欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 2067-2077.doi: 10.3724/SP.J.1006.2024.34181

• 耕作栽培·生理生化 • 上一篇    下一篇

氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响

刘陈(), 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍()   

  1. 华中农业大学资源与环境学院 / 农业农村部长江中下游耕地保育重点实验室 / 华中农业大学微量元素研究中心, 湖北武汉 430070
  • 收稿日期:2023-11-03 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-24
  • 通讯作者: * 鲁剑巍, E-mail: lunm@mail.hzau.edu.cn
  • 作者简介:E-mail: liu_chen@webmail.hzau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFD1600500);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12);湖北省现代农业产业技术体系项目(HBHZD-ZB-2020-005)

Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields

LIU Chen(), WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei()   

  1. College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs / Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2023-11-03 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-24
  • Contact: * E-mail: lunm@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program Project(2021YFD1600500);China Agriculture Research System of MOF and MARA(CARS-12);China Agriculture Research System of Hubei Province(HBHZD-ZB-2020-005)

摘要:

旱-旱和水-旱轮作是我国长江流域冬油菜的典型种植模式, 氮养分缺乏是油菜产量主要限制因子。利用2016—2023年在湖北省武汉市布置的裂区同田对比定位试验, 探究氮肥用量对不同轮作模式下油菜产量和氮素吸收利用的影响差异, 为科学施氮提供依据。试验设计的主处理为旱地油菜(玉米-油菜)和水田油菜(水稻-油菜) 2种轮作模式, 副处理为4个氮肥用量(0 kg N hm-2、75 kg N hm-2、150 kg N hm-2、225 kg N hm-2), 分析了油菜产量、产量构成因子和氮素积累量等相关指标。7年试验结果表明, 旱地和水田油菜的产量和氮素吸收在不同氮肥投入下的响应存在差异。当不施氮或低施氮(75 kg N hm-2)时, 水田油菜产量显著高于旱地油菜, 分别高出53.9%和20.8%, 地上部氮素积累量分别高出57.8%和18.3%; 当施氮量为150 kg N hm-2时, 2种轮作无显著差异; 在高施氮(225 kg N hm-2)时, 旱地油菜产量和氮素积累量较水田分别增加11.2%和16.0%。旱地油菜的氮肥农学利用效率、贡献率和表观利用率较水田油菜分别平均增加16.5%、20.5%和22.0%, 氮肥对旱地油菜的增产潜力更大, 但水田油菜季土壤基础氮素供应量较旱地高61.5%, 对氮肥的依赖性更小。综上, 增加氮肥用量显著提高了油菜产量和氮素积累, 水田油菜在低氮投入下表现出较高的稳产性, 而旱地油菜在较高氮投入下丰产潜力更高。因此, 在实际生产中应根据不同轮作模式调整油菜施氮量, 旱地油菜可以适当增加氮肥用量以获得高产, 水田油菜要充分利用土壤供氮能力适当控制氮肥用量, 以达到油菜高产高效生产和氮肥高效利用的目的。

关键词: 玉米-油菜轮作, 水稻-油菜轮作, 氮肥用量, 油菜产量, 氮素积累量

Abstract:

Continuous upland and paddy-upland anniversary multiple cropping rotations are typical planting patterns of winter rape in the Yangtze River basin in China, and nitrogen nutrient deficiency is the main limiting factor for rapeseed yield. To provide a basis for scientific nitrogen application, a comparative positioning experiment of split area was conducted in Wuhan City, Hubei Province from 2016 to 2023, and the effects of nitrogen fertilizer application on rapeseed yield and nitrogen uptake and utilization under different rotation patterns was explored. The main treatments of the experimental design were two rotation modes of upland-oilseed rape (maize-oilseed rape rotation) and paddy-oilseed rape (rice-oilseed rape rotation), and the secondary treatments were four nitrogen application rates (0 kg N hm-2, 75 kg N hm-2, 150 kg N hm-2, and 225 kg N hm-2). The related indexes such as rapeseed yield, yield components, and nitrogen absorption were analyzed. The average results of seven-year experiment showed that there were differences in response to the yield and nitrogen uptake of rapeseed in upland and paddy fields under different nitrogen fertilizer inputs. When there was no nitrogen application or low nitrogen application (75 kg N hm-2), the yield of rapeseed in paddy fields was significantly higher than that in upland fields, which was higher by 53.9% and 20.8%, and the nitrogen accumulation was higher by 57.8% and 18.3%, respectively. When the nitrogen application rate was 150 kg N hm-2, there was no significant difference between the two rotations. When the nitrogen application rate reached 225 kg N hm-2, the yield and nitrogen accumulation of rapeseed in dry land were higher by 11.2% and 16.0% than those in paddy fields, respectively. The agronomic utilization efficiency, contribution rate, and apparent utilization rate of nitrogen fertilizer in upland rapeseed were higher on average by 16.5%, 20.5%, and 22.0% than those in paddy field rapeseed, respectively. Nitrogen fertilizer had a greater yield increase effect on upland-rapeseed, but the soil background nitrogen supply in paddy field rapeseed season was 61.5% higher than that in upland, and its dependence on nitrogen fertilizer was less. In conclusion, the increase in nitrogen fertilizer application significantly increased rapeseed yield and nitrogen accumulation. There were differences in the response of rapeseed yield to nitrogen fertilizer between maize-oilseed rape rotation and rice-oilseed rape rotation. Paddy-oilseed rape exhibited higher stability under low nitrogen input, while upland-oilseed rape achieved higher yield under high nitrogen input. Therefore, the nitrogen application rate of rapeseed should be adjusted according to different crop rotation modes in actual production. The nitrogen application rate of upland rapeseed can be appropriately increased to achieve high yield, while the nitrogen application rate of rapeseed in paddy field should be properly controlled by making full use of the nitrogen supply capacity to achieve the high yield and efficient production of rapeseed and efficient utilization of nitrogen fertilizer.

Key words: maize-oilseed rape rotation, rice-oilseed rape rotation, nitrogen fertilizer rate, rapeseed yield, nitrogen accumulation

图1

2016-2023年油菜生长季月平均气温和月降雨量"

表1

不同氮肥用量下的旱地和水田油菜产量"

轮作模式
Rotation
氮肥用量
N fertilizer rate
(kg hm-2)
产量 Yield
2016/2017 2017/2018 2018/2019 2019/2020 2020/2021 2021/2022 2022/2023 平均
Average
旱地-油菜
Upland-oilseed rape
0 373±64 Bd 387±49 Bd 548±54 Bd 493±50 Bd 611±92 Ad 615±93 Bd 597±75 Bd 518±103 Bd
75 1302±221 Bc 1161±98 Bc 1497±239 Bc 1435±67 Ac 1553±74 Ac 1581±75 Bc 1516±93 Bc 1435±152 Bc
150 2555±150 Ab 2393±99 Ab 2399±279 Ab 2183±283 Ab 2258±170 Ab 2061±111 Ab 2031±111 Ab 2269±192 Ab
225 3062±100 Aa 2675±109 Aa 2967±217 Aa 2641±325 Aa 2742±121 Aa 2471±109 Aa 2802±79 Aa 2766±200 Aa
水田-油菜
Paddy-oilseed rape
0 712±116 Aa 769±93 Ac 716±56 Ad 953±70 Ac 695±70 Ad 878±41 Ac 856±97 Ac 797±100 Ad
75 1879±278 Ab 1759±151 Ab 1624±147 Ac 1574±183 Ab 1601±78 Ac 1789±27 Ab 1913±39 Aab 1734±137 Ac
150 2388±143 Ac 2401±101 Aa 2000±157 Bb 2047±157 Aa 2177±340 Ab 1949±305 Ab 2154±68 Ab 2159±179 Ab
225 2621±138 Bd 2609±99 Aa 2319±245 Ba 2139±210 Ba 2762±68 Aa 2462±61 Aa 2500±107 Ba 2487±208 Ba
方差分析ANOVA FF-value
轮作模式 Rotation (R) 4.222*
氮肥用量 Nitrogen rate (N) 1361.697***
年份 Year (Y) 3.456**
R×N 38.311***
R×Y 4.443**
N×Y 4.728***
R×N×Y 2.111**

表2

不同氮肥用量下的旱地和水田油菜产量构成因子(2022/2023)"

轮作模式
Rotation
氮肥用量
N fertilizer rate
(kg N hm-2)
单株角果数
Pod number
每角粒数
Seed number
千粒重
1000-seed weight
(g)
旱地-油菜
Upland-oilseed rape
0 94.7±11.6 Bd 21.1±0.5 Ac 3.02±0.08 Ac
75 207.8±7.7 Bc 23.4±0.2 Ab 3.17±0.04 Abc
150 276.7±7.0 Ab 25.6±0.5 Aa 3.19±0.08 Aab
225 356.6±16.5 Aa 23.9±0.2 Ab 3.35±0.08 Aa
水田-油菜
Paddy-oilseed rape
0 133.3±14.0 Ac 21.8±0.5 Ac 3.08±0.07 Ab
75 267.3±26.9 Ab 24.2±1.0 Ab 3.10±0.08 Ab
150 306.0±7.3 Aa 25.6±0.5 Aa 3.13±0.24 Ab
225 315.0±19.2 Aa 24.1±1.0 Ab 3.44±0.04 Aa
FF-value
轮作模式 Rotation (R) 10.869** 1.213ns 0.891ns
氮肥用量 Nitrogen rate (N) 213.001*** 38.439*** 12.613***
R×N 11.125** 0.342ns 0.989ns

图2

不同氮肥用量下旱地和水田油菜地上部各部位氮素吸收和分配(7年平均) UO和PO分别指旱地-油菜和水田-油菜, N0、N75、N150和N225分别指油菜季施氮量为0、75、150、225 kg N hm-2。标以不同小写字母的值表示地上部总氮素累积在相同轮作模式下不同施氮量处理间差异达0.05概率水平差异显著。*表示总氮素累积在相同施氮量下不同轮作之间的t检验差异, **表示P<0.01; *表示P<0.05; ns表示无显著差异。"

表3

氮肥用量和轮作模式对油菜氮肥利用率的影响(7年平均)"

氮肥用量
N fertilizer rate
(kg N hm-2)
旱地-油菜 Upland-Oilseed rape 水田-油菜 Paddy-Oilseed rape
农学利用效率Fertilizer
contribution
rate (kg kg-1)
贡献率
Fertilizer
contribution
rate (%)
表观利用率Recovery
efficiency
(%)
农学利用效率Fertilizer
contribution
rate (kg kg-1)
贡献率
Fertilizer
contribution
rate (%)
表观利用率Recovery
efficiency
(%)
0
75 12.2 64.2 44.0 12.5 53.8 41.6
150 11.7 76.8 45.0 9.0 62.7 35.8
225 10.0 81.1 40.9 7.5 67.6 29.0
平均Average 11.3 74.0 43.3 9.7 61.4 35.5

图3

不同氮肥用量下旱地和水田油菜季氮素表观平衡(7年平均) N0、N75、N150和N225分别指油菜季施氮量为0、75、150、225 kg N hm-2。标以不同小写字母的值表示同一轮作模式下不同施氮量间差异达0.05概率水平差异显著。*表示总氮素累积量在不同轮作模式之间的t检验差异; **表示P < 0.01; *表示P < 0.05; ns表示无显著差异。"

图4

旱地和水田油菜季土壤氮素供应量灰色线性预测模型 以*表示不同轮作之间的t检验差异; ***表示P < 0.001; **表示P < 0.01; *表示P < 0.05; ns表示无显著差异。一元回归方程中, Y表示土壤氮素供应量, t表示试验年限, a表示斜率, 即为年际趋势土壤氮素供应量。"

[1] 张冉, 曹娟娟, 濮超, 李育, 金海刚. 中国油菜籽和菜籽油的生产、进出口及供需分析. 中国油脂, 2022, 47(6): 8-14.
Zhang R, Cao J J, Pu C, Li Y, Jin H G. Production, import and export, and supply and demand analysis of rapeseed and rapeseed oil in China. China Oil, 2022, 47(6): 8-14 (in Chinese with English abstract).
[2] 殷艳, 廖星, 余波, 王汉中. 我国油菜生产区域布局演变和成因分析. 中国油料作物学报, 2010, 32: 147-151.
Yin Y, Liao X, Yu B, Wang H Z. Evolution and cause analysis of regional layout of rapeseed production in China. Chin J Oil Crop Sci, 2010, 32: 147-151 (in Chinese with English abstract).
[3] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894-903.
doi: 10.19802/j.issn.1007-9084.2019046
Cong R H, Zhang Z, Lu J W. The impact of climate factors on winter rapeseed yield in different planting areas of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894-903 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2019046
[4] 李小坤, 任涛, 鲁剑巍. 长江流域水稻-油菜轮作体系氮肥增产增效综合调控. 华中农业大学学报, 2021, 40(3): 13-20.
Li X K, Ren T, Lu J W. Comprehensive control of nitrogen fertilizer production and efficiency in rice-rape rotation system in the Yangtze River basin. J Huazhong Agric Univ, 2021, 40(3): 13-20 (in Chinese with English abstract).
[5] 汤春纯, 余乾, 文炯, 陈鸽, 朱坚. 不同施肥模式对油菜-棉花轮作产量及土壤养分的影响. 湖南农业科学, 2020, (7): 36-40.
Tang C C, Yu Q, Wen J, Chen G, Zhu J. Effects of different fertilization patterns on yield and soil nutrients in rape-cotton rotation. Hunan Agric Sci, 2020, (7): 36-40 (in Chinese with English abstract).
[6] Wei Q Q, Gou J L, Zhang M, Zhang B X, Rao Y, Xiao H G. Nitrogen reduction combined with organic materials can stabilize crop yield and soil nutrients in winter rapeseed and maize rotation in yellow soil. Sustain Sci, 2022, 14: 7183.
[7] 张丽梅, 马欣, 韩宝吉, 石磊. 大豆-油菜轮作中不同硼肥及后效对作物产量的影响. 中国农业科技导报, 2019, 21(10): 133-139.
doi: 10.13304/j.nykjdb.2019.0091
Zhang L M, Ma X, Han B J, Shi L. Effects of different boron fertilizers and after-effects on crop yield in soybean-rape rotation. J Agric Sci Technol, 2019, 21(10): 133-139 (in Chinese with English abstract).
[8] 元晋川, 王威雁, 赵德强, 侯玉婷, 吴伟, 刘杨, 温晓霞. 不同作物茬口对冬油菜养分积累和产量的影响. 中国油料作物学报, 2021, 43: 260-270.
Yuan J C, Wang W Y, Zhao D Q, Hou Y T, Wu W, Liu Y, Wen X X. Effect of different preceding cover crops on yield and nutrient accumulation of winter oilseed rape. Chin J Oil Crop Sci, 2021, 43: 260-270 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2019311
[9] Yu T B, Nie J W, Zang H D, Zang H D, Zeng Z H, Yang Y D. Peanut-based rotation stabilized diazotrophic communities and increased subsequent wheat yield. Microb Ecol, 2023, 86: 2447-2460.
doi: 10.1007/s00248-023-02254-2 pmid: 37296336
[10] 张顺涛, 鲁剑巍, 丛日环, 任涛, 李小坤, 廖世鹏, 张跃强, 郭世伟, 周明华, 黄益国, 程辉. 油菜轮作对后茬作物产量的影响. 中国农业科学, 2020, 53: 2852-2858.
doi: 10.3864/j.issn.0578-1752.2020.14.009
Zhang S T, Lu J W, Cong R H, Ren T, Li X K, Liao S P, Zhang Y Q, Guo S W, Zhou M H, Huang Y G, Cheng H. Effect of rapeseed rotation on the yield of next-stubble crops. Sci Agric Sin, 2020, 53: 2852-2858 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.14.009
[11] Zhou W, Lv T F, Chen Y, Westby A, Ren W. Soil physicochemical and biological properties of paddy-upland rotation: a review. Sci World J, 2014, 2014: 856352.
[12] Kogel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kolbl A, Schloter M. Biogeochemistry of paddy soils. Geoderma, 2010, 157: 1-14.
[13] Liu Y, Ge T, van Groenigen K J, Yang Y, Wang P, Cheng K, Kuzyakov Y. Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Commun Earth Environ, 2021, 2: 154.
[14] 李银水, 余常兵, 廖星, 胡小加, 谢立华, 张树杰, 车志. 湖北省不同油菜轮作模式下作物施肥现状调查. 中国农学通报, 2012, 28(36): 205-211.
Li Y S, Yu C B, Liao X, Hu X J, Xie L H, Zhang S J, Che Z. Investigation on the current situation of crop fertilization under different rapeseed rotation patterns in Hubei province. Chin Agric Sci Bull, 2012, 28(36): 205-211 (in Chinese with English abstract).
[15] 鲁剑巍, 任涛, 丛日环, 李小坤, 张洋洋. 我国油菜施肥状况及施肥技术研究展望. 中国油料作物学报, 2018, 40: 712-720.
doi: 10.7505/j.issn.1007-9084.2018.05.014
Lu J W, Ren T, Cong R H, Li X K, Zhang Y Y. The fertilization status and research prospects of rapeseed in China. Chin J Oil Crop Sci, 2018, 40: 712-720 (in Chinese with English abstract).
[16] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响. 作物学报, 2023, 49: 2002-2011.
Song Y, Li J, Gu H H, Lu Z F, Liao S P, Li X K, Lu J W. Effect of nitrogen application rate on grain yield and quality of winter rapeseed. Acta Agron Sin, 2023, 49: 2002-2011 (in Chinese with English abstract).
[17] 李小勇, 黄威, 刘红菊, 李银水, 顾炽明, 代晶, 秦璐. 不同轮作模式下氮肥施用对油菜产量形成及养分利用的影响. 中国农业科学, 2023, 56: 1074-1085.
doi: 10.3864/j.issn.0578-1752.2023.06.005
Li X Y, Huang W, Liu H J, Li Y S, Gu C M, Dai J, Qin L. Effects of nitrogen application on yield formation and nutrient utilization of rape under different rotation patterns. Sci Agric Sin, 2023, 56: 1074-1085 (in Chinese with English abstract).
[18] 卜容燕. 稻油和棉油轮作模式下油菜季土壤氮素供应差异及其机制研究. 华中农业大学博士学位论文, 湖北武汉, 2017.
Bu R Y. Difference and Mechanism of Soil Nitrogen Supply in Oilseed Rape Planting Season under Different Rotation Systems. PhD Dissertation of Huazhong Agriculture University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[19] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异. 作物学报, 2023, 49: 772-783.
doi: 10.3724/SP.J.1006.2023.24061
Fang Y T, Ren T, Zhang S T, Zhou X Q, Zhao J, Liao S P, Lu J W. Differences in the effects of nitrogen, phosphorus, and potassium fertilizers on yield and nutrient utilization of rapeseed in arid and paddy fields. Acta Agron Sin, 2023, 49: 772-783 (in Chinese with English abstract).
[20] 李娟, 张立成, 章明清, 王煌平, 张辉, 张永春. 长期不同施肥模式下赤红壤旱地花生-甘薯轮作体系产量稳定性研究. 植物营养与肥料学报, 2021, 27: 179-190.
Li J, Zhang L C, Zhang M Q, Wang H P, Zhang H, Zhang Y C. Study on yield stability of peanut sweet potato rotation system in red soil dryland under long-term different fertilization modes. J Plant Nutr Fert, 2021, 27: 179-190 (in Chinese with English abstract).
[21] 郭欣. 不同氮肥施用量及施用方式对油菜产量、品质和土壤肥力的影响. 西南大学硕士学位论文, 重庆, 2020.
Gou X. Effects of Different Nitrogen Fertilizer Application Rates and Application Methods on Rapeseed Yield, Quality and Soil. MS Thesis of Southwest University, Chongqing, China, 2020 (in Chinese with English abstract).
[22] Zhang Z, Peng X H. Bio-tillage: a new perspective for sustainable agriculture. Soil Tillage Res, 2021, 206: 104844.
[23] Bouchet A S, Laperche A, Bissuel-Belaygue C, Snowdonr, Nesi N, Stahl A. Nitrogen use efficiency in rapeseed: a review. Agron Sustain Dev, 2016, 36: 38.
[24] 王春丽, 王周礼, 陈婷, 杨建利, 陈文杰, 穆建新, 田建华, 赵小光. 甘蓝型油菜生殖生长期叶片和角果光合与产量关系的研究. 西北植物学报, 2016, 36: 1417-1426.
Wang C L, Wang Z L, Chen T, Yang J L, Chen W J, Mu J X, Tian J H, Zhao X G. A study on the relationship between leaf and pod photosynthesis and yield during the reproductive growth period of Brassica napus. Northwest Bot J, 2016, 36: 1417-1426 (in Chinese with English abstract).
[25] Ren T, Bu R, Liao S P, Zhang M, Li X K, Cong R H, Lu J W. Differences in soil nitrogen transformation and the related seed yield of winter oilseed rape (Brassica napus L.) under paddy- upland and continuous upland rotations. Soil Tillage Res, 2019, 192: 206-214.
[26] 王景. 厌氧和好气条件下作物秸秆的腐解特征研究. 安徽农业大学硕士学位论文, 安徽合肥, 2015.
Wang J. Study on the Decomposition of Crop Straw under Anaerobic and Aerobic Condition. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2015 (in Chinese with English abstract).
[27] 杨丞, 吴耀卿, 李著纲, 张永毅, 龚元成, 李文品, 张万洋, 肖能武. 鄂西北旱地和水田油菜缓释专用肥施用效果比较. 中国农技推广, 2019, 35(增刊1): 108-110.
Yang C, Wu Y Q, Li Z G, Zhang Y Y, Gong Y C, Li W P, Zhang W Y, Xiao N W. Comparison of oilseed rape special fertilizer in upland and paddy fields in northwest Hubei. China Agric Technol Extens, 2019, 35(S1): 108-110 (in Chinese).
[28] 任涛, 鲁剑巍. 中国冬油菜氮素养分管理策略. 中国农业科学, 2016, 49: 3506-3521.
doi: 10.3864/j.issn.0578-1752.2016.18.005
Ren T, Lu J W. Nitrogen nutrient management strategies for winter rapeseed in China. Sci Agric Sin, 2016, 49: 3506-3521 (in Chinese with English abstract).
[29] Gu X, Li Y, Du Y, Zhou C, Yin M, Yang D. Effects of water and nitrogen coupling on nitrogen nutrition index and radiation use efficiency of winter oilseed rape (Brassica napus L.). Trans CSAM, 2016, 47: 122-132.
[30] 刘煜. 氮素管理影响长江中游典型水旱轮作体系氮利用与损失机制. 华中农业大学博士学位论文, 湖北武汉, 2023.
Liu Y. Nitrogen Management Affects Nitrogen Utilization and Loss Mechanisms in Typical Water Drought Rotation Systems in the Middle Reaches of the Yangtze River. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract).
[31] 郭子琪, 王慧, 韩上, 李敏, 雷之萌, 张军, 朱林. 氮肥用量对直播油菜产量及氮素吸收利用的影响. 中国土壤与肥料, 2020, (5): 40-44.
Guo Z Q, Wang H, Han S, Li M, Lei Z M, Zhang J, Zhu L. Effect of nitrogen application rate on yield and nitrogen absorption and utilization of direct-seeded rape. Chin Soil Fert, 2020, (5): 40-44 (in Chinese with English abstract).
[32] 张芳芳, 胡跃, 刘士山, 杨云飞, 严红梅, 吴永成. 施氮量对成都平原直播油菜氮肥利用率和农田氮素表观平衡的影响. 四川农业大学学报, 2022, 40: 558-564.
Zhang F F, Hu Y, Liu S S, Yang Y F, Yan H M, Wu Y C. Effect of nitrogen application rate on nitrogen utilization rate of direct-seeded rape and apparent nitrogen balance in farmland in Chengdu Plain. J Sichuan Agric Univ, 2022, 40: 558-564 (in Chinese with English abstract).
[33] Ren T, Li H, Lu J W, Bu R Y, Li X K, Cong R H, Lu M X. Crop rotation-dependent yield responses to fertilization in winter oilseed rape (Brassica napus L.). Crop J, 2015, 3: 396-404.
[34] 卜容燕, 任涛, 廖世鹏, 李小坤, 丛日环, 张洋洋, 鲁剑巍. 不同轮作和氮肥分配季节下土壤氮素供应和油菜氮素吸收差异. 植物营养与肥料学报, 2019, 25: 412-420.
Bu R Y, Ren T, Liao S P, Li X K, Cong R H, Zhang Y Y, Lu J W. Differences in soil nitrogen supply and rapeseed nitrogen absorption under different rotation and nitrogen fertilizer distribution seasons. J Plant Nutr Fert, 2019, 25: 412-420 (in Chinese with English abstract).
[35] 郑淑清, 杨洪艳, 张柏双. 测土配方施肥对玉米养分吸收量的影响. 农业开发与装备, 2019, (5): 127.
Zheng S Q, Yang H Y, Zhang B S. The effect of soil testing formula fertilization on nutrient absorption of corn. Agric Develop Equip, 2019, (5): 127 (in Chinese).
[36] 郜紫依, 鲁剑巍, 任涛, 丛日环, 陆志峰, 张洋洋, 李小坤. 水稻百公斤籽粒养分吸收量及其影响因素整合分析. 植物营养与肥料学报, 2023, 29: 1587-1596.
Gao Z Y, Lu J W, Ren T, Cong R H, Lu Z F, Zhang Y Y, Li X K. Integrated analysis of nutrient absorption and influencing factors in rice grains weighing 100 kilograms. J Plant Nutr Fert, 2023, 29: 1587-1596 (in Chinese with English abstract).
[37] 雷名爵. 氮肥用量对油菜-玉米和油菜-水稻轮作周年氨挥发损失的影响. 华中农业大学硕士学位论文, 湖北武汉, 2019.
Lei M J. Effect of Nitrogen Application Rate on Annual Ammonia Vocalization Loss of Rapeseed-Maize and Rapeseed-Rice Rotation. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[38] 鲁剑巍, 任涛, 李小坤, 丛日环, 陆志峰, 张洋洋, 刘诗诗, 廖世鹏, 朱俊. 我国冬油菜养分精准调控策略与高效施肥技术体系. 华中农业大学学报, 2023, 42(6): 18-25.
Lu J W, Ren T, Li X K, Cong R H, Lu Z F, Zhang Y Y, Liu S S, Liao S P, Zhu J. The precise nutrient regulation strategy and efficient fertilization technology system for winter rapeseed in China. J Huazhong Agric Univ, 2023, 42(6): 18-25 (in Chinese with English abstract).
[39] Wei L, Ge T D, Zhu Z K, Ye R Z, Penuelas J, Li Y H, Lynn T M, Jones D L, Kuzyakov Y. Paddy soils have a much higher microbial biomass content than upland soils: a review of the origin, mechanisms, and drivers. Agric Ecosyst Environ, 2022, 326: 107798.
[40] Chen X B, Hu Y J, Xia Y H, Zheng, S M, Ma C, Rui Y C, He H B, Huang D Y, Zhang Z H, Ge T D, Wu J S, Guggenberger G, Kuzyakov Y, Su Y R. Contrasting pathways of carbon sequestration in paddy and upland soils. Glob Change Biol, 2021, 27: 2478-2490.
[41] Wei L, Ge T D, Zhu Z K, Luo Y, Yang Y H, Xiao M L, Yan Z F, Li Y H, Wu J S, Kuzyakov Y. Comparing carbon and nitrogen stocks in paddy and upland soils: accumulation, stabilization mechanisms, and environmental drivers. Geoderma, 2021, 398: 15121.
[42] De Long J R, Fry E L, Veen G F, Kardol P. Why are plant-soil feedbacks so unpredictable, and what to do about it? Funct Ecol, 2018, 33: 118-128.
[43] 蔡苗, 韩霁昌, 周建斌, 陈竹君. 长期氮肥施用对玉米根茬矿化分解的影响. 中国土壤与肥料, 2017, (1): 33-39.
Cai M, Han J C, Zhou J B, Chen Z J. Effects of long-term nitrogen fertilizer application on stubble mineralization and decomposition of maize roots. Chin Soil Fert, 2017, (1): 33-39 (in Chinese with English abstract).
[44] 李佳燕, 孙良杰, 马南, 王丰, 汪景宽. 不同肥力棕壤玉米根茬和茎叶残体碳氮的固定特征. 中国农业科学, 2022, 55: 4664-4677.
doi: 10.3864/j.issn.0578-1752.2022.23.008
Li J Y, Sun L J, Ma N, Wang F, Wang J K. Carbon and nitrogen fixation characteristics of root stubble and stem and leaf residues of brown soil maize with different fertility. Sci Agric Sin, 2022, 55: 4664-4677 (in Chinese with English abstract).
[45] 冯蕾, 童成立, 石辉, 吴金水, 李勇, 黄铁平, 夏海鳌. 水稻碳氮吸收、分配与积累对施肥的响应. 环境科学, 2011, 32: 574-580.
pmid: 21528586
Feng L, Tong C L, Shi H, Wu J S, Li Y, Huang T P, Xia H A. Response of carbon and nitrogen absorption, distribution and accumulation in rice to fertilization. Environ Sci, 2011, 32: 574-580 (in Chinese with English abstract).
pmid: 21528586
[46] Su J, Zhang H Y, Han X G, Lyu R F, Liu L, Jiang Y, Li H, Kuzyakov Y, Wei C Z. 5300-year-old soil carbon is less primed than young soil organic matter. Glob Change Biol, 2022, 29: 260-275.
[1] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[2] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[3] 张富粮, 陈冰洁, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 丛枝菌根真菌对玉米籽粒氮素吸收和土壤细菌群落组成的影响[J]. 作物学报, 2022, 48(12): 3215-3224.
[4] 田明慧, 杨硕, 杜嘉琪, 张晨曦, 何堂庆, 张学林. 不同氮肥水平下丛枝菌根真菌对玉米籽粒灌浆期磷和钾吸收的影响[J]. 作物学报, 2022, 48(12): 3166-3178.
[5] 唐健,唐闯,郭保卫,张诚信,张振振,王科,张洪程,陈恒,孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响[J]. 作物学报, 2020, 46(01): 117-130.
[6] 周泉, 王龙昌, 马淑敏, 张小短, 邢毅, 张赛. 西南旱地油菜间作紫云英和秸秆覆盖的生产效应[J]. 作物学报, 2018, 44(03): 431-441.
[7] 吴春红,刘庆,孔凡美,李欢,史衍玺. 氮肥施用量对不同紫甘薯品种产量和氮素效率的影响[J]. 作物学报, 2016, 42(01): 113-122.
[8] 葛均筑,李淑娅,钟新月,袁国印,徐莹,田少阳,曹凑贵,翟中兵,刘诗晴,展茗,赵明. 施氮量与地膜覆盖对长江中游春玉米产量性能及氮肥利用效率的影响[J]. 作物学报, 2014, 40(06): 1081-1092.
[9] 苏永中;张智慧;杨荣. 黑河中游边缘绿洲沙地农田玉米水氮用量配合试验[J]. 作物学报, 2007, 33(12): 2007-2015.
[10] 赵万春;董剑;高翔;张改生. 施氮对杂交小麦不同器官氮素积累与转运及其杂种优势的影响[J]. 作物学报, 2007, 33(01): 57-62.
[11] 张旺锋;王振林;余松烈;李少昆;曹连莆;王登伟. 氮肥对新疆高产棉花群体光合性能和产量形成的影响[J]. 作物学报, 2002, 28(06): 789-796.
[12] 李伏生;康绍忠. CO2浓度和氮素水平对春小麦水分利用效率的影响[J]. 作物学报, 2002, 28(06): 835-840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .