natural Science Foundation of China(32360502);China Agriculture Research System(CARS-14-1-05);China Agriculture Research System of MOF and MARA(2022GAAS04);Science and Technology Program of Lanzhou(2023-3-37)

摘要:

AP2/ERF转录因子家族参与植物对生物和非生物胁迫响应的调控。前期我们从亚麻中克隆了一个WRINKLED1的同源基因LuWRI1a, 蛋白序列分析发现, LuWRI1a包含2个AP2的DNA结合域, 属于AP2/ERF转录因子家族。对LuWRI1a的顺式作用元件进行分析发现, pLuWRI1a包含响应光、干旱、低温和激素等多个非生物胁迫应激元件。本研究以亚麻栽培品种陇亚10号和LuWRI1a过表达转基因纯合株系为试验材料, 用200 mmol L-1 NaCl营养液和25% PEG营养液模拟盐胁迫和干旱胁迫处理。结果表明, 在盐胁迫和干旱胁迫处理后, 转基因植株的相对株高、主根长度、侧根数目及叶片数均升高; 3种抗氧化酶的活性均显著高于对照, 而MDA含量低于对照; 非生物胁迫响应基因LuAREBLuDREB、LuLEALuNCED的表达水平均上调。通过探究LuWRI1a在逆境胁迫下的生物学功能发现, LuWRI1a通过抵抗盐胁迫和干旱胁迫对亚麻生长的抑制, 增强活性氧清除能力、减轻膜脂的氧化损伤, 激活逆境胁迫响应基因的表达等途径, 增强了亚麻的耐逆性。综上所述, LuWRI1a可能是一个多功能基因, 它不仅参与脂肪酸合成代谢途径, 还有可能参与植物非生物胁迫信号途径。本研究为亚麻耐逆品种改良提供了新的基因资源。

关键词: 亚麻, LuWRI1a, 盐胁迫, 干旱胁迫, 功能分析

Abstract:

The AP2/ERF family of transcription factors is involved in the regulation of plant responses to biotic and abiotic stresses. Previously, we cloned LuWRI1a, a WRINKLED1 homologous gene from flax. Protein sequence analysis showed that LuWRI1a contained two AP2 DNA-binding domains and belonged to the AP2/ERF transcription factor family. The cis-acting elements of LuWRI1a were analyzed that pLuWRI1a was found containing multiple abiotic stress elements in response to light, drought, low temperature and hormones. In this study, the flax cultivar Longya 10 and LuWRI1a overexpression transgenic pure lines were used as the experimental materials, and salt stress and drought stress treatments were simulated with 200 mmol L-1 NaCl nutrient solution and 25% PEG nutrient solution. The results showed that the relative plant height, primary root length, lateral root number, and leaf number of transgenic plants were elevated after salt and drought stress treatments. The activities of three antioxidant enzymes were significantly higher than the control, while MDA content was lower. The relative expression levels of the abiotic stress-responsive genes, LuAREB, LuDREB, LuLEA, and LuNCED, were up-regulated. By exploring the biological function of LuWRI1a under adversity stress, it was found that LuWRI1a enhanced flax tolerance by resisting the inhibition of flax growth by salt stress and drought stress, enhancing the scavenging ability of reactive oxygen species, reducing the oxidative damage of membrane lipids, and activating the expression of adversity stress response genes. In summary, LuWRI1a may be a multifunctional gene, which was not only involved in fatty acid synthesis and metabolism pathway, but also may be involved in plant abiotic stress signaling pathway. This study provides a new genetic resource for the improvement of stress-tolerant varieties of flax.

Key words: flax, LuWRI1a, salt stress, drought stress, functional analysis

表1

PCR引物"

基因名称
Gene name
上游引物
Forward primer sequence (5′-3′)
下游引物
Reverse primer sequence (5′-3′)
GAPDH
bar
LuWRI1a
LuAREB
LuDREB
LuLEA
LuNCED
CTTTACCCTCAGCAAATCCG
AGTCCAGCTGCCAGAAAC
GATGATCAAGAAGCAGCTG
GCATGGAGAGACTCCAGCAA
TATGACACGGCGGTTTTCCA
GCCCGCAACTGTGAAGAAAG
GCTCCTTACCTCCATGCCTC
AGGTTCTTCCCGCTCTCAAT
GGTCAACTTCCGTACCGA
CATTGCCACCTCAGCGGCC
GCAGTATCTATCTGCGGCGA
GGATGAGACCCCTCCTTCCT
TCCTGTTCTCGGGTCTGGAA
CCCTCTTGAGATGGTGAGCG

图1

亚麻LuWRI1a启动子顺式作用元件 顺式作用元件用不同的彩色方框表示。"

表2

LuWRI1a启动子顺式作用元件的推测功能"

调控元件
Cis-element
核心序列
Sequence (5′-3′)
位置
Position
功能
Function
ACE CTAACGTATT -1239 光响应顺式作用元件
Cis-acting element involved in light responsiveness
AE-box AGAAACAA +144 光响应模块的组成部分
Part of a module for light response
ARE AAACCA -1057, -1801, +2406 厌氧诱导必需的顺式作用调控元件
Cis-acting regulatory element essential for the anaerobic induction
Box 4 ATTAAT +579, -2178 光响应保守模块的一部分
Part of a conserved DNA module involved in light responsiveness
CGTCA-motif CGTCA +963, +1169 MeJA响应顺式作用元件
Cis-acting regulatory element involved in the MeJA-responsiveness
GT1-motif GGTTAA(T) +17, -679, -680 光响应元件
Light responsive element
Gap-box CAAATGAA(A/G)A +524, +1038 光响应元件的一部分
Part of a light responsive element
LTR CCGAAA +1983 低温响应顺式作用元件
Cis-acting element involved in low-temperature responsiveness
MBS CAACTG +2127 参与干旱诱导的MYB结合位点
MYB binding site involved in drought-inducibility
MBSI aaaAaaC(G/C)GTTA -2215 参与干旱诱导的MYB结合位点
MYB binding site involved in flavonoid biosynthetic genes regulation
MYB CAACCA, TAACCA -16, +391, +681, -759, +1853, +2105, +2123 干旱、盐、ABA 和低温响应
Drought, salt, ABA, and low-temperature responsive
MYC CATTTG +73, +267, -524, -569, -1038, -1363 干旱和ABA响应
Drought and ABA responsive
O2-site GATGATGTGG +350 参与玉米醇溶蛋白新陈代谢调节的顺式调控元件
Cis-acting regulatory element involved in zein metabolism regulation
STRE AGGGG +1024, -1548, -1580, +1604, +2307 由热激、渗透应激、低pH值和营养缺乏激活的元件
Activated by heat shock, osmotic stress, low pH, and nutrient starvation
ERE ATTTTAAA, ATTTCATA +1439, -1905 乙烯响应元件
Ethylene-responsive element
TCA-element CCATCTTTTT +2343 水杨酸响应的顺式作用元件
Cis-acting element involved in salicylic acid responsiveness
TGACG-motif TGACG -963, -1169 MeJA 响应顺式作用元件
Cis-acting regulatory element involved in the MeJA-responsiveness

图2

转基因亚麻的获得 A: 农杆菌侵染亚麻下胚轴; B: 下胚轴诱导形成不定芽; C: 生根; D: 转化苗移栽。"

图3

转基因亚麻的分子鉴定 A: LuWRI1a转基因亚麻的PCR检测, M: marker DL2000; 1~24: 转基因亚麻。B: 转基因亚麻LuWRI1a的表达分析; WT: 野生型对照(亚麻栽培品种陇亚10号); OE-2、OE-20和OE-22: 过表达亚麻株系。"

图4

胁迫处理后野生型植株和转基因植株的表型 25%的PEG-6000和200 mmol L-1 NaCl的1/2 MS培养基上生长14 d的野生型植株和转基因植株。WT: 野生型对照(陇亚10号); OE-2、OE-20和OE-22: LuWRI1a过表达亚麻株系。"

图5

盐胁迫和干旱胁迫下转基因植株性状分析 *、**分别表示在0.05和0.01概率水平差异显著。"

图6

过表达LuWRI1a亚麻的酶活性测定 *、**分别表示在0.05和0.01概率水平差异显著。"

图7

胁迫处理下转基因亚麻逆境胁迫相关基因的表达分析 *、**分别表示在0.05和0.01概率水平差异显著。"

[1] Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol, 2010, 10: 14.
[2] Zheng J, Cui B, Yan Y H, Gao B, Wu Y F, Wang H D, Wang P, Xu B Q, Zhao Z, Cao Y, Zhang Y P. Agronomic cultivation measures on productivity of oilseed flax: a review. Oil Crop Sci, 2022, 7: 53-62.
[3] Zare S, Mirlohi A, Saeidi G, Ataii E. Water stress intensified the relation of seed color with lignan content and seed yield components in flax (Linum usitatissimum L.). Sci Rep, 2021, 11: 23958.
[4] Fila G, Bagatta M, Maestrini C, Potenza E, Matteo R. Linseed as a dual-purpose crop: evaluation of cultivar suitability and analysis of yield determinants. J Agric Sci, 2018, 156: 162-176.
[5] Zhang J, Liao J, Ling Q, Xi Y, Qian Y. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23: 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253
[6] Yadav B, Kaur V, Narayan O P, Yadav S K, Kumar A, Wankhede D P. Integrated omics approaches for flax improvement under abiotic and biotic stress: current status and future prospects. Front Plant Sci, 2022, 13: 931275.
[7] Paliwal S, Tripathi M K, Tiwari S, Tripathi N, Payasi D K, Tiwari P N, Singh K, Yadav R K, Asati R, Chauhan S. Molecular advances to combat different biotic and abiotic stresses in Linseed (Linum usitatissimum L.): a comprehensive review. Genes (Basel), 2023, 14: 1461.
[8] 刘莹莹, 李玥, 吴兵. 胡麻籽粒产量形成对干旱胁迫的响应及其模拟模型研究. 作物研究, 2023, 37: 14-21.
Liu Y Y, Li Y, Wu B. Response of kernel yield formation to drought stress and its simulation modeling in flaxseed. Crop Res, 2023, 37: 14-21 (in Chinese with English abstract).
[9] Kariuki L W, Masinde P, Githiri S, Onyango A N. Effect of water stress on growth of three linseed (Linum usitatissimum L.) varieties. SpringerPlus, 2016, 5: 1-16.
doi: 10.1186/s40064-015-1659-2 pmid: 26759740
[10] EL-Afry M M, EL-Okkiah S A F, EL-Kady E-S A F, EL-Yamanee G S A. Exogenous application of ascorbic acid for alleviation the adverse effects of salinity stress in flax (Linum usitatissimum L.). Middle East J Agric Res, 2018, 7: 716-739.
[11] Nasri N, Maatallah S, Saidi I, Lachal M. Influence of salinity on germination, seedling growth, ion content and acid phosphatase activities of Linum usitatissimum L. J Anim Plant Sci, 2017, 27: 517-521.
[12] Datir S. Salt-induced physiological and biochemical changes in two varieties of Linum usitatissimum L. Int J Curr Microbiol Appl Sci, 2015, 4: 296-304.
[13] Demir Kaya M, Day S, Cikili Y, Arslan N. Classification of some linseed (Linum usitatissimum L.) genotypes for salinity tolerance using germination, seedling growth, and ion content. Chilean J Agric Res, 2012, 72: 27-32.
[14] 于莹, 陈宏宇, 程莉莉, 赵东升, 袁红梅, 吴广文, 关凤芝. 亚麻MAPK基因克隆及盐碱胁迫下的表达分析. 东北农业大学学报, 2015, 46(3): 8.
Yu Y, Chen H Y, Cheng L L, Zhao D S, Yuan H M, Wu G W, Guan F Z. Flax MAPK gene cloning and expression analysis under saline and alkaline stress. J Northeast Agric Univ, 2015, 46(3): 8 (in Chinese with English abstract).
[15] Yu Y, Chen H, Yang Y Y, Lou D, Liang C, Yuan H, Wu G W, Xu C. Identification and characterization of differentially expressed microRNAs and target gene related to flax stem development. J Nat Fibers, 2021, 19: 5974-5990.
[16] Guo R, Zhou J, Ren G X, Hao W. Physiological responses of linseed seedlings to iso osmotic polyethylene glycol, salt, and alkali stresses. Agron J, 2013, 105: 764.
[17] 郭晋艳, 郑晓瑜, 邹翠霞, 李秋莉. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展. 生物技术通报, 2011, 23(4): 16-20.
Guo J Y, Zheng X Y, Zou C X, Li Q L. Progress of abiotic stress-induced promoter cis-elements and transcription factors in plants. Biotechnol Bull, 2011, 23(4): 16-20 (in Chinese with English abstract).
[18] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110.
doi: 10.1126/science.290.5499.2105 pmid: 11118137
[19] Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol, 2011, 21: 508-514.
[20] Jofuku K D, den Boer B G, Van Montagu M, Okamuro J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994, 6: 1211-1225.
doi: 10.1105/tpc.6.9.1211 pmid: 7919989
[21] Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104-116.
doi: 10.1126/science.280.5360.104 pmid: 9525853
[22] Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Novartis Found Symp, 2001, 290: 2105-2110.
[23] Chandler J W, Cole M, Flier A, Grewe B, Werr W. The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development, 2007, 134: 1653-1662.
doi: 10.1242/dev.001016 pmid: 17376809
[24] Aoyama T, Hiwatashi Y, Shigyo M, Kofuji R, Kubo M, Ito M, Hasebe M. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Development, 2012, 139: 3120-3129.
doi: 10.1242/dev.076091 pmid: 22833122
[25] De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, Vanderhaeghen R, Hilson P, Hamill J D, Goossens A. APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J, 2011, 66: 1053-1065.
[26] Finkelstein R R, Wang M L, Lynch T J, Rao S, Goodman H M. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell, 1998, 10: 1043-1054.
doi: 10.1105/tpc.10.6.1043 pmid: 9634591
[27] Lorenzo O, Piqueras R, Sánchez-Serrano J J, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 2003, 15: 165-178.
doi: 10.1105/tpc.007468 pmid: 12509529
[28] Cook D, Fowler S, Fiehn O, Thomashow M F. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 15243-15258.
[29] Cheng M C, Hsieh E J, Chen J H, Chen H Y, Lin T P. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol, 2012, 158: 363-375.
[30] Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol, 2009, 150: 1368-1379.
[31] Chen X, Guo Z. Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int J Mol Sci, 2008, 9: 2601-2613.
doi: 10.3390/ijms9122601 pmid: 19330095
[32] Seo Y J, Park J B, Cho Y J, Jung C, Seo H S, Park S K, Nahm B H, Song J T. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells, 2010, 30: 271-277.
[33] Song C P, Galbraith D W. AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol, 2006, 60: 241-257.
[34] Schmidt R, Mieulet D, Hubberten H M, Obata T, Hoefgen R, Fernie A R, Fisahn J, San Segundo B, Guiderdoni E, Schippers J H, Mueller-Roeber B. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25: 2115-2131.
[35] Wessler S R. Homing into the origin of the AP2 DNA binding domain. Trends Plant Sci, 2005, 10: 54-66.
doi: 10.1016/j.tplants.2004.12.007 pmid: 15708341
[36] Xu Z S, Cheng M, Li L C, Ma Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol, 2011, 53: 570-585.
[37] 靳鹏, 黄立钰, 王迪, 吴慧敏, 朱苓华, 傅彬英. 水稻AP2/EREBP转录因子响应非生物胁迫的表达谱分析. 中国农业科学, 2009, 42: 3765-3773.
Jin P, Huang L Y, Wang D, Wu H M, Zhu L H, Fu B Y. Expression profiling of rice AP2/EREBP transcription factors in response to abiotic stress. Sci Agric Sin, 2009, 42: 3765-3773 (in Chinese with English abstract).
[38] Xu Z S, Ni Z Y, Liu L, Nie L N, Li L C, Chen M, Ma Y Z. Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics, 2008, 280: 497-508.
[39] Zhang G, Chen M, Chen X, Xu Z, Guan S, Li L C, Li A, Guo J, Mao L, Ma Y. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot, 2008, 59: 4095-4107.
[40] Licausi F, Giorgi F M, Zenoni S, Osti F, Pezzotti M, Perata P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics, 2010, 11: 719.
[41] Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009.
[42] Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res, 1999, 27: 470-478.
doi: 10.1093/nar/27.2.470 pmid: 9862967
[43] Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X, Chen X, Huang R. Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep, 2008, 27: 1787-1795.
[44] Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781-3796.
[45] Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res, 2010, 19: 809-818.
doi: 10.1007/s11248-009-9357-x pmid: 20087656
[46] Eun J S, Woon B S, Hwan K S, Sung S J, Bin Y H, Shic K Y, Kon K J. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. Int J Mol Sci, 2021, 22: 7656.
[47] Wang Z, Zhao X, Ren Z, Abou-Elwafa S F, Pu X, Zhu Y, Dou D, Su H, Cheng H, Liu Z, Chen Y, Wang E, Shao R, Ku L. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ, 2022, 45: 312-328.
[48] Lu L L, Qanmber G, Li J, Pu M L, Chen G Q, Li S D, Liu L, Qin W Q, Ma S Y, Wang Y, Chen Q J, Liu Z. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in upland cotton. Front Plant Sci, 2021, 12: 705883.
[49] Li Y, Zhang H, Zhang Q, Liu Q, Zhai H, Zhao N, He S. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Sci, 2019, 281: 19-30.
[50] Fei W, Yang S, Hu J, Yang F, Qu G, Peng D, Zhou B. Research advances of WRINKLED1 (WRI1) in plants. Funct Plant Biol, 2020, 47: 185-194.
doi: 10.1071/FP19225 pmid: 31968206
[51] Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J, 2004, 40: 575-585.
doi: 10.1111/j.1365-313X.2004.02235.x pmid: 15500472
[52] Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem, 2010, 48: 9-15.
[53] Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sedbrook J, Benning C. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in brachypodium distachyon vegetative tissues. Plant Physiol, 2015, 169: 1836-1847.
doi: 10.1104/pp.15.01236 pmid: 26419778
[54] Sun R, Ye R, Gao L, Zhang L, Wang R, Mao T, Zheng Y, Li D, Lin Y. Characterization and ectopic expression of coWRI1, an AP2/EREBP domain-containing transcription factor from Coconut (Cocos nucifera L.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa L.). Front Plant Sci, 2017, 8: 63.
[55] Ye J, Wang C, Sun Y, Qu J, Mao H, Chua N-H. Overexpression of a transcription factor increases lipid content in a woody perennial Jatropha curcas. Front Plant Sci, 2018, 9: 1479.
[56] Li W, Wang L, Qi Y, Xie Y, Zhao W, Dang Z, Zhang J. Overexpression of WRINKLED1 improves the weight and oil content in seeds of flax (Linum usitatissimum L.). Front Plant Sci, 2022, 13: 1003758.
[57] 陈芳. 亚麻FAD3基因的克隆及载体构建与遗传转化. 甘肃省农业大学硕士学位论文, 甘肃兰州, 2014.
Chen F. Cloning and Vector Construction and Genetic Transformation of Flax FAD3 Gene. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2014 (in Chinese with English abstract).
[58] 陈芳, 党占海, 张建平, 李闻娟, 郝荣楷, 张琼, 张瑜, 宋军生. 不同基因型亚麻下胚轴不定芽诱导的研究. 作物杂志, 2014, (3): 39-43.
Chen F, Dang Z H, Zhang J P, Li W J, Hao R K, Zhang Q, Zhang Y, Song J S. Studies on the induction of adventitious shoots in hypocotyls of flax from different genotypes. Crops, 2014, (3): 39-43 (in Chinese with English abstract).
[59] 李闻娟, 齐燕妮, 王利民, 党照, 赵利, 赵玮, 谢亚萍, 王斌, 张建平, 李淑洁. 不同胡麻品种TAG合成途径关键基因表达与含油量、脂肪酸组分的相关性分析. 草业学报, 2019, 28(1): 138-149.
doi: 10.11686/cyxb2018321
Li W J, Qi Y N, Wang L M, Dang Z, Zhao L, Zhao W, Xie Y P, Wang B, Zhang J P, Li S J. Correlation analysis between the expression of key genes of TAG synthesis pathway and oil content and fatty acid fractions in different caraway varieties. Acta Pratac Sin, 2019, 28(1): 138-149 (in Chinese with English abstract).
[60] 范鑫, 赵雷霖, 翟红红, 王远, 孟志刚, 梁成真, 张锐, 郭三堆, 孙国清. AtNEK6在棉花旱盐胁迫响应中的表达分析研究. 中国农业科学, 2018, 51: 4230-4240.
doi: 10.3864/j.issn.0578-1752.2018.22.002
Fan X, Zhao L L, Zhai H H, Wang Y, Meng Z G, Liang C Z, Zhang R, Guo S D, Sun G Q. Study on expression analysis of AtNEK6 in response to drought and salt stress in cotton. Sci Agric Sin, 2018, 51: 4230-4240 (in Chinese with English abstract).
[61] Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D, Huang J. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci, 2017, 8: 1147.
doi: 10.3389/fpls.2017.01147 pmid: 28706531
[62] Shen B, Allen W B, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski M C. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol, 2010, 153: 980-987.
doi: 10.1104/pp.110.157537 pmid: 20488892
[63] 邵宇鹏, 杨明明, 包格格, 孙英楠, 杨强, 李文滨, 王志坤. 大豆GmWRI1a基因启动子克隆及其功能分析. 中国油料作物学报, 2019, 41: 517-523.
doi: 10.7505/j.issn.1007-9084.2019.04.005
Shao Y P, Yang M M, Bao G G, Sun Y N, Yang Q, Li W B, Wang Z K. Cloning of soybean GmWRI1a gene promoter and its functional analysis. Chin J Oil Crop Sci, 2019, 41: 517-523 (in Chinese with English abstract).
[64] 闫丽, 杨强, 邵宇鹏, 李丹丹, 王志坤, 李文滨. 大豆GmWRI1a基因启动子克隆及序列分析. 作物杂志, 2017, (2): 51-58.
Yan L, Yang Q, Shao Y P, Li D D, Wang Z K, Li W B. Cloning and sequence analysis of soybean GmWRI1a gene promoter. Crops, 2017, (2): 51-58 (in Chinese with English abstract).
[65] 李丹丹, 闫丽, 常健敏, 王志坤, 李文滨. 大豆GmWRI1基因在糖,植物激素及盐胁迫下的表达分析. 作物杂志, 2015, (4): 41-46.
Li D D, Yan L, Chang J M, Wang Z K, Li W B. Expression analysis of soybean GmWRI1 gene under sugar, phytohormone and salt stress. Crops, 2015, (4): 41-46 (in Chinese with English abstract).
[66] 郝翠翠. 花生转录因子AhWRI1基因的克隆与功能研究. 青岛科技大学硕士学位论文, 山东青岛, 2018.
Hao C C. Cloning and Functional Study of Peanut Transcription Factor AhWRI1 Gene. MS Thesis of Qingdao University of Science and Technology, Qingdao, Shandong, China, 2018 (in Chinese with English abstract).
[67] Arias-Moreno D M, Jiménez-Bremont J F, Maruri-López I, Delgado-Sánchez P. Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress. Sci Rep, 2017, 7: 8656.
doi: 10.1038/s41598-017-08744-x pmid: 28819160
[68] Choudhury F K, Rivero R M, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J, 2017, 90: 856-867.
[69] Xing X, Zhou Q, Xing H, Jiang H, Wang S. Early abscisic acid accumulation regulates ascorbate and glutathione metabolism in soybean leaves under progressive water stress. J Plant Growth Regul, 2016, 35: 865-876.
[70] 牟舒敏, 张丽娟, 李红兵, 关月明, 可庆波, 张岁岐, 郭尚洙, 邓西平. 三种转基因甘薯响应PEG-6000模拟干旱胁迫的生理性差异. 植物生理学报, 2023, 59: 1339-1350.
Mou S M, Zhang L J, Li H B, Guan Y M, Ke Q B, Zhang S Q, Guo S Z, Deng X P. Physiological differences among three transgenic sweetpotatoes in response to PEG-6000-mimicked drought stress. J Plant Physiol, 2023, 59: 1339-1350 (in Chinese with English abstract).
[1] 李旭娟, 李纯佳, 田春艳, 孔春艳, 徐超华, 刘新龙. 甘蔗硝酸盐转运蛋白1/肽转运蛋白家族6.4基因(ScNPF6.4)克隆及其调控分蘖功能分析[J]. 作物学报, 2024, 50(8): 2131-2142.
[2] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[3] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[4] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[5] 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943.
[6] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[7] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[8] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[9] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[10] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[11] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[12] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[13] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[14] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[15] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[2] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[5] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[6] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[7] 陈光尧;王国槐;罗峰;聂明建. 甘蓝型油菜成熟角果内源激素对带壳种子发芽的影响[J]. 作物学报, 2007, 33(08): 1324 -1328 .
[8] 何亮;李富华;沙莉娜;付凤玲;李晚忱. 玉米2C型丝氨酸/苏氨酸蛋白磷酸酶(PP2C)活性与耐旱性的关系[J]. 作物学报, 2008, 34(05): 899 -903 .
[9] 刘珊珊;田福东;高丽辉;王志坤;葛玉君;刁桂珠;李文滨. 大豆7S球蛋白亚基组成对品质性状的影响[J]. 作物学报, 2008, 34(05): 909 -913 .
[10] 尹静;王广金;张宏纪;孙岩;刁艳玲;黄景华;郭强;肖佳雷;马凤鸣;孙光祖. 小麦突变体D51抗秆锈性遗传分析及其抗性基因SSR标记[J]. 作物学报, 2007, 33(08): 1262 -1266 .