欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1829-1840.doi: 10.3724/SP.J.1006.2024.34190

• 耕作栽培·生理生化 • 上一篇    下一篇

长江流域冬油菜需水量及水分盈亏特征分析

谢雄泽*(), 谢捷, 褚乾梅, 尹羽丰, 余小红, 王盾, 冯鹏   

  1. 襄阳市农业科学院, 湖北襄阳 441057
  • 收稿日期:2023-11-14 接受日期:2024-04-01 出版日期:2024-07-12 网络出版日期:2024-04-18
  • 通讯作者: *谢雄泽, E-mail: 2446668888@msn.cn
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12)

Analysis of water requirement and water surplus/deficit characteristics of winter rapeseed in Yangtze River Basin

XIE Xiong-Ze*(), XIE Jie, CHU Qian-Mei, YIN Yu-Feng, YU Xiao-Hong, WANG Dun, FENG Peng   

  1. Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
  • Received:2023-11-14 Accepted:2024-04-01 Published:2024-07-12 Published online:2024-04-18
  • Contact: *E-mail: 2446668888@msn.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-12)

摘要:

基于长江流域冬油菜优势产区11个省、2个直辖市共计129个城市近20年的逐日气象数据, 采用经验公式、FAO推荐的改进HS数据模型和作物系数分别计算各城市冬油菜全生育期及各生育阶段有效降水量及需水量, 并对水分盈亏指数及多年旱涝灾害发生频率进行分析。结果表明, 长江流域冬油菜在各生育阶段有效降水量均呈由东南向西北递减的带状分布特征, 其中鄱阳、洞庭两湖平原及杭嘉湖平原有效降水量充沛, 长江中下游干流南北沿岸地区有效降水量适中, 秦岭—淮河一线、四川盆地及云贵高原有效降水量偏少; 各生育阶段的需水量呈现西南高、东南中、西北低的分布特征, 其中云南省需水量最高, 长江中下游平原需水量适中, 秦岭—淮河一线、四川盆地、贵州省需水量最低; 多年水分盈亏空间分布特征表现为长江中下游干流南北沿岸地区水分供应适中, 秦岭—淮河一线、四川盆地、云贵高原水分供应不足; 水分盈亏年代演变特征表现为苗期长江上游旱灾多发、涝灾偶发, 中下游涝灾多发、旱灾偶发, 其他生育阶段长江上游旱灾频发, 中下游旱灾多发、涝灾偶发的特征。为有效保障长江流域冬油菜各生育阶段的适当水分供应, 在苗期阶段, 长江上游地区应注意适量灌溉、中下游地区应注意及时排涝; 其他生育阶段, 长江上游地区应注意充分灌溉, 中下游干流北岸城市应注意适时灌溉, 中下游干流南岸城市应注意适时排涝, 以促进长江流域冬油菜高产稳产, 保障国内油菜籽原料稳定供应。

关键词: 长江流域, 冬油菜, 有效降水量, 需水量, 变化趋势, 水分盈亏

Abstract:

Based on the daily meteorological data of 129 cities in 11 provinces and 2 municipalities in the Yangtze River Basin for nearly 20 years, the effective precipitation and water requirement of winter rapeseed during the whole growth period and various growth stages were calculated by empirical formulas, the improved HS data model recommended by Food and Agriculture Organization (FAO), and crop coefficients. Furthermore, the water surplus/deficit index and the frequency of droughts and waterlogging disasters over multiple years were analyzed. The results indicated that the effective precipitation during various growth stages of winter rapeseed in the Yangtze River Basin had a decreasing belt-like distribution from southeast to northwest. Specifically, the plains around Poyang Lake and Dongting Lake, as well as Hangzhou-Jiaxing-Huzhou Plain, had abundant effective precipitation, while the effective precipitation in the coastal areas of the middle and lower reaches of the Yangtze River mainstream was moderate. Conversely, the effective precipitation was relatively low along the line from Qinling Mountains to Huaihe River, in Sichuan Basin, and on Yungui Plateau. The water requirement during various growth stages exhibits a distribution pattern of high in the southwest, moderate in the southeast, and low in the northwest. Among them, the water requirement was the highest in Yunnan Province, moderate in the plains of the middle and lower reaches of the Yangtze River, and the lowest in the areas along the line from Qinling Mountains to Huaihe River, in Sichuan Basin and Guizhou province. The spatial distribution characteristics of water surplus/deficit over multiple years indicated moderate water supply in the coastal areas of the middle and lower reaches of Yangtze River mainstream, insufficient water supply along the line from Qinling Mountains to Huaihe River, in Sichuan Basin, and on Yungui Plateau. The temporal evolution characteristics of water surplus/deficit indicated that droughts are more frequent at seedling stage in the upper reaches of the Yangtze River, with the occasional occurrences of waterlogging disasters, while waterlogging disasters were more frequent in the middle and lower reaches, with the occasional occurrences of droughts. At other growth stages, droughts were frequent in the upper reaches, while both droughts and waterlogging disasters were frequent in the middle and lower reaches. To ensure appropriate water supply at various growth stages of winter rapeseed in Yangtze River Basin, it was recommended to focus on adequate irrigation in the upper reaches at seedling stage and timely drainage in the middle and lower reaches. At other growth stages, sufficient irrigation should be emphasized in the upper reaches, timely irrigation in the cities on the northern bank of the mainstream in the middle and lower reaches, and timely drainage in the cities on the southern bank of the mainstream in the middle and lower reaches, aiming to promote high and stable yields of winter rapeseed in Yangtze River Basin and ensure a stable supply of domestic rapeseed raw materials.

Key words: Yangtze River Basin, winter rapeseed, effective precipitation, water requirement, trend of change, water surplus/ deficit

图1

研究区概况图 中国标准地图: 审图号GS (2019) 1822号, 底图边界无修改。"

表1

长江流域冬油菜优势产区"

生态区
Ecoregion
省(直辖市)
Province (Municipality)
市(州)
City (Autonomous)
长江上游
Upper reaches
云南省Yunnan 保山市, 楚雄州, 大理州, 德宏州, 迪庆州, 红河州, 昆明市, 丽江市, 临沧市, 怒江州, 普洱市, 曲靖市, 文山州, 玉溪市, 昭通市
Baoshan, Chuxiong, Dali, Dehong, Diqing, Honghe, Kunming, Lijiang, Lincang, Nujiang, Puer, Qujing, Wenshan, Yuxi, Zhaotong
四川省Sichuan 阿坝州, 巴中市, 成都市, 达州市, 德阳市, 甘孜州, 广安市, 广元市, 乐山市, 泸州市, 眉山市, 绵阳市, 南充市, 内江市, 攀枝花市, 遂宁市, 雅安市, 宜宾市, 资阳市, 自贡市
Aba, Bazhong, Chengdu, Dazhou, Deyang, Ganzi, Guangan, Guangyuan, Leshan, Luzhou, Meishan, Mianyang, Nanchong, Neijiang, Panzhihua, Suining, Ya’an, Yibin, Ziyang, Zigong
重庆市Chongqing 重庆市Chongqing
贵州省Guizhou 安顺市, 毕节市, 贵阳市, 六盘水市, 黔东南州, 黔南州, 黔西南州, 铜仁市, 遵义市
Anshun, Bijie, Guiyang, Liupanshui, Qiandongnan, Qiannan, Qianxinan, Tongren, Zunyi
陕西省Shaanxi 汉中市Hanzhong
长江中游
Middle reaches
湖北省Hubei 鄂州市, 恩施自治州, 黄冈市, 黄石市, 荆门市, 荆州市, 潜江市, 十堰市, 随州市, 天门市, 武汉市, 仙桃市, 咸宁市, 襄阳市, 孝感市, 宜昌市
Ezhou, Enshi, Huanggang, Huangshi, Jingmen, Jingzhou, Qianjiang, Shiyan, Suizhou, Tianmen, Wuhan, Xiantao, Xianning, Xiangyang, Xiaogan, Yichang
湖南省Hunan 常德市, 郴州市, 衡阳市, 怀化市, 娄底市, 邵阳市, 湘潭市, 湘西州, 益阳市, 永州市, 岳阳市, 张家界市, 长沙市, 株洲市
Changde, Chenzhou, Hengyang, Huaihua, Loudi, Shaoyang, Xiangtan, Xiangxi, Yiyang, Yongzhou, Yueyang, Zhangjiajie, Changsha, Zhuzhou
河南省Henan 信阳市Xinyang
江西省Jiangxi 抚州市, 赣州市, 吉安市, 景德镇市, 九江市, 南昌市, 萍乡市, 上饶市, 新余市, 宜春市,
鹰潭市
Fuzhou, Ganzhou, Ji’an, Jingdezhen, Jiujiang, Nanchang, Pingxiang, Shanrao, Xinyu, Yichun, Yingtan
安徽省Anhui 安庆市, 蚌埠市, 亳州市, 池州市, 滁州市, 阜阳市, 合肥市, 淮北市, 淮南市, 黄山市, 六安市, 马鞍山市, 宿州市, 铜陵市, 芜湖市, 宣城市
Anqing, Bengbu, Bozhou, Chizhou, Chuzhou, Fuyang, Hefei, Huaibei, Huainan, Huangshan, Lu’an, Ma’anshan, Suzhou, Tongling, Wuhu, Xuancheng
长江下游
Lower reaches
江苏省Jiangsu 常州市, 淮安市, 连云港市, 南京市, 南通市, 苏州市, 宿迁市, 泰州市, 无锡市, 徐州市,
盐城市, 扬州市, 镇江市
Changzhou, Huai’an, Lianyungang, Nanjing, Nantong, Suzhou, Suqian, Taizhou, Wuxi, Xuzhou, Yangcheng, Yangzhou, Zhenjiang
上海市Shanghai 上海市Shanghai
浙江省Zhejiang 杭州市, 湖州市, 嘉兴市, 金华市, 丽水市, 宁波市, 衢州市, 绍兴市, 台州市, 温州市, 舟山市
Hangzhou, Huzhou, Jiaxing, Jinhua, Lishui, Ningbo, Quzhou, Shaoxing, Taizhou, Wenzhou, Zhoushan

图2

冬油菜全生育期作物系数变化 不同生态区各生育时期(M1/D1、M2/D2、M3/D3、M4/D4、M5/D5、M6/D6、M7/D7)如下, 云贵高原亚区: 10/10、11/10、12/25、2/5、3/1、3/30、4/30; 四川盆地亚区: 10/10、11/10、12/25、2/10、3/10、4/10、5/10; 长江中游亚区: 10/10、11/10、12/25、2/10、3/10、4/10、5/10; 长江下游亚区: 10/25、11/15、12/25、2/10、3/10、4/10、5/10。"

图3

不同生育期有效降水量空间分布图 (a) 苗期; (b) 越冬期; (c) 蕾薹期; (d) 花期; (e) 角果期; (f) 全生育期。中国标准地图: 审图号GS (2019) 1822号, 底图边界无修改。"

图4

不同生育期需水量空间分布图 (a) 苗期; (b) 越冬期; (c) 蕾薹期; (d) 花期; (e) 角果期; (f) 全生育期。中国标准地图: 审图号GS (2019) 1822号, 底图边界无修改。"

图5

不同生育期水分盈亏指数空间分布图 (a) 苗期; (b) 越冬期; (c) 蕾薹期; (d) 花期; (e) 角果期; (f) 全生育期。中国标准地图: 审图号GS (2019) 1822号, 底图边界无修改。"

图6

长江流域冬油菜水分盈亏指数年代演变特征 图中各省辖地级市自下而上的顺序与表1中所列城市的顺序相对应。"

表2

长江流域冬油菜区旱、涝灾害发生频率统计表"

生育阶段
Growth stage
灾害情况
Disaster situation
长江上游Upper reaches 长江中游Middle reaches 长江下游Lower reaches
云南
Yunnan
四川
Sichuan
重庆
Chongqing
贵州
Guizhou
陕西
Shaanxi
湖北
Hubei
湖南
Hunan
河南
Hunan
江西
Jiangxi
安徽
Anhui
江苏
Jiangsu
上海
Shanghai
浙江
Zhejiang
苗期
Seedling
旱Drought 58 50 5 25 25 7 6 15 5 15 22 10 3
无旱无涝Suitable 40 46 65 63 65 62 44 70 45 58 55 60 53
涝Waterlogging 2 5 30 12 10 31 51 15 50 27 24 30 45
越冬期Overwintering 旱Drought 94 100 100 93 100 59 30 55 18 41 43 30 18
无旱无涝Suitable 6 0 0 7 0 38 62 45 59 53 50 55 63
涝Waterlogging 0 0 0 0 0 3 8 0 23 7 7 15 20
蕾薹期
Budding
旱Drought 96 99 100 91 100 45 23 55 12 48 58 35 23
无旱无涝Suitable 4 1 0 9 0 46 64 45 50 41 37 55 47
涝Waterlogging 1 0 0 0 0 9 13 0 38 11 5 10 30
花期
Flowering
旱Drought 97 95 85 83 90 55 20 80 8 64 86 80 35
无旱无涝Suitable 3 5 15 17 10 42 78 20 80 36 14 20 65
涝Waterlogging 0 0 0 0 0 3 3 0 12 0 0 0 0
角果期
Ripening
旱Drought 91 56 10 41 65 28 8 50 3 48 68 80 24
无旱无涝Suitable 8 44 90 57 35 68 74 50 67 49 32 20 68
涝Waterlogging 0 0 0 2 0 5 18 0 30 3 0 0 9
全生育期
Whole growth period
旱Drought 98 94 45 68 100 22 1 40 0 34 46 10 2
无旱无涝Suitable 2 6 55 32 0 78 97 60 77 66 54 90 95
涝Waterlogging 0 0 0 0 0 0 3 0 23 0 0 0 4
[1] 何俊欧, 凌霄霞, 张建设, 张萌, 马迪, 孙梦, 刘永忠, 展茗, 赵明. 近35年湖北省低丘平原区玉米需水量及旱涝时空变化. 作物学报, 2017, 43: 1536-1547.
He J O, Ling X X, Zhang J S, Zhang M, Ma D, Sun M, Liu Y Z, Zhan M, Zhao M. Temporal-spatial variation of crop water requirement and frequency of drought and waterlogging disasters during maize growth stages in low hilly plain area of Hubei province in last 35 years. Acta Agron Sin, 2017, 43: 1536-1547 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01536
[2] 高晓丽, 徐俊增, 杨士红, 彭世彰, 王莹, 张和喜. 贵州地区主要作物需水规律与作物系数的研究. 中国农村水利水电, 2015, (1): 11-14.
Gao X L, Xu J Z, Yang S H, Peng S Z, Wang Y, Zhang H X. Water requirement pattern and crop coefficient of main crops in Guizhou province. Chin Rural Water Hydropower, 2015, (1): 11-14 (in Chinese with English abstract).
[3] Xu Q Q, Sami A, Zhang H, Jin X Z, Zheng W Y, Zhu Z Y, Wu L L, Lei Y H, Chen Z P, Li Y, Yu Y, Zhang F G, Zhou K J, Zhu Z H. Combine influence of low temperature and drought on different varieties of rapeseed (Brassica napus L.). South Afr J Bot, 2022, 147: 400-414.
[4] Tian C, Zhou X, Fahmy E A, Ding Z L, Zhran M A, Liu Q, Peng J W, Zhang Z H, Song H X, Guan C Y, Kheir A M S, Eissa M A. Balanced fertilization under different plant densities for winter oilseed rape (Brassica napus L.) grown on paddy soils in Southern China. Ind Crops Prod, 2020, 151: 112413.
[5] Zhang S J, Liao X, Zhang C L, Xu H J. Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Ind Crops Prod, 2012, 40: 27-32.
[6] Faraji A, Latifi N, Soltani A, Rad A H. Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation. Agric Water Manag, 2008, 96: 132-140.
[7] Zajac T, Klimekkopyra A, Oleksy A, Lorenckozik A, Ratajczak K. Analysis of yield and plant traits of oilseed rape (Brassica napus L.) cultivated in temperate region in light of the possibilities of sowing in arid areas. Acta Agrobot, 2016, 69: 1696.
[8] 殷艳, 廖星, 余波, 王汉中. 我国油菜生产区域布局演变和成因分析. 中国油料作物学报, 2010, 32: 147-151.
Yin Y, Liao X, Yu B, Wang H Z. Regional distribution evolvement and development tendency of Chinese rapeseed production. Chin J Oil Crop Sci, 2010, 32: 147-151 (in Chinese with English abstract).
[9] 赵曼利, 戴志刚, 顾炽明, 胡文诗, 李银水, 秦璐, 鲁明星, 廖星. 油菜用地养地的作物优势及其在冬闲田开发中的应用潜力. 中国油料作物学报, 2022, 44: 1139-1147.
doi: 10.19802/j.issn.1007-9084.2022221
Zhao M L, Dai Z G, Gu C M, Hu W S, Li Y S, Qin L, Lu M X, Liao X. Advantage of oilseed rape (Brassica napus L.) in land use and conservation and its application for winter fallow field. Chin J Oil Crop Sci, 2022, 44: 1139-1147 (in Chinese with English abstract).
[10] 周明圆, 刘君龙, 许继军, 洪晓峰, 袁喆. 近48年长江源区降水时空变化特征. 科学技术与工程, 2020, 20: 474-480.
Zhou M Y, Liu J L, Xu J J, Hong X F, Yuan Z. Spatial and temporal characteristics of precipitation in the source area of the Yangtze River in recent 48 years. Sci Technol Eng, 2020, 20: 474-480 (in Chinese with English abstract).
[11] 孙惠惠. 长江流域极端降水时空分布特征. 湖南师范大学硕士学位论文, 湖南长沙, 2019.
Sun H H. Spatial and Temporal Distribution Characteristics of Extreme Precipitation in the Yangtze River Basin. MS Thesis of Hunan Normal University, Changsha, Hunan, China, 2019(in Chinese with English abstract).
[12] 曾波, 王钦. 我国南方地区50年冬季降水和相对湿度特征分析. 长江流域资源与环境, 2018, 27: 828-839.
Zeng B, Wang Q. Analysis of precipitation and relative humidity in winter in South of China in the past 50 years. Resour Environ Yangtze Basin, 2018, 27: 828-839 (in Chinese with English abstract).
[13] Allen R, Pereira L, Raes D, Smith M, Allen R G, Pereira L S Martin S. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation Drainage Paper 56. FAO, 1998, 56: 1-15.
[14] Paredes P, Pereira L S, Almorox J, Darouich H. Reference grass evapotranspiration with reduced data sets: parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves- Samani equation using local climatic variables. Agric Water Manag, 2020, 24: 614-636.
[15] 孙朋, 谢新洲, 刘娜, 苏海民. 南北气候过渡区主要作物有效降水量、需水量及缺水量特征分析. 沈阳大学学报(自然科学版), 2019, 31: 474-482.
Sun P, Xie X Z, Liu N, Su H M. Analysis on characteristics of effective precipitation, water demand and water shortage of main crops in North and South climate transition zone. J Shenyang Univ (Nat Sci), 2019, 31: 474-482 (in Chinese with English abstract).
[16] 刘战东, 段爱旺, 肖俊夫, 刘祖贵. 旱作物生育期有效降水量计算模式研究进展. 灌溉排水学报, 2007, 26(3): 27-30.
Liu Z D, Duan A W, Xiao J F, Liu Z G. Research progress on the calculation model of effective precipitation during the growth period of dry crops. J Irrig Drain, 2007, 26(3): 27-30 (in Chinese with English abstract).
[17] 赵晗, 吴迪, 刘玉春, 徐锐. 基于多因素影响的区域旱作物有效降水量估算. 灌溉排水学报, 2019, 38(7): 101-109.
Zhao H, Wu D, Liu Y C, Xu R. Multi-factor analysis of the effective precipitation for crops in semi-arid region. J Irrig Drain, 2019, 38(7): 101-109 (in Chinese with English abstract).
[18] Ammar M E, Davies E G R. On the accuracy of crop production and water requirement calculations: process-based crop modeling at daily, semi-weekly, and weekly time steps for integrated assessments. J Environ Manag, 2019, 238: 460-472.
[19] 康绍忠, 蔡焕杰. 农业水管理学. 北京: 中国农业出版社, 1996. pp 158-161.
Kang S Z, Cai H J. Agricultural Water Management. Beijing: China Agriculture Press, 1996. pp 158-161 (in Chinese).
[20] Almorox J, Quej V H, Martí P. Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Kppen climate classes. J Hydrol, 2015, 528: 514-522.
[21] 孙爽, 杨晓光, 李克南, 赵锦, 叶清, 解文娟, 董朝阳, 刘欢. 中国冬小麦需水量时空特征分析. 农业工程学报, 2013, 29(15): 72-82.
Sun S, Yang X G, Li K N, Zhao J, Ye Q, Xie W J, Dong C Y, Liu H. Spatiotemporal characteristics of winter wheat water demand in China. Trans CSAE, 2013, 29(15): 72-82 (in Chinese with English abstract).
[22] 张浩, 马晓群, 王晓东. 安徽省冬小麦水分盈亏特征及其对产量的影响. 气象, 2015, 41: 899-906.
Zhang H, Ma X Q, Wang X D. Water budget characteristics of winter wheat and its impact on the yield in Anhui province. Meteorol Mon, 2015, 41: 899-906 (in Chinese with English abstract).
[23] 周浩, 金平, 夏卫生, 雷国平. 三江平原挠力河流域主要作物水分盈亏时空变化特征. 农业工程学报, 2020, 36(14): 159-166.
Zhou H, Jin P, Xia W S, Lei G P. Spatiotemporal variation characteristics of water surplus and deficit of major crops in the Naoli River Basin of the Sanjiang Plain. Trans CSAE, 2020, 36(14): 159-166 (in Chinese with English abstract).
[24] 王君勤, 叶生进, 樊毅. 中国不同气候区参考作物蒸散量计算模型适用性评价. 节水灌溉, 2022, (3): 82-91.
Wang J Q, Ye S J, Fan Y. Applicability evaluation of reference crop evapotranspiration calculation models in different climatic regions of China. Water Saving Irrig, 2022, (3): 82-91 (in Chinese with English abstract).
[25] 李隆安, 邱让建, 刘春伟. 基于气温估算参考作物蒸散量方法的对比与改进. 农业工程学报, 2021, 37(24): 123-130.
Li L A, Qiu R J, Liu C W. Comparison and improvement of estimation models for the reference evapotranspiration using temperature data. Trans CSAE, 2021, 37(24): 123-130 (in Chinese with English abstract).
[26] 李隆安. 基于气温估算参考作物蒸散量方法的评估与改进. 南京信息工程大学硕士学位论文, 江苏南京, 2023.
Li L A. Comparison and Improvement of Estimation Models for the Reference Evapotranspiration Using Temperature Data. MS Thesis of Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China, 2023 (in Chinese with English abstract).
[27] 刘小飞, 王景雷, 刘祖贵, 宋妮, 方文松. 基于日天气预报数据估算小麦生长季参考作物蒸散量. 中国农业气象, 2022, 43(3): 194-203.
Liu X F, Wang J L, Liu Z G, Song N, Fang W S. Daily weather forecast-based reference crop evapotranspiration estimation in wheat growing season. Chin J Agrometeorol, 2022, 43(3): 194-203 (in Chinese with English abstract).
[28] 王守荣. 全球水循环与水资源. 北京: 气象出版社, 2003. pp 97-101.
Wang S R. The Global Water Cycle and Water Resources. Beijing: China Meteorological Press, 2003. pp 97-101 (in Chinese).
[29] 陈婷, 敖天其, 黎小东. 长江流域近七十年空中水资源的时空变化特征. 中国农村水利水电, 2019, (5): 6-11.
Chen T, Ao T Q, Li X D. Temporal and spatial variation of air water resources in the Yangtze River basin in recent seventy years. Chin Rural Water Hydropower, 2019, (5): 6-11 (in Chinese with English abstract).
[1] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[2] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[3] 何旭刚, 买买提·沙吾提, 夏梓洋, 师君银, 贺小宁, 盛艳芳, 李荣鹏. 1960—2020年新疆主要作物需水量时空特征分析[J]. 作物学报, 2023, 49(12): 3352-3363.
[4] 宁宁, 莫娇, 胡冰, 李大双, 娄洪祥, 王春云, 白晨阳, 蒯婕, 汪波, 王晶, 徐正华, 李晓华, 贾才华, 周广生. 长江流域不同生态区油菜籽关键品质比较研究[J]. 作物学报, 2023, 49(12): 3315-3327.
[5] 马骊, 白静, 赵玉红, 孙柏林, 侯献飞, 方彦, 王旺田, 蒲媛媛, 刘丽君, 徐佳, 陶肖蕾, 孙万仓, 武军艳. 冷胁迫下甘蓝型冬油菜表达蛋白及BnGSTs基因家族的鉴定与分析[J]. 作物学报, 2023, 49(1): 153-166.
[6] 张佳运, 马淑梅, 余常兵, 王淑彬, 魏亚凤, 杨文钰, 王小春. 长江流域旱地多熟模式水分供需平衡特征与水分生产效益[J]. 作物学报, 2022, 48(11): 2891-2907.
[7] 史梦霞, 张佳笑, 石晓宇, 褚庆全, 陈阜, 雷永登. 近20年河北省几种高耗水作物的水分利用效率分析[J]. 作物学报, 2021, 47(12): 2450-2458.
[8] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[9] 李静,闫金垚,胡文诗,李小坤,丛日环,任涛,鲁剑巍. 氮钾配施对油菜产量及氮素利用的影响[J]. 作物学报, 2019, 45(6): 941-948.
[10] 米超,赵艳宁,刘自刚,陈其鲜,孙万仓,方彦,李学才,武军艳. 白菜型冬油菜RuBisCo蛋白亚基基因rbcLrbcS的克隆及其在干旱胁迫下的表达[J]. 作物学报, 2018, 44(12): 1882-1890.
[11] 方彦,孙万仓,武军艳,刘自刚,董云,米超,马骊,陈奇,何辉立. 北方白菜型冬油菜的膜脂脂肪酸组分和ATPase活性对温度的响应[J]. 作物学报, 2018, 44(01): 95-104.
[12] 何俊欧,凌霄霞,张建设,张萌,马迪,孙梦,刘永忠,展茗,赵明. 近35年湖北省低丘平原区玉米需水量及旱涝时空变化[J]. 作物学报, 2017, 43(10): 1536-1547.
[13] 马骊,袁金海,孙万仓,刘自刚,曾秀存,武军艳,方彦,李学才,陈奇,许耀照,蒲媛媛,刘海卿,杨刚,刘林波. 白菜型冬油菜类甜蛋白的筛选、克隆及其在低温胁迫下的表达[J]. 作物学报, 2017, 43(04): 620-628.
[14] 许耀照,曾秀存,张芬琴,孙佳,孙万仓,武军艳,方彦,刘自刚,孙柏林. 白菜型冬油菜叶片结构和光合特性对冬前低温的响应[J]. 作物学报, 2017, 43(03): 432-441.
[15] 孙万仓,刘海卿,刘自刚,武军艳,李学才,方彦,曾秀存,许耀照,张亚宏,董云. 北方寒旱区白菜型冬油菜安全越冬的临界指标分析[J]. 作物学报, 2016, 42(04): 609-618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[3] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[7] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[8] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[9] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[10] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .