欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 2131-2142.doi: 10.3724/SP.J.1006.2024.44002

• 研究简报 • 上一篇    下一篇

甘蔗硝酸盐转运蛋白1/肽转运蛋白家族6.4基因(ScNPF6.4)克隆及其调控分蘖功能分析

李旭娟1,2(), 李纯佳1,2, 田春艳1,2, 孔春艳1,2, 徐超华1,2, 刘新龙1,2,*()   

  1. 1热带作物生物育种全国重点实验室, 云南昆明 650205
    2云南省农业科学院甘蔗研究所 / 云南省甘蔗遗传改良重点实验室, 云南开远 661699
  • 收稿日期:2024-01-02 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-24
  • 通讯作者: * 刘新龙, E-mail: lxlgood868@163.com
  • 作者简介:E-mail: lixujuan2011@163.com
  • 基金资助:
    云南种子种业联合实验室(202205AR070001-09);国家自然科学基金项目(31760412);国家重点研发计划项目(2022YFD2301102-20);云南省科技人才与平台计划项目(202205AM070001)

Identification of nitrate transporter protein 1/peptide transporter protein family 6.4 gene (ScNPF6.4) and functional analysis of its regulation of tillering in sugarcane

LI Xu-Juan1,2(), LI Chun-Jia1,2, TIAN Chun-Yan1,2, KONG Chun-Yan1,2, XU Chao-Hua1,2, LIU Xin-Long1,2,*()   

  1. 1National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650205, Yunnan, China
    2Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences / Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, Yunnan, China
  • Received:2024-01-02 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-24
  • Contact: * E-mail: lxlgood868@163.com
  • Supported by:
    Yunnan Seed Laboratory(202205AR070001-09);National Natural Science Foundation of China(31760412);National Key Research and Development Program of China(2022YFD2301102-20);Yunnan Science and Technology Talent and Platform Program(202205AM070001)

摘要:

甘蔗(Saccharum spp. hybrid)是重要的糖料和能源作物, 分蘖是影响其产量的重要性状之一。硝酸盐转运蛋白1/肽转运蛋白家族(NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) family, NPF)成员在植生长发育中发挥重要作用, 甘蔗中NPF基因的挖掘利用可为甘蔗品种分蘖遗传调控和产业升级奠定重要基础。本研究通过前期转录组数据结合反转录PCR (reverse transcription PCR, RT-PCR)从甘蔗品种ROC22中获得其NPF家族成员6.4基因的cDNA全长序列(命名为ScNPF6.4), 并对其进行序列结构、理化性质、系统进化等分析, 然后开展了该基因在苗期甘蔗中的组织特异性、甘蔗腋芽萌发过程中的表达情况以及响应激素处理的表达模式分析, 最后将该基因遗传转化水稻过表达进行功能验证。结果表明, ScNPF6.4的cDNA包含1个1806 bp的开放阅读框, 编码601个氨基酸, 属于易化子超家族(major facilitator superfamily, MFS)蛋白, 其蛋白分子量为63.9 kD, 理论等电点为9.23, 包含12个跨膜螺旋区。该蛋白不存在信号肽, 具疏水性, 属于一类稳定的非分泌蛋白, 系统进化分析表明其属于NPF 6.4亚族蛋白。亚细胞定位分析表明该蛋白定位于内质网。组织特异性分析发现, ScNPF6.4在苗期甘蔗根中相对表达量最高, 在叶和茎基部相对表达量较低; ScNPF6.4在不同甘蔗品种腋芽萌发阶段均上调表达; 适量浓度的植物外源激素6-BA、ABA、GA3、IBA、乙烯利和SLs均能诱导苗期甘蔗中ScNPF6.4的上调表达; 水稻中异位过表达ScNPF6.4可增加水稻分蘖数并提前孕穗。以上结果表明, ScNPF6.4正调控甘蔗分蘖芽萌发, 其表达受外源植物激素调控, 该基因过表达可增加水稻分蘖数并促进提前孕穗, 克隆该基因可为甘蔗分蘖早生快发高产育种提供重要的基因资源。

关键词: 甘蔗, ScNPF6.4, 分蘖, 植物外源激素, 功能分析

Abstract:

Sugarcane is an important sugar and energy crop, and tillering is one of the important traits affecting its yield. Nitrate transporter 1 (NRT1) / peptide transporter (PTR) family (NPF) protein plays an important role in plant vegetative growth and development, mining and exploitation of NPF genes in sugarcane could lay an important foundation for genetic regulation of tillering in sugarcane. In this study, the full-length cDNA sequence of the NPF6.4 gene (ScNPF6.4) was obtained from sugarcane variety ROC22 by combining pre-transcriptomic data with RT-PCR. Subsequently, the sequence structure, physicochemical properties and phylogeny were analyzed. The tissue-specific expression of the gene in sugarcane at seedlings stage, the expression in axillary bud germination, and the expression pattern in responsive to hormone treatments were analyzed. Finally, the gene was genetically transformed into rice to verify the over-expression for functional verification. The results showed that the cDNA of ScNPF6.4 contained an open reading frame of 1806 bp encoding 601 amino acids, which belonged to the major facilitator superfamily (MFS) protein with a molecular weight of 63.9 kD and a theoretical isoelectric point of 9.23, and included 12 transmembrane helical regions. The protein was hydrophobic in nature and had no signal peptide, whereas it belonged to a class of stable non-secretory proteins. In addition, phylogenetic analysis illustrated that it belonged to the NPF family and 6.4 subfamily of proteins. Likewise, subcellular localization indicated that the protein was localized in the endoplasmic reticulum. The tissue-specific analysis revealed that the relative expression level of ScNPF6.4 was the highest in roots and lower in leaf and stem bases of sugarcane seedling. Moreover, ScNPF6.4 was up-regulated at the axillary bud sprouting stage of different sugarcane varieties, and appropriate concentrations of exogenous plant hormones such as 6-BA, ABA, GA3, IBA, ethylene, and SLs could induce the up-regulated its expression in sugarcane at seedling stage, while ectopic over-expression of ScNPF6.4 increased the tillering number and induced early heading in rice. Thus, it could be inferred that ScNPF6.4 could regulate the germination of sugarcane tiller buds, and its expression was up-regulated by exogenous phytohormones, whereas the over-expression of this gene could increase the tillering numbers and induce early heading in rice. This study provides an important genetic resource for the breeding of sugarcane to improve tillering ability, which is beneficial for the early and rapid growth and high cane yield formation.

Key words: sugarcane, ScNPF6.4, tillering, exogenous plant hormone, functional analysis

表1

本研究所用的引物信息"

引物名称Primer name 引物序列Primer sequence (5°-3°) 引物作用 Primer function
NPF-54F GTCGTCCTCGCTCCCAGTC 基因克隆
Gene cloning
NPF-2143R CGCCGTATGCCTCCTATGTT
NPF-138F ATGGTTTCCGCTGGGG
NPF-1943R CTACACGTCCATTCCTTCG
Q-ScNPF-208F TCCAACTCCAAGTCCGCCAAC 表达分析(甘蔗)
Relative expression analysis (in sugarcane)
Q-ScNPF-358R CAAGCTCACGCCGGTGGC
GAPDH-F CACGGC CAC TGGAAGCA 内参基因(甘蔗)
Reference gene (in sugarcane)
GAPDH-R TCC TCAGGG TTC CTG ATG CC
Q-ScNPF6.4-F CGCGAACGCCCGTGGTCCGC 表达分析(水稻)
Relative expression analysis (in rice)
Q-ScNPF6.4-R CGGACACGTTCGCCTTGAGACCCCCC
OsActin TGCTATGTACGTCGCCATCCA 内参基因(水稻)
Reference gene (in rice)
OsActin AATGAGTAACCACGCTCCGTC

附图1

ScNPF6.4编码区PCR扩增产物电泳结果"

附图2

ScNPF6.4基因结构 黄线条和黑线分别代表外显子和内含子。"

图1

ScNPF6.4核苷酸序列及推导出来的氨基酸序列"

图2

甘蔗和其他植物NPF蛋白系统进化树 甘蔗NPF6.4蛋白(ScNPF6.4)用红色标注, 系统进化树中的NPF蛋白分别来自割手密(SsNPF)、玉米(ZmNPF)、高粱(SbNPF)、谷子(SiNPF)、水稻(OsNPF)、大麦(HvNPF)、烟草(NaNPF)、番茄(SlNPF)、向日葵(HaNPF)、大豆(GmNPF)和拟南芥(AtNPF)。"

附图3

ScNPF6.4二级结构预测结果 红色e为延伸链, 绿色t为β-转角, 蓝色h为α-螺旋, 橙色c为无规则卷曲。"

附图4

ScNPF6.4跨膜结构预测结果"

图3

ScNPF6.4转水稻原生质体亚细胞定位 GFP: 绿色荧光通道; Bright: 明场; Merged: 融合照片。标尺为10 μm。"

图4

ScNPF6.4的表达模式分析 A: ScNPF6.4在ROC22不同组织部位的相对表达量; B: ScNPF6.4在华南56-21、桂糖17号和ROC22腋芽发生不同发育阶段表达情况; C: 不同外源植物激素处理下ScNPF6.4的相对表达量。甘油醛-3-磷酸脱氢酶基因(GAPDH)被用作内参基因。误差棒表示重复的平均值 ± 标准差(n = 3)。柱状图上不同的小写字母表示显著差异(邓肯新多量程测试(P < 0.05))。Bud 0: 休眠芽; bud 1: 萌动芽; bud 2: 膨大芽; bud 3: 伸长芽; bud 4: 冒尖叶芽。6-BA: 6-苄氨基嘌呤(400 mg L-1); ABA: 脱落酸(4 mg L-1); GA3: 赤霉素A3 (200 mg L-1); IBA: 吲哚-3-丁酸(400 mg L-1); Ethephone: 乙烯利(100 mg L-1); SLs: 独角酯内酯(20 mg L-1)。"

图5

ScNPF6.4遗传转化水稻过表达后在水稻中的时空表达及表型分析 水稻激动蛋白基因(OsActin)作为内参基因, 误差棒表示重复的平均值±标准差(n = 3)。柱状图上不同的小写字母表示显著差异(邓肯新多量程测试, P < 0.05)。"

[1] Oz M T, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome Ed, 2021, 3: 673566.
[2] Pribil M, Hermann S R, Dun G D, Ngo C K, O’Neill S, Wang L, Bonnett G D, Chandler P M, Beveridge C A, Lakshmanan P. Altering sugarcane shoot architecture through genetic engineering: prospects for increasing cane and sugar yield. Proc Aust Soc Sugar Cane Technol, 2007, 29: 251-257.
[3] Vasantha S, Shekinah D E, Gupta C, Rakkiyappan P. Tiller production, regulation and senescence in sugarcane (Saccharum species hybrid) genotypes. Sugar Technol, 2012, 14: 156-160.
[4] 储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望. 中国科学(生命科学), 2021, 51: 1415-1423.
Chu C C, Wang Y, Wang E T. Improving the utilization efficiency of nitrogen, phosphorus and potassium: current situation and future perspectives. Sci Sin (Life Sci), 2021, 51: 1415-1423 (in Chinese with English abstract).
[5] Kindred D R, Verhoeven T M O, Weightman R M, Swanston J S, Agu R C, Brosnan J M, Sylvester-Bradley R. Effects of variety and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat. J Cereal Sci, 2008, 48: 46-57.
[6] Roger S B, Kindred D R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J Exp Bot, 2009, 60: 1939-1951.
[7] 刘杨, 王强盛, 丁艳锋, 刘正辉, 李刚华, 王绍华. 氮素和6-BA对水稻分蘖芽发育的影响及其生理机制. 作物学报, 2009, 35: 1893-1899.
Liu Y, Wang Q S, Ding Y F, Liu Z H, Li G H, Wang S H. Effect of nitrogen and 6-BA on development of tillering bud and its physiological mechanism. Acta Agron Sin, 2009, 35: 1893-1899 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.01893
[8] 杨东清. 细胞分裂素参与氮素调控小麦分蘖发育的作用机制及构建合理群体结构的化控途径. 山东农业大学博士学位论文, 山东泰安, 2016.
Yang D Q. Effect of Cytokinin and Nitrogen on Development of Tiller Bud and Chemical Control Pathway in Constructing Rational Population Structure. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).
[9] Shrivastava A K, 郑世庆. 甘蔗分蘖的诱导和萌发. 国外农学: 甘蔗, 1993, (2): 1-4.
Shrivastava A K, Zheng S Q. Induction and germination of tillers in sugarcane. Agron Abroad: Sugarcane, 1993, (2): 1-4 (in Chinese).
[10] 谢金兰, 陈引芝, 朱秋珍, 刘晓燕, 吴建明, 王维赞. 氮肥施用量与施用方法对甘蔗生长的影响. 中国农学通报, 2012, 28(31): 237-242.
Xie J L, Chen Y Z, Zhu Q Z, Liu X Y, Wu J M, Wang W Z. Effects of nitrogen fertilizer and application methods on sugarcane growth. Chin Agric Sci Bull, 2012, 28(31): 237-242 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2012-1535
[11] Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol, 2018, 69: 85-122.
[12] Wang R C, Okamoto M, Xing X J, Crawford N M. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol, 2003, 132: 556-567.
[13] Olas J J, Van Dingenen J, Abel C, Dzialo M A, Feil R, Krapp A, Schlereth A, Wahl V. Nitrate acts at the Arabidopsis thaliana shoot apical meristem to regulate flowering time. New Phytol, 2019, 223: 814-827.
[14] Fredes I, Moreno S, Diaz F P, Gutierrez R A. Nitrate signaling and the control of Arabidopsis growth and development. Curr Opin Plant Biol, 2019, 47: 112-118.
[15] Sophie L, Varala K, Boyer J C, Chiurazzi M, Lacombe B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci, 2014, 19: 5-9.
doi: 10.1016/j.tplants.2013.08.008 pmid: 24055139
[16] Sakuraba Y, Chaganzhana, Mabuchi A, Iba K, Yanagisawa S. Enhanced NRT1.1/NPF6.3 expression in shoots improves growth under nitrogen deficiency stress in Arabidopsis. Commun Biol, 2021, 4: 256.
[17] Choi M G, Kim E J, Jeon J, Jeong S W, Song J Y, Park Y I. Peptide transporter2 (PTR2) enhances water uptake during early seed germination in Arabidopsis thaliana. Plant Mol Biol, 2020, 102: 615-624.
[18] Léran S, Garg B, Yann B, Boursiac Y, Corratgé-Faillie C, Brachet C, Tillard P, Gojon A, Lacombe B. AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo. Sci Rep, 2015, 5: 7962.
[19] Wang W, Hu B, Yuan D, Liu Y, Che R, Hu Y, Ou S, Zhang Z, Wang H, Li H. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell, 2018, 30: 638-651.
[20] Fan X R, Feng H M, Tan Y W, Xu Y L, Miao Q S, Xu G H. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol, 2016, 6: 590-599.
[21] Li Y G, Ou-Yang J, Wang Y Y, Hu R, Xia K F, Duan J, Wang Y Q, Tasy Y F, Zhang M Y. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci Rep, 2015, 5: 9635.
doi: 10.1038/srep09635 pmid: 25923512
[22] 王化敦, 张鹏, 马鸿翔. 植物氮素吸收利用相关NPF基因家族研究进展. 植物营养与肥料学报, 2022, 28: 1520-1534.
Wang H D, Zhang P, Ma H X. Research advances on NPF gene families in plant nitrogen uptake and utilization. J Plant Nutr Fert, 2022, 28: 1520-1534 (in Chinese with English abstract).
[23] 谭杰. 中柳硝酸盐转运蛋白基因的克隆和功能研究. 中国农业科学院硕士论文, 北京, 2019.
Tan J. Cloning and Functional Analyzation of Nitrate Transporter Gene from Hygrophila stricta. MS Thesis of Chinese Academy of Agricultural Sciences Dissertation, Beijing, China, 2019 (in Chinese with English abstract).
[24] Wang J, Li Y X, Zhu F, Ming R, Chen L Q. Genome-wide analysis of nitrate transporter (NRT/NPF) family in sugarcane Saccharum spontaneum L. Trop Plant Biol, 2019, 12: 133-149.
[25] 尹新彦, 张鑫, 储博彦, 庞曼. 植物生长调节剂对大花萱草分蘖能力的影响. 天津农业科学, 2019, 25(1): 39-42.
Yin X Y, Zhang X, Chu B Y, Pang M. Effect of different plant growth regulators on the tillering ability of Hemerocallis hybrid Hort. Tianjin Agric Sci, 2019, 25(1): 39-42 (in Chinese with English abstract).
[26] 黎正英, 丘立杭, 闫海锋, 周慧文, 陈荣发, 范业赓, 梁和, 吴建明. 外源赤霉素信号对甘蔗分蘖及其内源激素的影响. 热带作物学报, 2021, 42: 2942-2951.
doi: 10.3969/j.issn.1000-2561.2021.10.026
Li Z Y, Qiu L H, Yan H F, Zhou H W, Chen R F, Fan Y G, Liang H, Wu J M. Effect of exogenous gibberellin signal on sugarcane tillering and its endogenous hormones. J Trop Crops, 2021, 42: 2942-2951 (in Chinese with English abstract).
[27] Lyu A L, Li X J, Li C J, Liu H B, Zi Q Y, Lin X Q, Liu X L. Cloning and expression analysis of the ScD53 gene from sugarcane. Sugar Technol, 2019, 21: 898-908.
[28] 周传凤, 李杨瑞, 杨丽涛. 甘蔗分蘖期间叶面喷施乙烯利后两种内源激素的变化. 西南农业学报, 2007, 20: 388-391.
Zhou C F, Li Y R, Yang L T. Changes of IAA and CTK in sugarcane sprayed with ethephon at early tillering stage. J Southwest Agri Univ, 2007, 20: 388-391 (in Chinese with English abstract).
[29] Ling H, Wu Q B, Guo J L, Xu L P, Que Y X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014, 9: e97469.
[30] 俸云燕, 周思如, 左同鸿, 刘义梅, 王佩灵, 朱利泉, 张贺翠, 李勇, 徐小洪. 烟草NPF基因家族的全基因组鉴定和表达分析. 分子植物育种, 网络首发 [2023-11-22], https://link.cnki.net/urlid/46.1068.S.20231121.1559.008.
Feng Y Y, Zhou S R, Zuo T H, Liu Y M, Wang P L, Zhu L Q, Zhang H C, Li Y, Xu X H. Genome-wide identification and expression analysis of tobacco NPF gene family. Mol Plant Breed, Published online [2023-11-22], https://link.cnki.net/urlid/46.1068.S.20231121.1559.008 (in Chinese with English abstract).
[31] 郭志强, 梁月秀, 冯凡, 朱立勋, 范佳丽, 姜晓东, 吕晋慧, 张春来. 高粱全基因组NRT1基因鉴定、表达与DNA变异分析. 激光生物学报, 2021, 30: 459-467.
Guo Z Q, Liang Y X, Feng F, Zhu L X, Fan J L, Jiang X D, Lyu J H, Zhang C L. Genome-wide identification of NRT1gene, expression profiling and DNA variation analysis in sorghum. Acta Laser Biol Sin, 2021, 30: 459-467 (in Chinese with English abstract).
[32] 马嘉俊, 吴英华, 李璿, 李梅兰, 侯雷平. 白菜 NPF 基因家族成员的鉴定及其生物信息学分析. 河南农业科学, 2021, 50(9): 117-127.
Ma J J, Wu Y H, Li X, Li M L, Hou L P. Identification and bioinformatics analysis of NPF gene family members in Chinese cabbage (Brassica rapa subsp. pekinensis). J Henan Agric Sci, 2021, 50(9): 117-127 (in Chinese with English abstract).
[33] 桑世飞, 曹梦雨, 王亚男, 王君怡, 孙晓涵, 张文玲, 姬生栋. 水稻氮高效相关基因的研究进展. 中国农业科学, 2022, 55: 1479-1491.
doi: 10.3864/j.issn.0578-1752.2022.08.001
Sang S F, Cao M Y, Wang Y N, Wang J Y, Sun X H, Zhang W L, Ji S D. Research progress of nitrogen efficiency related genes in rice. Sci Agric Sin, 2022, 55: 1479-1491 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.08.001
[34] 王露露, 仪子博, 王浩哲, 能芙蓉, 马新明, 张志勇, 王小纯. 不同氮利用效率小麦品种TaNRT/TaNPF家族基因表达特点. 作物学报, 2023, 49: 2966-2977.
doi: 10.3724/SP.J.1006.2023.21063
Wang L L, Yi Z F, Wang H Z, Neng F R, Ma X M, Zhang Z Y, Wang X C. Gene expression characteristics of TaNRT/TaNPF family in wheat cultivars with different nitrogen efficiency. Acta Agron Sin, 2023, 49: 2966-2977 (in Chinese with English abstract).
[35] Huang W T, Bai G X, Wang J, Zhu W, Zeng Q S, Lu K, Sun S Y, Fang Z M. Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Front Plant Sci, 2018, 9: 300.
[36] 戴毅, 田龙果, 潘贞志, 陈林, 宋丽. 激素和非生物逆境胁迫调控植物硝酸盐转运蛋白功能的研究进展. 江苏农业学报, 2020, 36: 1595-1604.
Dai Y, Tian L G, Pan Z Z, Chen L, Song L. Research progress on the regulation of plant nitrate transporter functions by hormones and abiotic stress. J Jiangsu Agric Sci, 2020, 36: 1595-1604 (in Chinese with English abstract).
[37] Miyawaki K, Matsumoto-kitano M, Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J, 2004, 37: 128-138.
doi: 10.1046/j.1365-313x.2003.01945.x pmid: 14675438
[38] 郑冬超, 夏新莉, 尹伟伦. 生长素促进拟南芥 AtNRT1.1 基因表达增强硝酸盐吸收. 北京林业大学学报, 2013, 35(2): 80-85.
Zheng D C, Xia X L, Yin W L. Auxin promotes nitrate uptake by up-regulating AtNRT1.1 gene transcript level in Arobidopsis thaliana. J Beijing For Univ, 2013, 35(2): 80-85 (in Chinese with English abstract).
[39] 白龙强, 刘玉梅, 慕英, 贺超兴, 闫妍, 谢丙炎, 于贤昌, 李衍素. 赤霉素对根区亚低温下黄瓜幼苗氮代谢与吸收的影响. 园艺学报, 2018, 45: 1917-1928.
doi: 10.16420/j.issn.0513-353x.2017-0863
Bai L Q, Liu Y M, Mu Y, He C X, Yan Y, Xie B Y, Yu X C, Li Y S. Effects of gibberellin on nitrogen metabolism and uptake of cucumber under suboptimal root-zone temperature. Acta Hortic Sin, 2018, 45: 1917-1928 (in Chinese with English abstract).
doi: 10.16420/j.issn.0513-353x.2017-0863
[40] 叶燕萍. 乙烯利促进甘蔗有效分蘖的生理生化机理研究. 广西大学博士学位论文, 广西南宁, 2016.
Ye Y P. Studies on the Physiological and Biochemical Mechanism on Ethephon Promoting Effective Tillering in Sugarcane. PhD Dissertation of Guangxi University, Nanning, Guangxi, China, 2016 (in Chinese with English abstract).
[41] Yang X H, Nong B X, Chen C, Wang J R, Xia X Z, Zhang Z Q, Wei Y, Zeng Y, Feng R, Wu Y Y, Guo H, Yan H F, Liang Y T, Liang S H, Yan Y, Li D T, Deng G F. OsNPF3.1, a member of the NRT1/PTR family, increases nitrogen use efficiency and biomass production in rice. Crop J, 2023, 11: 108-118.
[42] Yao R, Li J, Xie D. Recent advances in molecular basis for strigolactone action. Sci China Life Sci, 2018, 61: 277-284.
doi: 10.1007/s11427-017-9195-x pmid: 29116554
[43] 陶晋源. 独脚金内酯和细胞分裂素在氮、磷调控水稻分蘖生长中的作用. 南京农业大学博士学位论文, 江苏南京, 2019.
Tao J Y. Strigolactones and Cytokinins are in Response to Nitrogen and Phosphate Nutrition. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2019 (in Chinese with English abstract).
[44] 李军, 李白, 陈贵. 水稻氮高效利用基因NRT1.1B对粳稻农艺性状的影响. 分子植物育种, 2017, 9: 3629-3636.
Li J, Li B, Chen G. Effects of high nitrogen-use efficiency gene NRT1.1B on agronomic traits in japonica rice. Mol Plant Breed, 2017, 9: 3629-3636 (in Chinese with English abstract).
[45] Wang J, Wan R, Nie H, Xue S, Fang Z. OsNPF5.16, a nitrate transporter gene with natural variation, is essential for rice growth and yield. Crop J, 2022, 10: 397-406.
doi: 10.1016/j.cj.2021.08.005
[46] Huang W T, Nie H P, Feng F, Wang J, Lu K, Fang Z M. Altered expression of OsNPF7.1 and OsNPF7.4 differentially regulates tillering and grain yield in rice. Plant Sci, 2019, 283: 23-31.
[1] 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761.
[2] 玉泉馨, 杨宗桃, 张海, 程光远, 焦文迪, 曾康, 罗廷绪, 黄国强, 王璐, 徐景升. 甘蔗类钙调素ScCML13与SCMV运动蛋白P3N-PIPO的互作研究[J]. 作物学报, 2024, 50(7): 1855-1866.
[3] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[4] 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943.
[5] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[6] 薛丽, 李心怡, 黄勇泰, 欧财篮, 吴小青, 余泽怀, 崔泽田, 张木清, 邓祖湖, 余凡. 甘蔗与斑茅杂交染色体组构成特征研究[J]. 作物学报, 2024, 50(3): 633-644.
[7] 田春艳, 边芯, 郎荣斌, 俞华先, 桃联安, 安汝东, 董立华, 张钰, 经艳芬. 甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘[J]. 作物学报, 2024, 50(2): 310-324.
[8] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[9] 王恒波, 冯春燕, 张以星, 谢婉婕, 杜翠翠, 吴明星, 张积森. 甘蔗割手密种转录因子NAP亚家族的鉴定及SsNAP2a参与叶片衰老的功能分析[J]. 作物学报, 2024, 50(1): 110-125.
[10] 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析[J]. 作物学报, 2023, 49(9): 2385-2397.
[11] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[12] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[13] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484.
[14] 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667.
[15] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .