欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1841-1854.doi: 10.3724/SP.J.1006.2024.34161

• 耕作栽培·生理生化 • 上一篇    下一篇

施磷对夏花生产量品质、光温生理特性及根系形态的影响

杨启睿(), 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦*()   

  1. 河南农业大学资源与环境学院, 河南郑州 450046
  • 收稿日期:2023-10-08 接受日期:2024-01-31 出版日期:2024-07-12 网络出版日期:2024-02-21
  • 通讯作者: *王宜伦, E-mail: wangyilunrl@henau.edu.cn
  • 作者简介:E-mail: yqr1101yqr@163.com
  • 基金资助:
    “十四五”国家重点研发计划项目(2021YFD1901001-08)

Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut

YANG Qi-Rui(), LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun*()   

  1. College of Resource and Environment, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2023-10-08 Accepted:2024-01-31 Published:2024-07-12 Published online:2024-02-21
  • Contact: *E-mail: wangyilunrl@henau.edu.cn
  • Supported by:
    14th Five-Year National Key Research and Development Program of China(2021YFD1901001-08)

摘要:

探究不同施磷水平对夏花生产量、品质及磷素积累动态、光温生理特性和根系形态影响效应, 为花生高效科学施用磷肥提供理论支持。2021—2022年在河南省温县布置磷肥用量田间试验, 供试品种为“豫花22”, 设P2O5 0、30、60、90、120 kg hm-2 5个磷肥用量处理。于成熟期测定夏花生荚果产量和品质指标, 并分别于苗期、花针期、结荚期、饱果期测定叶片SPAD值、冠层光合有效辐射和冠层温度, 采集植株样品分析植株磷素积累量和根系形态。结果表明, 随施磷量增加, 2年夏花生荚果产量均呈“线性+平台”趋势变化, 适宜施磷量分别为94 kg hm-2和95 kg hm-2, 施磷处理2年平均增产23.68%。成熟期籽粒粗蛋白、含油量和氨基酸含量均随施磷量增加呈“先升高后趋于稳定”趋势变化。与不施磷相比, 施磷90 kg hm-2时籽粒粗蛋白、含油量和氨基酸含量2年度平均增幅分别为11.06%、3.89%和11.58%, 效果显著。通过Logistic方程对夏花生磷素积累量进行非线性回归拟合, 得出施磷处理通过提高夏花生磷素最大积累速率(Vm)和平均积累速率( V ˉ), 延长快速积累期(Δt)与活跃积累期(Taas), 进而提高磷素最大积累量(Ym); 适量施磷提高各部位磷素吸收积累量, 促进磷素向荚果中分配。夏花生冠层最高温、最低温与平均温均随施磷量的增加显著降低; 叶片SPAD值与冠层光合有效辐射量(APAR)和分量(FPAR)在施磷90 kg hm-2时显著增加; 施磷处理夏花生耕层总根长、根平均直径、根体积和根表面积分别平均增加48.50%、16.25%、37.80%和21.88%。磷肥利用率和偏生产力随施磷量增加逐渐降低, 农学效率呈先升高后降低的变化趋势。合理施磷可显著提高夏花生产量、改善品质, 促进磷素积累利用并显著改善生育期光温生理性能。本试验条件下夏花生推荐施磷量为90 kg hm-2

关键词: 花生, 施磷量, 产量, 品质, 光温特性, 磷肥利用率, Logistic

Abstract:

Phosphorus (P) application status on the yield, quality, phosphorus accumulation dynamics, physiological characteristics of light and temperature, and root morphology of summer peanuts were explored to provide theoretical support for the efficient and scientific application of P in peanuts. Field experiment was conducted in Wen county, Henan province from 2021 to 2022. Five P (P2O5) fertilization treatments (0, 30, 60, 90, and 120 kg hm-2) were applied using variety “Yuhua 22” as the experimental material. The yield and quality indicators of summer peanut pods were measured at mature stage, leaf SPAD value, canopy photosynthetic effective radiation, and canopy temperature were determined at seedling stage, flowering-pegging stage, pod-setting stage, and pod-filling stage, respectively. Plant samples were collected to analyse P accumulation and root morphology. Results showed that the “linear + platforms trends” were observed between P rates and peanut pods yield in both years and the optimal P application rates were 94 kg hm-2 and 95 kg hm-2, respectively. P application increased yield by 23.68% on average. The contents of crude protein, oil and amino acid in grain at maturity had a trend of “first increasing and then stabilizing” with the increasing P application rates. Compared with no P application (0 kg hm-2), the average increasing rate of crude protein, oil and amino acid contents in grain with P application of 90 kg hm-2 was 11.06%, 3.89%, and 11.58%, respectively. The P accumulation amount of summer peanuts was fitted by nonlinear regression through the Logistic equation, and it was concluded that P application treatments increased the maximum amount of P accumulation (Ym) by increasing the maximum accumulation rate (Vm) and the average accumulation rate ( V ˉ) of P and prolonging the rapid accumulation period (Δt) and the active accumulation period (Taas). Applying proper amount of P increased the absorption and accumulation of P in each part and promoted the distribution of P to pod. The maximum, minimum, and mean temperatures of the summer peanut canopy all decreased significantly with the increases of P rates. Peanut leaf SPAD values and canopy photosynthetically active radiation (APAR) and fractions (FPAR) significantly increased with P application of 90 kg hm-2. Total root length, average root diameter, root volume, and root surface area of the ploughing layer in summer peanuts were increased by an average of 48.50%, 16.25%, 37.80%, and 21.88%, respectively, in P application treatments. Phosphorus fertilizer recovery efficiency and partial factor productivity decreased gradually with the increase of P application, and agronomic efficiency showed a trend of increasing first and then decreasing. Reasonable phosphorus application can significantly increase the yield and quality of summer peanuts, promote the accumulation and utilization of phosphorus, and improve the physiological performance of light and temperature at reproductive stage. The recommended P application rate for summer peanuts under the conditions of this experiment was 90 kg hm-2.

Key words: peanut, P application rate, yield, quality, light temperature characteristics, P recovery efficiency, Logistic

表1

试验田土壤基础养分状况"

地点
Site
年份
Year
pH 有机质
Organic matter
(g kg-1)
碱解氮
Available N
(mg kg-1)
有效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
武德镇 Wude town 2021 7.45 18.79 98.2 15.6 130.5
赵堡镇 Zhaobao town 2022 7.24 16.80 74.1 14.2 132.6

图1

磷肥用量对夏花生荚果产量影响 柱状图上不同字母表示各处理间在0.05概率水平差异显著。"

表2

磷肥用量对夏花生籽粒主要品质指标的影响"

年份
Year
处理
Treatment
粗蛋白含量
Protein content
含油量
Oil content
氨基酸含量
Amino content
2021 P0 20.72±0.41 b 44.95±0.38 c 18.43±0.50 c
P30 21.82±0.85 a 45.79±0.56 bc 19.23±0.37 b
P60 22.14±0.33 a 46.01±0.65 ab 19.62±0.49 ab
P90 22.91±0.78 a 46.93±0.68 a 20.26±0.11 a
P120 22.36±0.38 a 46.09±0.27 ab 19.72±0.33 ab
2022 P0 17.81±0.09 b 52.41±0.53 c 16.13±0.76 c
P30 18.31±0.62 b 53.06±0.48 bc 17.02±0.09 bc
P60 19.18±0.44 a 53.68±0.25 ab 17.83±0.74 ab
P90 19.86±0.65 a 54.18±0.47 a 18.27±0.37 a
P120 19.77±0.24 a 53.71±0.46 ab 18.08±0.21 a

表3

不同磷肥用量对夏花生籽仁脂肪酸组分含量的影响"

年份
Year
处理
Treatment
油酸
Oleic
亚油酸
Linoleic
油亚比
O/L
棕榈酸
Palmitic
山嵛酸
Behenic
硬脂酸
Stearic
花生酸
Arachidonic
木蜡酸
Lignoceric
2021 P0 31.63±0.51 c 47.17±0.37 a 67.06±1.17 c 12.33±0.21 c 2.39±0.03 b 2.42±0.03 c 0.96±0.02 c 1.20±0.01 a
P30 32.02±0.44 bc 46.81±0.39 a 68.40±1.12 c 12.80±0.23 b 2.41±0.01 ab 2.51±0.01 c 1.03±0.04 b 1.20±0.01 a
P60 32.80±0.71 ab 46.09±0.39 b 71.16±0.94 b 13.09±0.18 ab 2.43±0.03 ab 2.61±0.10 b 1.07±0.02 ab 1.21±0.01 a
P90 33.51±0.35 a 45.40±0.27 c 73.83±0.99 a 13.39±0.32 a 2.46±0.04 a 2.72±0.04 a 1.11±0.02 a 1.21±0.01 a
P120 32.59±0.40 ab 45.77±0.17 bc 71.20±0.64 b 13.15±0.12 ab 2.42±0.04 ab 2.64±0.03 ab 1.09±0.03 a 1.22±0.01 a
2022 P0 31.75±0.22 c 47.28±0.38 a 67.16±0.18 c 11.93±0.06 c 2.26±0.02 c 2.08±0.04 c 1.09±0.05 b 1.22±0.01 a
P30 32.06±0.36 bc 46.80±0.30 ab 68.50±0.66 bc 12.08±0.11 bc 2.30±0.03 b 2.18±0.06 b 1.12±0.03 ab 1.23±0.01 a
P60 32.62±0.17 ab 46.13±0.21 b 70.71±0.52 a 12.36±0.22 b 2.33±0.01 b 2.25±0.05 b 1.14±0.03 ab 1.23±0.01 a
P90 33.07±0.46 a 45.90±0.70 b 72.07±1.76 a 12.82±0.15 a 2.41±0.02 a 2.38±0.04 a 1.17±0.02 a 1.23±0.01 a
P120 32.40±0.36 b 46.13±0.32 b 70.23±0.96 ab 12.76±0.21 a 2.39±0.02 a 2.35±0.02 a 1.13±0.01 ab 1.24±0.02 a

表4

不同磷肥用量对夏花生氨基酸组分含量的影响"

年份
Year
组分
Component
处理 Treatment
P0 P30 P60 P90 P120
2021 苯丙氨酸Phenylalanine 1.06±0.02 c 1.09±0.03 bc 1.12±0.03 ab 1.14±0.01 a 1.12±0.01 ab
蛋氨酸Methionine 0.20±0.01 c 0.21±0.01 bc 0.22±0.01 ab 0.23±0.01 a 0.22±0.01 ab
赖氨酸Lysine 0.92±0.01 b 0.93±0.01 ab 0.94±0.01 a 0.96±0.02 a 0.95±0.01 a
亮氨酸Leucine 1.33±0.01 b 1.34±0.01 b 1.36±0.01 a 1.38±0.01 a 1.37±0.01 a
异亮氨酸Isoleucine 0.60±0.01 c 0.61±0.01 bc 0.63±0.02 ab 0.65±0.02 a 0.64±0.01 ab
组氨酸Histidine 0.67±0.01 c 0.69±0.01 bc 0.70±0.01 ab 0.72±0.01 a 0.71±0.01 ab
苏氨酸Threonine 0.71±0.02 c 0.72±0.02 bc 0.74±0.01 ab 0.76±0.01 a 0.74±0.01 ab
缬氨酸Valine 0.79±0.01 b 0.81±0.02 ab 0.81±0.01 ab 0.83±0.02 a 0.80±0.01 ab
脯氨酸Proline 0.90±0.01 c 0.92±0.01 bc 0.94±0.01 ab 0.95±0.02 a 0.94±0.01 ab
精氨酸Arginine 2.28±0.02 c 2.32±0.03 bc 2.36±0.02 ab 2.41±0.04 a 2.39±0.03 a
2022 苯丙氨酸Phenylalanine 0.89±0.02 c 0.93±0.02 b 0.96±0.01 b 1.02±0.03 a 1.01±0.01 a
蛋氨酸Methionine 0.16±0.01 b 0.16±0.01 ab 0.17±0.01 ab 0.17±0.01 a 0.17±0.01 a
赖氨酸Lysine 0.78±0.03 a 0.79±0.04 a 0.80±0.03 a 0.83±0.02 a 0.81±0.03 a
亮氨酸Leucine 1.09±0.01 c 1.12±0.01 b 1.13±0.01 b 1.15±0.01 a 1.15±0.01 a
异亮氨酸Isoleucine 0.51±0.02 b 0.53±0.01 b 0.56±0.03 a 0.57±0.01 a 0.56±0.01 a
组氨酸Histidine 0.60±0.01 c 0.61±0.01 bc 0.62±0.01 b 0.63±0.01 a 0.63±0.01 a
苏氨酸Threonine 0.67±0.01 c 0.68±0.01 bc 0.70±0.01 ab 0.72±0.01 a 0.71±0.01 a
缬氨酸Valine 0.71±0.04 a 0.72±0.04 a 0.73±0.01 a 0.73±0.01 a 0.73±0.01 a
脯氨酸Proline 0.84±0.01 b 0.85±0.03 ab 0.87±0.02 ab 0.89±0.03 a 0.88±0.02 ab
精氨酸Arginine 1.80±0.03 b 1.81±0.01 b 1.86±0.02 ab 1.91±0.03 a 1.90±0.07 a

图2

不同磷肥用量下荚果产量与花生籽粒品质组分含量的相关性分析 *、**分别表示在0.05和0.01概率水平显著相关。"

图3

花生磷素积累动态变化 散点表示实测值, 曲线表示拟合值。处理同表2。"

表5

不同磷肥用量下夏花生磷素积累动态模型及其参数"

处理
Treatment
回归方程
Regression equation
Ym
(kg hm-2)
Vm
(g d-1 hm-2)
V ¯
(g d-1 hm-2)
t1
(d)
t2
(d)
Δt
(d)
Taas
(d)
Tm
(d)
R2
P0 y=19.28/(1+561.44e-0.107t) 19.28 516.77 344.51 46.77 71.34 24.57 55.97 59.05 0.9884
P30 y=23.16/(1+456.73e-0.104t) 23.15 603.51 402.34 46.11 71.37 25.26 57.55 58.74 0.9947
P60 y=26.91/(1+418.26e-0.103t) 26.91 695.06 463.37 45.68 71.17 25.49 58.07 58.42 0.9959
P90 y=30.66/(1+376.00e-0.101t) 30.66 776.73 517.82 45.51 71.50 25.99 59.20 58.51 0.9955
P120 y=29.85/(1+409.69e-0.103t) 29.85 769.77 513.18 45.55 71.08 25.53 58.16 58.31 0.9962

表6

不同磷肥用量对夏花生磷素吸收与分配的影响"

生育期
Growth stage
处理
Treatment
磷素吸收量 P uptake (kg hm-2) 磷分配比例 P distribution (%)
茎部
Stem
叶部
Leaf
根部
Root
荚果
Pod
茎部
Stem
叶部
Leaf
根部
Root
荚果
Pod
苗期 P0 1.00 d 1.12 d 0.20 b 43.17 b 48.41 a 8.42 a
SS P30 1.21 c 1.33 c 0.20 b 44.23 ab 48.43 a 7.34 b
P60 1.43 b 1.56 b 0.21 ab 44.70 a 48.71 a 6.60 bc
P90 1.69 a 1.84 a 0.23 a 44.87 a 48.89 a 6.24 c
P120 1.67 a 1.82 a 0.23 a 44.93 a 48.83 a 6.24 c
花针期 P0 3.63 d 3.01 d 0.14 c 53.58 b 44.42 a 2.00 a
FP P30 4.54 c 3.71 c 0.16 b 53.97 b 44.15 ab 1.87 b
P60 5.51 b 4.36 b 0.17 ab 54.89 a 43.42 bc 1.70 c
P90 6.29 a 4.95 a 0.19 a 55.05 a 43.32 bc 1.63 c
P120 6.10 ab 4.78 ab 0.19 a 55.11 a 43.20 c 1.69 c
结荚期 P0 5.99 d 4.87 d 0.48 d 2.89 d 42.12 a 34.25 a 3.35 a 20.28 d
PS P30 7.21 c 5.82 c 0.57 c 3.62 c 41.87 a 33.84 ab 3.31 a 20.99 c
P60 8.24 b 6.75 b 0.65 b 4.51 b 40.87 b 33.50 b 3.24 b 22.38 b
P90 9.18 a 7.57 a 0.72 a 5.29 a 40.33 b 33.25 b 3.18 b 23.24 a
P120 9.13 a 7.55 a 0.75 a 5.14 a 40.47 b 33.44 b 3.31 a 22.78 ab
饱果期 P0 5.08 d 4.14 d 0.46 d 10.43 d 25.25 a 20.59 a 2.28 a 51.89 c
PF P30 5.91 c 4.80 c 0.52 c 12.28 c 25.15 a 20.42 ab 2.22 ab 52.22 bc
P60 6.78 b 5.45 b 0.59 b 14.34 b 24.98 a 20.09 bc 2.17 b 52.77 ab
P90 7.65 a 6.17 a 0.67 a 16.45 a 24.72 a 19.95 c 2.17 b 53.16 a
P120 7.45 a 6.00 a 0.66 a 15.81 a 24.90 a 20.05 bc 2.20 b 52.85 ab
成熟期 P0 2.54 c 2.31 d 0.32 d 12.91 d 14.07 a 12.77 a 1.76 a 71.40 c
MS P30 3.11 b 2.72 c 0.39 c 15.99 c 14.02 ab 12.24 a 1.74 a 71.99 bc
P60 3.50 a 3.15 b 0.45 b 18.85 b 13.47 bc 12.14 a 1.73 a 72.65 ab
P90 3.77 a 3.53 a 0.51 a 21.70 a 12.79 c 11.97 a 1.71 a 73.53 a
P120 3.76 a 3.49 a 0.50 a 21.16 a 13.03 cd 12.09 a 1.73 a 73.16 a

表7

不同磷肥用量对夏花生冠层温度特征的影响"

处理
Treatment
苗期 SS 花针期 FP
最高温
Tmax
最低温
Tmin
平均温
Tmean
最高温
Tmax
最低温
Tmin
平均温
Tmean
P0 32.03 a 27.03 a 29.05 a 32.38 a 28.10 a 29.95 a
P30 31.53 a 27.05 a 28.75 a 32.15 a 27.82 ab 29.80 a
P60 30.97 ab 26.62 a 28.48 ab 31.57 ab 27.53 b 29.23 b
P90 29.83 b 26.20 a 27.97 b 31.12 b 26.98 c 28.72 b
P120 30.82 ab 26.73 a 28.38 ab 31.28 b 27.43 bc 29.02 b
处理
Treatment
结荚期 PS 饱果期 PF
最高温
Tmax
最低温
Tmin
平均温
Tmean
最高温
Tmax
最低温
Tmin
平均温
Tmean
P0 32.93 a 28.05 a 31.08 a 28.73 a 21.12 a 23.48 a
P30 32.47 ab 27.38 ab 30.73 ab 28.48 a 20.90 a 23.13 ab
P60 31.80 bc 27.07 b 30.25 ab 28.30 a 20.25 ab 22.78 bc
P90 31.21 c 26.63 b 29.82 b 28.07 a 19.78 b 22.37 c
P120 31.63 c 27.00 b 29.93 b 28.20 a 20.17 ab 22.62 bc

图4

不同施磷量对夏花生冠层温度的影响 处理同表2。SS: 苗期; FP: 花针期; PS: 结荚期; PF: 饱果期。暖色(红色和黄色)代表温度高, 冷色(蓝色)代表温度低, 数值单位为℃。"

图5

不同磷肥用量对夏花生SPAD值、光合有效辐射特征的影响 处理同表2。SS: 苗期; FP: 花针期; PS: 结荚期; PF: 饱果期。柱状图上不同字母表示各处理间在0.05概率水平差异显著。"

图6

不同磷肥用量对夏花生耕层根系形态特征的影响 处理同表2。SS: 苗期; FP: 花针期; PS: 结荚期; PF: 饱果期。"

表8

不同磷肥用量下夏花生磷肥利用效率"

年份
Year
处理
Treatment
磷肥利用率
PRE (%)
磷肥农学效率
PAE (kg kg-1)
磷肥偏生产力
PFPP (kg kg-1)
2021 P30 32.0 10.2 142.1
P60 28.9 11.8 74.3
P90 29.2 12.6 54.3
P120 26.1 9.8 41.0
2022 P30 31.5 8.0 150.3
P60 30.0 8.7 79.8
P90 29.1 15.0 62.4
P120 20.7 10.4 45.9
[1] United States Department of Agriculture (USDA). Foreign Agricultural Service. USA: Production, Supply and Distribution. 2022 [2023-09-16]. https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery.
[2] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2022. p 246.
National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2022. p 246 (in Chinese).
[3] 庞雪莉, 孙钰清, 孔凡玉, 邱军, 张继光. 农产品挥发性风味品质研究现状与展望. 中国农业科学, 2019, 52: 3192-3198.
doi: 10.3864/j.issn.0578-1752.2019.18.011
Pang X L, Sun Y Q, Kong F Y, Qiu J, Zhang J G. Advances and perspectives in research of volatile flavor quality of agricultural products. Sci Agric Sin, 2019, 52: 3192-3198 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.18.011
[4] 包含, 陈鹏枭, 朱文学, 吴建章, 蒋萌蒙, 张润阳, 陈楠. 油料作物热风干燥特性及湿热传递机理研究进展. 中国油料作物学报, 2023, 45: 462-473.
doi: 10.19802/j.issn.1007-9084.2022129
Bao H, Chen P X, Zhu W X, Wu J Z, Jiang M M, Zhang R Y, Chen N. Research progress on hot air drying characteristics and moisture heat transfer mechanism of oil crops. Chin J Oil Crop Sci, 2023, 45: 462-473 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2022129
[5] 张翔, 张新友, 毛家伟, 张玉亭. 施氮水平对不同花生品种产量与品质的影响. 植物营养与肥料学报, 2011, 17: 1417-1423.
Zhang X, Zhang X Y, Mao J W, Zhang Y T. Effects of nitrogen fertilization on yield and quality of different peanut cultivars. Plant Nutr Fert Sci, 2011, 17: 1417-1423 (in Chinese with English abstract).
[6] 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建. 作物学报, 2023, 49: 869-876 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24030
Ji H C, Hu C L, Qiu X C, Wu L R, Li J J, Li X, Li X T, Liu Y H, Tang Y Y, Zhang X J, Wang J S, Qiao L X. High-throughput phenotyping models for quality traits in peanut kernels. Acta Agron Sin, 2023, 49: 869-876 (in Chinese with English abstract).
[7] 董勇. 基于GRM-SCP的农业优势产业高质量发展研究: 以河南省花生产业为例. 河南农业大学博士学位论文, 河南郑州, 2023.
Dong Y. Research on High Quality Development of Agricultural Advantageous Industry Based on GRM-SCP: a Case Study of the Peanut Industry in Henan Province. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2023 (in Chinese with English abstract).
[8] 路亚, 王春晓, 于天一, 周静, 孙学武, 冯昊, 孙秀山, 王鹏, 矫岩林, 李林, 王才斌. 土壤施磷与叶面追肥互作对花生根系形态、结瘤特性及氮代谢的影响. 作物学报, 2020, 46: 432-439.
Lu Y, Wang C X, Yu T Y, Zhou J, Sun X W, Feng H, Sun X S, Wang P, Jiao Y L, Li L, Wang C B. Effects of interaction of phosphorus (P) application in soil and leaves on root, nodule characteristics and nitrogen (N) metabolism in peanut. Acta Agron Sin, 2020, 46: 432-439 (in Chinese with English abstract).
[9] Ueda Y, Yanagisawa S. Perception, transduction, and integration of nitrogen and phosphorus nutritional signals in the transcriptional regulatory network in plants. J Exp Bot, 2019, 70: 3709-3717.
doi: 10.1093/jxb/erz148 pmid: 30949701
[10] Gealy D R. Deep phosphorus fertilizer placement and reduced irrigation methods for rice (Oryza sativa L.) combine to knock- out competition from its nemesis, barnyard grass (Echinochloa crus-galli (L.) P. Beauv). Plant Soil, 2015, 391: 427-431.
[11] Ma J C, He P, Xu X P, He W T, Liu Y X, Yang F Q, Chen F, Li S T, Yu S H, Jin J Y, Johnston A M, Zhou W. Temporal and spatial changes in soil available phosphorus in China (1990-2012). Field Crops Res, 2016, 192: 13-20.
[12] 娄梦玉, 薛华龙, 郭彬彬, 汪江涛, 昝志曼, 马超, 郭大勇, 焦念元, 付国占. 施磷水平与冬小麦产量和土壤有效磷含量的关系. 植物营养与肥料学报, 2022, 28: 1582-1593.
Lou M Y, Xue H L, Guo B B, Wang J T, Zan Z M, Ma C, Guo D Y, Jiao N Y, Fu G Z. Relationship of phosphorus application rate, winter wheat yield and soil available phosphorus content. J Plant Nutr Fert, 2022, 28: 1582-1593 (in Chinese with English abstract).
[13] Macdonald G K, Bennett E M, Potter P A, Ramankutty N. Agronomic phosphorus imbalances across the world's croplands. Proc Natl Acad Sci USA, 2011, 108: 3086-3091.
doi: 10.1073/pnas.1010808108 pmid: 21282605
[14] 索炎炎, 张翔, 司贤宗, 孙艳敏, 李亮, 余琼, 余辉. 增效磷肥对花生生长、产量和磷利用率的影响. 中国油料作物学报, 2020, 42: 888-895.
Suo Y Y, Zhang X, Si X Z, Sun Y M, Li L, Yu Q, Yu H. Effect of different synergistic phosphate fertilizer on growth, yield and phosphorus use efficiency of peanut. Chin J Oil Crop Sci, 2020, 42: 888-895 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2019217
[15] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. pp 253-267, 381-384.
Wan S B. China Peanut Cultivation Science. Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 253-267, 381-384 (in Chinese).
[16] 周录英, 李向东, 汤笑, 林英杰, 李宗奉. 氮、 磷、钾肥不同用量对花生生理特性及产量品质的影响. 应用生态学报, 2007, 18: 2468-2474.
Zhou L Y, Li X D, Tang X, Lin Y J, Li Z F. Effects of different application amount of N, P, K fertilizers on physiological characteristics, yield and kernel quality of peanut. Chin J Appl Ecol, 2007, 18: 2468-2474 (in Chinese with English abstract).
[17] Taliman N A, Dong Q, Echigo K, Raboy V, Saneoka H. Effect of phosphorus fertilization on the growth, photosynthesis, nitrogen fixation, mineral accumulation, seed yield, and sed quality of a soybean low-phytate line. Plants, 2019, 8: 119.
[18] 索炎炎, 张翔, 司贤宗, 余琼, 毛家伟, 李亮, 王亚宁, 余辉. 磷锌配施对花生生理特性、产量及品质的影响. 中国土壤与肥料, 2018, (2): 96-102.
Suo Y Y, Zhang X, Si X Z, Yu Q, Mao J W, Li L, Wang Y N, Yu H. The combined effects of phosphorus and zinc on physiological characteristics, yield and quality of peanut plants. Soil Fert Sci China, 2018, (2): 96-102 (in Chinese with English abstract).
[19] 于天一, 李晓亮, 路亚, 孙学武, 郑永美, 吴正锋, 沈浦, 王才斌. 磷对花生氮素吸收和利用的影响. 作物学报, 2019, 45: 912-921.
doi: 10.3724/SP.J.1006.2019.84107
Yu T Y, Li X L, Lu Y, Sun X W, Zheng Y M, Wu Z F, Shen P, Wang C B. Effect of phosphorus (P) on nitrogen (N) uptake and utilization in peanut. Acta Agron Sin, 2019, 45: 912-921 (in Chinese with English abstract).
[20] 王月福, 徐亮, 赵长星, 王铭伦. 施磷对花生积累氮素来源和产量的影响. 土壤通报, 2012, 43: 444-450.
Wang Y F, Xu L, Zhao C X, Wang M L. Effects of phosphorus application on nitrogen accumulation sources and yield of peanut. Chin J Soil Sci, 2012, 43: 444-450 (in Chinese with English abstract).
[21] 王丹丹, 李岚涛, 韩本高, 张倩, 盛开, 王宜伦. 养分专家系统推荐施肥对夏玉米生理特性及产量的影响. 农业资源与环境学报, 2022, 39: 107-117.
Wang D D, Li L T, Han B G, Zhang Q, Sheng K, Wang Y L. Effects of nutrient expert recommended fertilization on the physiological characteristics and yield of summer maize. J Agric Res Environ, 2022, 39: 107-117 (in Chinese with English abstract).
[22] 于春阳, 王长发, 邵晓蕾. 冷型花生光合生理特性研究. 西北农业学报, 2010, 19(5): 94-99.
Yu C Y, Wang C F, Shao X L. Study on the photosynthetic characteristics of cold type peanuts. Southeast China J Agric Sci, 2010, 19(5): 94-99 (in Chinese with English abstract).
[23] Guo J X, Tian G L, Zhou Y, Wang M, Ling N, Shen Q R, Guo S W. valuation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Res, 2016, 196: 463-472.
[24] 任学敏, 朱雅, 王小立, 王长发. 花生产量性状与冠层温度的关系. 西北农林科技大学学报(自然科学版), 2014, 42(12): 39-45.
Ren X M, Zhu Y, Wang X L, Wang C F. Relationships between yield characteristics and canopy temperature of peanut. J Northwest A&F Univ (Nat Sci Edn), 2014, 42(12): 39-45 (in Chinese with English abstract).
[25] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 30-33.
Bao S D. Soil Agrochemical Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 30-33 (in Chinese).
[26] 丁红, 张智猛, 戴良香, 杨吉顺, 慈敦伟, 秦斐斐, 宋文武, 万书波. 水氮互作对花生根系生长及产量的影响. 中国农业科学, 2015, 48: 872-881.
doi: 10.3864/j.issn.0578-1752.2015.05.05
Ding H, Zhang Z M, Dai L X, Yang J S, Ci D W, Qin F F, Song W W, Wan S B. Effects of water and nitrogen interaction on peanut root growth and yield. Sci Agric Sin, 2015, 48: 872-881 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.05.05
[27] 崔顺立, 何美敬, 侯名语, 杨鑫雷, 穆国俊, 刘立峰. 利用GGE双标图分析花生品质性状的基因型-环境互作. 中国油料作物学报, 2021, 43: 617-626.
Cui S L, He M J, Hou M Y, Yang X L, Mu G J, Liu L F. Genotype × environment interactions for the quality traits of peanut varieties based on GGE biplot analysis. Chin J Oil Crop Sci, 2021, 43: 617-626 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2021039
[28] 刘娜, 谢畅, 黄海云, 姚瑞, 徐爽, 宋海玲, 于海秋, 赵新华, 王婧, 蒋春姬, 王晓光. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响. 中国农业科学, 2023, 56: 635-648.
doi: 10.3864/j.issn.0578-1752.2023.04.004
Liu N, Xie C, Huang H Y, Yao R, Xu S, Song H L, Yu H Q, Zhao X H, Wang J, Jiang C J, Wang X G. Effects of potassium application on root and nodule characteristics, nutrient uptake and yield of peanut. Sci Agric Sin, 2023, 56: 635-648 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.04.004
[29] Yin S, Li P, Xu Y, Xue L, Hao D, Liu J, Yang T, Yang Z, Xu C. Logistic model-based genetic analysis for kernel filling in a maize RIL population. Euphytica, 2018, 214: 86.
[30] 贺佳, 刘冰峰, 李军. 不同生育时期冬小麦FPAR高光谱遥感监测模型研究. 农业机械学报, 2015, 46(2): 261-269.
He J, Liu B F, Li J. FPAR monitoring model of winter wheat based on hyperspectral reflectance at different growth stages. Trans CSAM, 2015, 46(2): 261-269 (in Chinese with English abstract).
[31] Vance C P, Claudia U S, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2010, 157: 423-447.
[32] Kumari K, Samantaray S, Dinabandhu S, Tripathy B. Nitrogen, phosphorus and high CO2 modulate photosynthesis, biomass and lipid production in the green alga Chlorella vulgaris. Photosynth Res, 2021, 148: 17-32.
[33] Nasr E M, Inoue K, Nguyen K H, Chu H D, Watanabe Y, Kanatani A, Burritt D J, Mochida K, Tran L P. Phosphate or nitrate imbalance induces stronger molecular responses than combined nutrient deprivation in roots and leaves of chickpea plants. Plant Cell Environ, 2021, 44: 574-597.
[34] 张铎, 李岚涛, 林迪, 郑龙辉, 耿赛男, 石纹碹, 盛开, 苗玉红, 王宜伦. 施磷水平对菊芋块茎产量、品质、植株生理特性与磷利用率的影响. 草业学报, 2022, 31(6): 139-149.
doi: 10.11686/cyxb2021408
Zhang D, Li L T, Lin D, Zheng L H, Geng S N, Shi W X, Sheng K, Miao Y H, Wang Y L. Effects of P fertilization rate on tuber yield, quality, plant physiological attributes and P use efficiency of Helianthus tuberosus. Acta Pratac Sin, 2022, 31(6): 139-149 (in Chinese with English abstract).
[35] 张微微, 周怀平, 黄绍敏, 杨军, 刘树堂, 马俊永, 张淑香. 长期不同施肥模式下碱性土有效磷对磷盈亏的响应. 植物营养与肥料学报, 2021, 27: 263-274.
Zhang W W, Zhou H P, Huang S M, Yang J, Liu S T, Ma J Y, Zhang S X. Response of alkaline soil Olsen-P to phosphorous budget under different long-term fertilization treatments. J Plant Nutr Fert, 2021, 27: 263-274 (in Chinese with English abstract).
[36] 曹立为, 郭晓双, 龚振平, 马春梅. 磷素营养变化对大豆磷素积累及产量和品质的影响. 大豆科学, 2015, 34: 458-462.
Cao L W, Guo X S, Gong Z P, Ma C M. Changes of phosphorus nutrition on P accumulation, yield and quality of soybean. Soybean Sci, 2015, 34: 458-462 (in Chinese with English abstract).
[37] Liang Z Y, Soranno P A, Wagner T. The role of phosphorus and nitrogen on chlorophyll a: evidence from hundreds of lakes. Water Res, 2020, 185: 116236.
[38] 郑亚萍, 陈殿绪, 信彩云, 刘俊华, 王才斌, 孙学武, 万书波, 冯昊, 吴正锋, 郑永美. 施磷水平对花生叶源生理特性的影响. 核农学报, 2014, 28: 727-731.
doi: 10.11869/j.issn.100-8551.2014.04.0727
Zheng Y P, Chen D X, Xin C Y, Liu J H, Wang C B, Sun X W, Wan S B, Feng H, Wu Z F, Zheng Y M. Effects of phosphorus application rate on physiology parameters of leaf source in peanut. J Nucl Agric Sci, 2014, 28: 727-731 (in Chinese with English abstract).
[39] Li R F, Zhang G Q, Liu G Z, Wang K R, Xie R Z, Hou P, Ming B, Wang Z G, Li S K. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food Energy Secur, 2021, 10: e312.
[40] Liu G, Yang Y, Liu W, Guo X, Li S. Optimized canopy structure improves maize grain yield and resource use efficiency. Food Energy Secur, 2022, 11: e375.
[41] Lo T H, Rudnick D R, DeJonge K C, Bai G, Nakabuye H N, Katimbo A, Ge Y, Franz T E, Qiao X, Heeren D M. Differences in soil water changes and canopy temperature under varying water × nitrogen sufficiency for maize. Irrig Sci, 2020, 38: 519-534.
[42] Dannowski M, Block A. Fractal geometry and root system structures of heterogeneous plant communities. Plant Soil, 2005, 272: 61-76.
[43] 王启柏, 张高英, 万勇善, 李向东. 花生根系在土壤中垂直分布特性的研究. 中国油料, 1995, (4): 18-22.
Wang Q B, Zhang G Y, Wan Y S, Li X D. Studies on distribution characteristics of root system in peanut along soil profile. Chin J Oil Crop Sci, 1995, (4): 18-22 (in Chinese with English abstract).
[44] 郑亚萍, 王春晓, 郑祖林, 王鹏, 冯昊, 郑永美, 于天一, 王才斌. 磷对花生根系形态特征的影响. 中国油料作物学报, 2019, 41: 622-628.
doi: 10.7505/j.issn.1007-9084.2019.04.017
Zheng Y P, Wang C X, Zheng Z L, Wang P, Feng H, Zheng Y M, Yu T Y, Wang C B. Effect of phosphorus (P) on root morphology characteristics of peanut. Chin J Oil Crop Sci, 2019, 41: 622-628 (in Chinese with English abstract).
[45] 王建国, 耿耘, 杨佃卿, 郭峰, 杨莎, 李新国, 唐朝辉, 张佳蕾, 万书波. 单粒精播对中、高产旱地花生群体质量及养分利用的影响. 作物学报, 2022, 48: 2866-2878.
doi: 10.3724/SP.J.1006.2022.14212
Wang J G, Geng Y, Yang D Q, Guo F, Yang S, Li X G, Tang Z H, Zhang J L, Wan S B. Effects of single seed precision sowing on population quality, nutrient utilization of peanut in medium and high yield dryland. Acta Agron Sin, 2022, 48: 2866-2878 (in Chinese with English abstract).
[46] 杨欢, 赵浚宇, 施凯, 施燕凌, 陆大雷, 陆卫平. 磷素施用对鲜食糯玉米养分积累分配和产量的影响. 玉米科学, 2016, 24: 148-155.
Yang H, Zhao J Y, Shi K, Shi Y L, Lu D L, Lu W P. Effects of phosphorus application on nutrient uptake and distribution and grain yield of fresh waxy maize. J Maize Sci, 2016, 24: 148-155 (in Chinese with English abstract).
[47] 侯云鹏, 王立春, 李前, 尹彩侠, 秦裕波, 王蒙, 王永军, 孔丽丽. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的磷肥适用量研究. 中国农业科学, 2019, 52: 3573-3584.
doi: 10.3864/j.issn.0578-1752.2019.20.008
Hou Y P, Wang L C, Li Q, Yin C X, Qin Y B, Wang M, Wang Y J, Kong L L. Research on optimum phosphorus fertilizer rate based on maize yield and phosphorus balance in soil under film mulched drip irrigation conditions. Sci Agric Sin, 2019, 52: 3573-3584 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.20.008
[1] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[2] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[3] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[4] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[5] 闫子恒, 王先领, 邵东李, 郜耿东, 宁宁, 贾才华, 蒯婕, 汪波, 徐正华, 王晶, 赵杰, 周广生. 油菜籽粒叶绿素降解速率对菜籽油关键品质的影响[J]. 作物学报, 2024, 50(7): 1818-1828.
[6] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[7] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[8] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[9] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[10] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[11] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[12] 宁宁, 余新颖, 秦梦倩, 娄洪祥, 王宗铠, 王春云, 贾才华, 徐正华, 王晶, 蒯婕, 汪波, 赵杰, 周广生. 关键栽培措施对菜籽油综合品质的影响[J]. 作物学报, 2024, 50(6): 1554-1567.
[13] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[14] 杨春菊, 唐道彬, 张凯, 杜康, 黄红, 乔欢欢, 王季春, 吕长文. 氮钾减量配施对甘薯产量和品质的影响[J]. 作物学报, 2024, 50(5): 1341-1350.
[15] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[4] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[7] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .
[8] 陈吉宝;景蕊莲;毛新国;昌小平;王述民. 普通菜豆PvP5CS2基因对逆境胁迫的应答[J]. 作物学报, 2008, 34(07): 1121 -1127 .
[9] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[10] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .