欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1855-1866.doi: 10.3724/SP.J.1006.2024.34191

• 研究简报 • 上一篇    下一篇

甘蔗类钙调素ScCML13与SCMV运动蛋白P3N-PIPO的互作研究

玉泉馨(), 杨宗桃, 张海, 程光远, 焦文迪, 曾康, 罗廷绪, 黄国强, 王璐, 徐景升*()   

  1. 福建农林大学 / 农业农村部福建甘蔗生物学与遗传育种重点实验室 / 国家甘蔗工程技术研究中心 / 教育部作物遗传育种与综合利用重点实验室, 福建福州 350002
  • 收稿日期:2023-11-14 接受日期:2024-01-31 出版日期:2024-07-12 网络出版日期:2024-02-23
  • 通讯作者: *徐景升, E-mail: xujingsheng@126.com
  • 作者简介:E-mail: YuQuanxin_YQX@outlook.com
  • 基金资助:
    国家自然科学基金项目(31971991);福建农林大学科技创新基金项目(CXZX2019132G)

Interaction between calmodulin-like ScCML13 of sugarcane and SCMV movement protein P3N-PIPO

YU Quan-Xin(), YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, WANG Lu, XU Jing-Sheng*()   

  1. Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / National Engineering Research Center for Sugarcane / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
  • Received:2023-11-14 Accepted:2024-01-31 Published:2024-07-12 Published online:2024-02-23
  • Contact: *E-mail: xujingsheng@126.com
  • Supported by:
    National Natural Science Foundation of China(31971991);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2019132G)

摘要:

类钙调素(Calmodulin-like, CML)是植物特有的钙信号感受器蛋白之一, 参与植物生长发育和响应外界环境信号转导。甘蔗(Saccharum spp. hybrid)中CML应答甘蔗花叶病毒(Sugarcane mosaic virus, SCMV)侵染尚未见报道。本研究从甘蔗热带种Badila (S. officinarum)中克隆了一个CML基因, 命名为ScCML13。该基因开放读码框(open reading frame, ORF)长度为519 bp, 编码172 aa。生物信息学分析表明, ScCML13属于稳定的亲水脂溶蛋白, 无跨膜结构域, 有4个结合Ca2+的EF-hand结构域; 系统进化树分析表明, 该蛋白在单子叶和双子叶植物中及单子叶C3和C4植物中具有明显分化; 酵母双杂交(yeast two-hybrid, Y2H)和双分子荧光互补(bimolecular fluorescence complementation, BiFC)试验表明, ScCML13与SCMV的运动蛋白P3N-PIPO互作。亚细胞定位试验表明ScCML13定位于内质网和细胞核。共定位试验发现ScCML13会干扰SCMV-P3N-PIPO的质膜(plasma membrane)或胞间连丝(plasmodesmata)定位。实时荧光定量PCR (Real Time Quantitative PCR, RT-qPCR)分析发现, ScCML13基因主要在甘蔗叶片中表达, 在节间和根中的相对表达量低; ScCML13基因在感染SCMV后2 h显著上调, 随后下调至与对照组相比的水平, 而在感染后期上调。

关键词: 类钙调素, 甘蔗花叶病毒, P3N-PIPO, 蛋白互作

Abstract:

Calmodulin-like (CML), one of the calcium signal receptor proteins unique to plants, is involved in plant growth and development and in response to environmental signal transduction. However, the response of CML to Sugarcane mosaic virus (SCMV) infection in sugarcane (Saccharum spp. hybrid) has not been reported. In the present study, a CML gene was cloned from a Badila (S. officinarum) and designated as ScCML13. The open reading frame (ORF) of ScCML13 gene is 519 bp in length and encodes a protein with 172 aa in length. Bioinformatics analysis showed that ScCML13 was a stable hydrophilic lipoprotein in with no transmembrane domain and contains 4 Ca2+-binding EF-hand domains. Phylogenetic tree analysis showed that the ScCML13 protein differentiated in monocotyledon and dicotyledon plants and in monocotyledonous C3 and C4 plants. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments indicated that ScCML13 interacted with P3N-PIPO, the movement protein of SCMV. Subcellular localization assays demonstrated that ScCML13 was localized to the endoplasmic reticulum and nucleus, whereas the co-localization assays showed that ScCML13 interfered with the localization of SCMV-P3N-PIPO to plasma membrane or plasmodesmata. The RT-qPCR showed that ScCML13 gene was mainly expressed in sugarcane leaves, but relatively low in internodes and roots. The ScCML13 gene was significantly up-regulated at 2 h upon SCMV infection, and then down-regulated to the levels compared with the control group, while up-regulated at the later stage of infection.

Key words: calmodulin-like protein, Sugarcane mosaic virus, P3N-PIPO, protein interaction

表1

本研究所使用引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Strategy
ScCML13-F ATGAGTTTCAACCAGTCTACTGTCAAG 基因克隆
ScCML13-R CTAGTAGCCATAGCTAGTCCTCCT Gene cloning
221-ScCML13-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAGTTTCAACCAGTCTAC 亚细胞定位及双分子荧光互补载体构建
Vectors generation for subcellular localization and BiFC
221-ScCML13-R GGGGACCACTTTGTACAAGAAAGCTGGGTCGTAGCCATAGCTAGTCCTCC
pPR3-ScCML13-F GCAGAGTGGCCATTACGATGAGTTTCAACCAGTCTACT 酵母双杂交载体构建
pPR3-ScCML13-R ATTCTCGAGAGGCCGCTAGTAGCCATAGCTAGTCCT Vector generation for Y2H
ScCML13-qF TCGAGGAGTTTGAGCACATGATGAC 定量PCR
ScCML13-qR TTACACCCAGCTCTTTGGCAATCC Real-time-qPCR
Actin-qF CTGGAATGGTCAAGGCTGGT 内参基因[64]
Actin-qR TCCTTCTGTCCCATCCCTACC Reference gene[64]
eEF-1α-qF TTCACACTTGGAGTGAAGCAGAT 内参基因[65]
eEF-1α-qR GACTTCCTTCACAATCTCATCATAA Reference gene[65]
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测[66]
SCMV-CP-R ACGCTACACCAGAAGACACT Detection of SCMV[66]

图1

单子叶物种CML13同源比对及ScCML13蛋白结构域分析 ScCML13: 甘蔗(OR575430); SbCML13: 高粱(XP_021307808.1); LrCML13: 硬直黑麦草(XP_047066070.1); BdCML13: 二穗短柄草(XP_003562666.1); OsCML13: 水稻(NP_001409202.1)。ScCML13含有4个典型的EF-hand结构域, 分别为EF-hand I (31~59)、EF-hand II (67~95)、EF-hand III (104~132)和EF-hand IV (140~168), 所有EF-hand的长度均为29 aa。"

图2

ScCML13与其他物种CML蛋白的系统进化树分析 ScCML13: 甘蔗(OR575430)。红色框、绿色框和黄色框分别代表亚群I-1、亚群I-2和群II。"

图3

Y2H检测ScCML13与SCMV-P3N-PIPO蛋白互作 pNubG-Fe65和pTSU2-APP组合作为阳性对照, pNubG-Fe65和pPR3-N组合作为阴性对照。DDO+X-Gal: 添加了5-溴-4-氯-3-吲哚-β-D-半乳糖苷的缺少亮氨酸(Leu)和色氨酸(Trp)的酵母合成限定基本培养基; QDO+X-Gal: 添加了X-Gal的缺少亮氨酸(Leu)、色氨酸(Trp)、 组氨酸(His)和腺嘌呤(Ade)的酵母合成限定基本培养基。"

图4

BiFC检测ScCML13与SCMV-P3N-PIPO蛋白互作 A: cYFP融合于SCMV-P3N-PIPO的N末端, nYFP融合于ScCML13的C末端; B: cYFP融合于ScCML13的N末端, nYFP融合于SCMV-P3NPIPO的C末端。标尺为25 μm。"

图5

ScCML13在本氏烟表皮细胞中的定位及其与SCMV-P3N-PIPO共定位 A: ScCML13在本氏烟表皮细胞中的定位; B: SCMV-P3N-PIPO单独定位, 白色箭头指向PD; C: ScCML13与SCMV-P3N-PIPO共定位。ScCML13-YFP使用绿色伪彩标识, SCMV-P3N-PIPO-CFP使用紫色伪彩标识, HDEL-mCherry为内质网标记, H2B-mCherry为细胞核标记。白色箭头指向与单独定位时具有明显差异的SCMV-P3N-PIPO-CFP荧光信号。标尺为25 μm。"

图6

ScCML13基因在甘蔗中的组织特异性表达分析及其应答SCMV侵染的表达模式 A: ScCML13基因在甘蔗中的组织特异性表达分析; B: ScCML13基因应答SCMV侵染的表达模式。t测验检测差异显著性, 误差线为 每组处理的标准误差(n = 3)。柱上不同的小写字母表示在P < 0.05时显著性的差异。"

[1] 张跃彬, 邓军, 胡朝晖. “十三五”我国蔗糖产业现状及“十四五”发展趋势. 中国糖料, 2022, 44(1): 71-76.
Zhang Y B, Deng J, Hu C H. The 13th Five-Year Plan of cane sugar industry in China and development trend of the 14th Five-Year Plan. Sugar Crops China, 2022, 44(1): 71-76 (in Chinese with English abstract).
[2] 刘晓雪, 曹付珍, 李凯, 高三基. 全球蔗糖产业竞争力比较及中国提升路径探讨: 基于巴西、澳大利亚、泰国、印度的比较分析. 价格理论与实践, 2021, (12): 12-17.
Liu X X, Cao F Z, Li K, Gao S J. Comparison of global sucrose industry competitiveness and China’s improvement path discussion: a comparative analysis based on Brazil, Australia, Thailand, and India. Price: Theory Practice, 2021, (12): 12-17 (in Chinese with English abstract)
[3] Arruda P. Perspective of the sugarcane industry in Brazil. Trop Plant Biol, 2011, 4: 3-8.
[4] Viswanathan R, Balamuralikrishnan M. Impact of mosaic infection on growth and yield of sugarcane. Sugar Technol, 2005, 7: 61-65.
[5] 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017, 44: 363-370.
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017, 44: 363-370 (in Chinese with English abstract).
[6] 杨荣仲, 周会, 肖祎, 吕达, 廖红香, 陈道德, 刘昔辉, 雷敬超, 林垠孚. 甘蔗主要亲本自然条件下抗甘蔗花叶病测定. 中国糖料, 2020, 42(2): 47-52.
Yang R Z, Zhou H, Xiao Y, Lyu D, Liao H X, Chen D D, Liu X H, Lei J C, Lin Y F. Testing on sugarcane mosaic resistance of sugarcane major parents under field conditions. Sugar Crops China, 2020, 42(2): 47-52 (in Chinese with English abstract).
[7] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015, 46: 609-613.
Zhou F J, Huang C H, Li Z W, Shang X K, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J South Agric, 2015, 46: 609-613 (in Chinese with English abstract).
[8] 冯小艳, 沈林波, 王文治, 杨本鹏, 王勤南, 周峰, 王俊刚, 熊国如, 张树珍. 中国甘蔗主要杂交亲本病毒性病害的分子鉴定. 分子植物育种, 2018, 16: 6729-6737.
Feng X Y, Shen L B, Wang W Z, Yang B P, Wang Q N, Zhou F, Wang J G, Xiong G R, Zhang S Z. Molecular identification of viral diseases in major sugarcane hybrid parents in China. Mol Plant Breed, 2018, 16: 6729-6737 (in Chinese with English abstract).
[9] 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评. 植物病理学报, 2018, 48: 389-394.
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018, 48: 389-394 (in Chinese with English abstract).
[10] 冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017, 33(7): 22-28.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0084
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus. Biotechnol Bull, 2017, 33(7): 22-28 (in Chinese with English abstract).
[11] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016, 45: 135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016, 45: 135-140 (in Chinese with English abstract).
[12] Akbar S, Yao W, Qin L, Yuan Y, Powell C A, Chen B, Zhang M. Comparative analysis of sugar metabolites and their transporters in sugarcane following Sugarcane mosaic virus (SCMV) infection. Int J Mol Sci, 2021, 22: 13574.
[13] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. Molecular characterization of a new strain of Sugarcane streak mosaic virus (SCSMV). Arch Virol, 2011, 156: 2101-2104.
[14] Lu G L, Wang Z T, Xu F, Pan Y B, Grisham M P, Xu L P. Sugarcane mosaic disease: characteristics, identification and control. Microorganisms, 2021, 9: 1984.
[15] 许东林, 周国辉, 沈万宽, 邓海华. 侵染甘蔗的高粱花叶病毒遗传多样性分析. 作物学报, 2008, 34: 1916-1920.
doi: 10.3724/SP.J.1006.2008.01916
Xu D L, Zhou G H, Shen W K, Deng H H. Genetic diversity of Sorghum mosaic virus infecting sugarcane. Acta Agron Sin, 2008, 34: 1916-1920 (in Chinese with English abstract).
[16] Xu D L, Park J W, Mirkov T E, Zhou G H. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008, 153: 1031-1039.
doi: 10.1007/s00705-008-0072-3 pmid: 18438601
[17] Yao W, Ruan M H, Qin L F, Yang C Y, Chen R K, Chen B S, Zhang M Q. Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017, 8: 104.
[18] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019, 20: 3867.
[19] Li Y Q, Liu R Y, Zhou T, Fan Z F. Genetic diversity and population structure of Sugarcane mosaic virus. Virus Res, 2013, 171: 242-246.
[20] Wu L J, Zu X F, Wang S X, Chen Y H. Sugarcane mosaic virus: long history but still a threat to industry. Crop Prot, 2012, 42: 74-78.
[21] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究. 作物学报, 2023, 49: 2472-2484.
doi: 10.3724/SP.J.1006.2023.24244
Yu Q X, Yang Z T, Zhang H, Cheng G Y, Zhou Y S, Jiao W D, Zeng K, Luo T X, Huang G Q, Zhang M Q, Xu J S. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO. Acta Agron Sin, 2023, 49: 2472-2484 (in Chinese with English abstract).
[22] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017, 7: 9868.
[23] Olspert A, Chung B Y, Atkins J F, Carr J P, Firth A E. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep, 2015, 16: 995-1004.
doi: 10.15252/embr.201540509 pmid: 26113364
[24] Olspert A, Carr J P, Firth A E. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res, 2016, 44: 7618-7629.
doi: 10.1093/nar/gkw441 pmid: 27185887
[25] Cheng G Y, Yang Z T, Zhang H, Zhang J S, Xu J S. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2020, 225: 2122-2139.
[26] Wei T Y, Zhang C W, Hong J, Xiong R Y, Kasschau K D, Zhou X P, Carrington J C, Wang A M. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog, 2010, 6: e1000962.
[27] DeFalco T A, Bender K W, Snedden W A. Breaking the code: Ca2+ sensors in plant signalling. Biochem J, 2009, 425: 27-40.
doi: 10.1042/BJ20091147 pmid: 20001960
[28] 曾后清, 张亚仙, 汪尚, 张夏俊, 王慧中, 杜立群. 植物钙/钙调素介导的信号转导系统. 植物学报, 2016, 51: 705-723.
doi: 10.11983/CBB15201
Zeng H Q, Zhang Y X, Wang S, Zhang X J, Wang H Z, Du L Q. Calcium/calmodulin-mediated signal transduction system in plants. Chin Bull Bot, 2016, 51: 705-723 (in Chinese with English abstract).
[29] Aldon D, Mbengue M, Mazars C, Galaud J P. Calcium signalling in plant biotic interactions. Int J Mol Sci, 2018, 19: 665.
[30] Wang Y J, Gong Q, Wu Y Y, Huang F, Ismayil A, Zhang D F, Li H G, Gu H Q, Ludman M, Fátyol K, Qi Y J, Yoshioka K, Hanley-Bowdoin L, Hong Y G, Liu Y L. A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host Microbe, 2021, 29: 1393-1406.
doi: 10.1016/j.chom.2021.07.003 pmid: 34352216
[31] Zeng H Q, Xu L Q, Singh A, Wang H Z, Du L Q, Poovaiah B W. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci, 2015, 6: 600.
doi: 10.3389/fpls.2015.00600 pmid: 26322054
[32] 郑仲仲, 沈金秋, 潘伟槐, 潘建伟. 植物钙感受器及其介导的逆境信号途径. 遗传, 2013, 35: 875-884.
Zheng Z Z, Shen J Q, Pan W H, Pan J W. Calcium sensors and their stress signaling pathways in plants. Hereditas (Beijing), 2013, 35: 875-884 (in Chinese with English abstract).
[33] Day I S, Reddy V S, Shad Ali G, Reddy A S. Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol, 2002, 3: research0056.
[34] Makiyama R K, Fernandes C A, Dreyer T R, Moda B S, Matioli F F, Fontes M R, Maia I G. Structural and thermodynamic studies of the tobacco calmodulin-like rgs-CaM protein. Int J Biol Macromol, 2016, 92: 1288-1297.
doi: S0141-8130(16)31143-6 pmid: 27514444
[35] McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol, 2003, 159: 585-598.
[36] Villalobo A, González-Muñoz M, Berchtold M W. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci, 2019, 76: 2299-2328.
doi: 10.1007/s00018-019-03062-z pmid: 30877334
[37] McCormack E, Tsai Y C, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci, 2005, 10: 383-389.
[38] Wang L X, Liu Z G, Han S K, Liu P, Sadeghnezhad E, Liu M J. Growth or survival: what is the role of calmodulin-like proteins in plant? Int J Biol Macromol, 2023, 242: 124733.
[39] Zeng H Q, Zhu Q Q, Yuan P G, Yan Y, Yi K K, Du L Q. Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. Plant Cell Environ, 2023, 46: 3680-3703.
[40] 曾后清, 张夏俊, 张亚仙, 汪尚, 皮二旭, 王慧中, 杜立群. 植物类钙调素生理功能的研究进展. 中国科学: 生命科学, 2016, 46: 705-715.
Zeng H Q, Zhang X J, Zhang Y X, Wang S, Pi E X, Wang H Z, Du L Q. Physiological functions of calmodulin-like proteins in plants. Sci Sin (Vitae), 2016, 46: 705-715 (in Chinese with English abstract).
[41] Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol, 2007, 7: 4.
pmid: 17263873
[42] Li C L, Meng D, Zhang J H, Cheng L L. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in apple (Malus×domestica). Plant Physiol Biochem, 2019, 139: 600-612.
[43] Heo W D, Lee S H, Kim M C, Kim J C, Chung W S, Chun H J, Lee K J, Park C Y, Park H C, Choi J Y, Cho M J. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA, 1999, 96: 766-771.
doi: 10.1073/pnas.96.2.766 pmid: 9892708
[44] Anandalakshmi R, Marathe R, Ge X, Herr J M Jr, Mau C, Mallory A, Pruss G, Bowman L, Vance V B. A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science, 2000, 290: 142-144.
doi: 10.1126/science.290.5489.142 pmid: 11021800
[45] Jeon E J, Tadamura K, Murakami T, Inaba J I, Kim B M, Sato M, Atsumi G, Kuchitsu K, Masuta C, Nakahara K S. rgs-CaM detects and counteracts viral RNA silencing suppressors in plant immune priming. J Virol, 2017, 91: e00761-e00717.
[46] Ascencio-Ibáñez J T, Sozzani R, Lee T J, Chu T M, Wolfinger R D, Cella R, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol, 2008, 148: 436-454.
doi: 10.1104/pp.108.121038 pmid: 18650403
[47] Kamal H, Minhas F A, Tripathi D, Abbasi W A, Hamza M, Mustafa R, Khan M Z, Mansoor S, Pappu H R, Amin I. βC1, pathogenicity determinant encoded by Cotton leaf curl Multan betasatellite, interacts with calmodulin-like protein 11 (Gh- CML11) in Gossypium hirsutum. PLoS One, 2019, 14: e0225876.
[48] Li F F, Zhao N, Li Z H, Xu X B, Wang Y Q, Yang X, Liu S S, Wang A M, Zhou X P. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog, 2017, 13: e1006213.
[49] Chen D, Zhang H Y, Hu S M, Tian M Y, Zhang Z Y, Wang Y, Sun L Y, Han C G. The P1 protein of Wheat yellow mosaic virus exerts RNA silencing suppression activity to facilitate virus infection in wheat plants. Plant J, 2023, 116: 1717-1736.
[50] Endres M W, Gregory B D, Gao Z, Foreman A W, Mlotshwa S, Ge X, Pruss G J, Ecker J R, Bowman L H, Vance V. Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS Pathog, 2010, 6: e1000729.
[51] Li F F, Huang C J, Li Z H, Zhou X P. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin- like protein to repress RDR6 expression. PLoS Pathog, 2014, 10: e1003921.
[52] Liu C Y, Zhang J, Wang J, Liu W N, Wang K, Chen X, Wen Y X, Tian S R, Pu Y D, Fan G J, Ma X Z, Sun X C. Tobacco mosaic virus hijacks its coat protein-interacting protein IP-L to inhibit NbCML30, a calmodulin-like protein, to enhance its infection. Plant J, 2022, 112: 677-693.
[53] Liu D D, Yang Q Y. Expression patterns of NbrgsCaM family genes in Nicotiana benthamiana and their potential roles in development and stress responses. Sci Rep, 2020, 10: 9652.
[54] Nakahara K S, Masuta C, Yamada S, Shimura H, Kashihara Y, Wada T S, Meguro A, Goto K, Tadamura K, Sueda K, Sekiguchi T, Shao J, Itchoda N, Matsumura T, Igarashi M, Ito K, Carthew R W, Uyeda I. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc Natl Acad Sci USA, 2012, 109: 10113-10118.
doi: 10.1073/pnas.1201628109 pmid: 22665793
[55] Shen L, Yang S, Guan D Y, He S L. CML13 acts positively in pepper immunity against Ralstonia solanacearum infection forming feedback loop with CabZIP63. CaInt J Mol Sci, 2020, 21: 4186.
[56] Tadamura K, Nakahara K S, Masuta C, Uyeda I. Wound-induced rgs-CaM gets ready for counterresponse to an early stage of viral infection. Plant Signal Behav, 2012, 7: 1548-1551.
doi: 10.4161/psb.22369 pmid: 23073002
[57] Xu B, Cheval C, Laohavisit A, Hocking B, Chiasson D, Olsson T S G, Shirasu K, Faulkner C, Gilliham M. A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses. New Phytol, 2017, 215: 77-84.
doi: 10.1111/nph.14599 pmid: 28513846
[58] Yong Chung H, Lacatus G, Sunter G. Geminivirus AL2 protein induces expression of, and interacts with, a calmodulin-like gene, an endogenous regulator of gene silencing. Virology, 2014, 460-461: 108-118.
doi: 10.1016/j.virol.2014.04.034 pmid: 25010276
[59] Huang C P, Sede A R, Elvira-González L, Yan Y, Rodriguez M E, Mutterer J, Boutant E, Shan L B, Heinlein M. dsRNA-induced immunity targets plasmodesmata and is suppressed by viral movement proteins. Plant Cell, 2023, 35: 3845-3869.
[60] Xiang S Y, Wang J, Wang X Y, Ma X Z, Peng H R, Zhu X, Huang J, Ran M, Ma L S, Sun X C. A chitosan-coated lentinan-loaded calcium alginate hydrogel induces broad-spectrum resistance to plant viruses by activating Nicotiana benthamiana calmodulin- like (CML) protein 3. Plant Cell Environ, 2023, 46: 3592-3610.
[61] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016, 46: 775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016, 46: 775-782 (in Chinese with English abstract).
[62] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作. 作物学报, 2022, 48: 332-341.
doi: 10.3724/SP.J.1006.2022.14001
Yang Z T, Liu S X, Cheng G Y, Zhang H, Zhou Y S, Shang H Y, Huang G Q, Xu J S. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2. Acta Agron Sin, 2022, 48: 332-341 (in Chinese with English abstract).
[63] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究. 作物学报, 2020, 46: 1722-1733.
doi: 10.3724/SP.J.1006.2020.04030
Zhang H, Liu S X, Yang Z T, Wang T, Cheng G Y, Shang H Y, Xu J S. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein. Acta Agron Sin, 2020, 46: 1722-1733 (in Chinese with English abstract).
[64] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014, 4: 7042.
doi: 10.1038/srep07042 pmid: 25391499
[65] Ling H, Wu Q B, Guo J L, Xu L P, Que Y X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative rt-PCR. PLoS One, 2014, 9: e97469.
[66] Xu J S, Deng Y Q, Cheng G Y, Zhai Y S, Peng L, Dong M, Xu Q, Yang Y Q. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana. J Intergr Agric, 2019, 18: 2294-2301.
[67] 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升. 甘蔗条纹花叶病毒P3蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014, 34: 676-681.
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S. Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014, 34: 676-681 (in Chinese with English abstract).
[68] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[69] Wang A M. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015, 53: 45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276
[70] Diekmann Y, Pereira-Leal J B. Evolution of intracellular compartmentalization. Biochem J, 2012, 449: 319-331.
[71] Wang A M. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr Opin Virol, 2021, 48: 10-16.
[72] Chai M Z, Wu X Y, Liu J H, Fang Y, Luan Y M, Cui X Y, Zhou X P, Wang A M, Cheng X F. P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. J Virol, 2020, 94: e01898-e01819.
[73] Boevink P, Oparka K J. Virus-host interactions during movement processes. Plant Physiol, 2005, 138: 1815-1821.
pmid: 16172094
[74] Ueki S, Citovsky V. To gate, or not to gate: regulatory mechanisms for intercellular protein transport and virus movement in plants. Mol Plant, 2011, 4: 782-793.
doi: 10.1093/mp/ssr060 pmid: 21746703
[75] Kumar G, Dasgupta I. Variability, functions and interactions of plant virus movement proteins: what do we know so far? Microorganisms, 2021, 9: 695.
[76] De Storme N, Geelen D. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front Plant Sci, 2014, 5: 138.
doi: 10.3389/fpls.2014.00138 pmid: 24795733
[77] Lucas W J. Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology, 2006, 344: 169-184.
pmid: 16364748
[78] Maule A J. Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol, 2008, 11: 680-686.
doi: 10.1016/j.pbi.2008.08.002 pmid: 18824402
[79] Maule A, Faulkner C, Benitez-Alfonso Y. Plasmodesmata “in communicado”. Front Plant Sci, 2012, 3: 30.
doi: 10.3389/fpls.2012.00030 pmid: 22645579
[80] Tucker E B, Boss W F. Mastoparan-induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol, 1996, 111: 459-467.
doi: 10.1104/pp.111.2.459 pmid: 12226302
[81] Holdaway-Clarke T L, Walker N A, Hepler P K, Overall R L. Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta, 2000, 210: 329-335.
doi: 10.1007/PL00008141 pmid: 10664140
[82] Dong M, Cheng G, Peng L, Xu Q, Yang Y, Xu J. Transcriptome analysis of sugarcane response to the infection by Sugarcane steak mosaic virus (SCSMV). Trop Plant Biol, 2017, 10: 45-55.
[1] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484.
[2] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[3] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
[4] 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676.
[5] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[6] 刘淑娴, 杨宗桃, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗易化子家族蛋白ScZIFL1与6K2互作应答SCMV侵染[J]. 作物学报, 2022, 48(12): 3080-3090.
[7] 许彬, 曹绍玉, 苏甜, 彭梦玲, 吕霞, 李振林, 张国平, 许俊强. 结球甘蓝类钙调蛋白CMLs与花粉萌发NPG1及NPGRs相互作用研究[J]. 作物学报, 2022, 48(11): 2934-2944.
[8] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[9] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
[10] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[11] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[12] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究[J]. 作物学报, 2020, 46(11): 1722-1733.
[13] 李媚娟,苏良辰,刘帅,李晓云,李玲. 花生AhHDA1互作蛋白AhGLK的筛选及特性分析[J]. 作物学报, 2017, 43(02): 218-225.
[14] 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766.
[15] 张小红,许鹏博,郭萌萌,徐兆师,李连城,陈明,马有志. 拟南芥G蛋白α亚基GPA1互作蛋白铜离子结合蛋白AtBCB的鉴定及功能分析[J]. 作物学报, 2013, 39(11): 1952-1961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[4] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[5] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[6] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[7] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[8] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .
[9] 陈吉宝;景蕊莲;毛新国;昌小平;王述民. 普通菜豆PvP5CS2基因对逆境胁迫的应答[J]. 作物学报, 2008, 34(07): 1121 -1127 .
[10] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .