作物学报 ›› 2024, Vol. 50 ›› Issue (8): 2053-2066.doi: 10.3724/SP.J.1006.2024.33071
梁璐1(), 周宝元1,*(
), 高卓晗2, 王瑞3, 王新兵1, 赵明1, 李从锋1,*(
)
LIANG Lu1(), ZHOU Bao-Yuan1,*(
), GAO Zhuo-Han2, WANG Rui3, WANG Xin-Bing1, ZHAO Ming1, LI Cong-Feng1,*(
)
摘要:
黄淮海地区农业集约化和机械化发展导致土壤紧实问题日益加重, 限制玉米产量的进一步提升。明确不同品种玉米根系和地上部生长对土壤紧实胁迫的差异性响应特征, 可为该区玉米高产栽培提供理论依据。本研究选用3个玉米品种, 采用机械碾压的方法在同一田块模拟无紧实胁迫(NC: no compaction stress, 容重1.0~1.3 g cm-3)、中度紧实胁迫(MC: moderate compaction stress, 容重1.4~1.5 g cm-3)和重度紧实胁迫(HC: heavy compaction stress, 容重>1.6 g cm-3) 3个紧实程度处理, 定量解析不同程度土壤紧实胁迫下不同品种玉米根冠生长各指标及产量的变化规律。结果表明, 与NC相比, MC和HC处理导致玉米减产3.8%~10.3%和12.5%~33.3%。玉米根冠生长及产量形成对土壤紧实胁迫的响应存在基因型差异。MC处理下, DK517的根长、根干重及根冠比较ZD958和DH605分别提高6.0%和14.0%、15.7%和29.6%、18.8%和24.8%, 但最大叶面积指数、植株总干物重和产量无显著差异; HC处理下, DK517的根长和根干重较ZD958和DH605分别提高8.4%和22.5%、29.6%和57.8%, 且最大叶面积指数、植株总干物重和根冠比分别提高4.6%和15.5%、3.7%和20.9%、28.0%和32.1%, 因此产量分别增加7.5%和27.2%。相关分析表明, 土壤容重和贯穿阻力与玉米根冠生长各指标和产量呈显著负相关关系(P<0.01)。综上所述, 土壤紧实胁迫会显著抑制玉米根系和地上部生长而造成减产, 但不同品种玉米根冠生长对不同程度土壤紧实胁迫的响应存在着差异, 重度土壤紧实胁迫下根冠生长均具有优势的品种能够维持较高的产量, 研究结果可为玉米品种改良和土壤紧实下耕作措施优化提供理论依据。
[1] | 张方博, 侯玉雪, 敖园园, 申建波, 金可默. 土壤紧实胁迫下根系-土壤的相互作用. 植物营养与肥料学报, 2021, 27: 531-543. |
Zhang F B, Hou Y X, Ao Y Y, Shen J B, Jin K M. Root-soil interaction under soil compaction stress. J Plant Nutr Fert, 2021, 27: 531-543 (in Chinese with English abstract). | |
[2] | Batey T. Soil compaction and soil management: a review. Soil Use Manag, 2009, 25: 335-345. |
[3] | Hamza M A, Anderson W. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res, 2005, 82: 121-145. |
[4] | 周宝元, 陈传永, 孙雪芳, 葛均筑, 丁在松, 马玮, 王新兵, 赵明. 冬小麦-夏玉米双机收籽粒模式周年资源利用效率及经济效益. 中国生态农业学报, 2022, 30: 1959-1972. |
Zhou B Y, Chen C Y, Sun X F, Ge J Z, Ding Z S, Ma W, Wang X B, Zhao M. Resource use efficiencies and economic benefits of winter wheat-summer maize cropping system with double mechanical grain harvest. Chin J Eco-Agric, 2022, 30: 1959-1972 (in Chinese with English abstract). | |
[5] | Wang M X, Wu W L, Liu W N, Bao Y H. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. Int J Sust Dev World, 2007, 14: 400-407. |
[6] | Zhang X, Chen S, Sun H, Wang Y, Shao L. Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agric Water Manag, 2010, 97: 1117-1125. |
[7] |
强小嫚, 张凯, 米兆荣, 刘战东, 王万宁, 孙景生. 黄淮海平原地区深松和灌水次数对冬小麦-夏玉米节水增产的影响. 中国农业科学, 2019, 52: 491-502.
doi: 10.3864/j.issn.0578-1752.2019.03.009 |
Qiang X M, Zhang K, Mi Z R, Liu Z D, Wang W N, Sun J S. Effects of subsoiling and irrigation times on water saving and yield increase of winter wheat and summer maize in Huang-Huai-Hai plain. Sci Agric Sin, 2019, 52: 491-502 (in Chinese with English abstract). | |
[8] |
周艳丽, 刘娜, 於丽华, 卢秉福, 张文彬, 刘晓雪. 土壤机械压实及其对作物生长的影响. 中国农学通报, 2022, 38(28): 83-88.
doi: 10.11924/j.issn.1000-6850.casb2021-0915 |
Zhou Y L, Liu N, Yu L H, Lu B F, Zhang W B, Liu X X. Soil mechanical compaction and its influence on crop growth. Chin Agric Sci Bull, 2022, 38(28): 83-88 (in Chinese with English abstract). | |
[9] | Lipiec J, Simota C. Role of soil and climate factors influencing crop responses to compaction in Central and Eastern Europe. Dev Agric Eng, 1994, 11: 365-390. |
[10] |
李潮海, 周顺利. 土壤容重对玉米苗期生长的影响. 华北农学报, 1994, 9(2): 49-54.
doi: 10.3321/j.issn:1000-7091.1994.02.010 |
Li C H, Zhou S L. Effects of soil bulk density on maize seedling growth. Acta Agric Boreali-Sin, 1994, 9(2): 49-54 (in Chinese with English abstract). | |
[11] | 刘晚苟, 山仑. 不同土壤水分条件下容重对玉米生长的影响. 应用生态学报, 2003, 14: 1906-1910. |
Liu W G, Shan L. Effect of soil bulk density on maize growth under different water regimes. J Appl Ecol, 2003, 14: 1906-1910 (in Chinese with English abstract). | |
[12] | Ishaq M, Hassan A, Saeed M, Ibrahim M, Lal R. Subsoil compaction effects on crops in Punjab, Pakistan. Soil Tillage Res, 2001, 60: 153-161. |
[13] | 王群, 李潮海, 郝四平, 张永恩, 韩锦峰. 下层土壤容重对玉米生育后期光合特性和产量的影响. 应用生态学报, 2008, 19: 787-793. |
Wang Q, Li C H, Hao S P, Zhang Y E, Han J F. Effects of subsoil bulk density on late growth stage photosynthetic characteristics and grain yield of maize (Zea mays L.). J Appl Ecol, 2008, 19: 787-793 (in Chinese with English abstract). | |
[14] | 张兴义, 隋跃宇. 土壤压实对农作物影响概述. 农业机械学报, 2005, 36(10): 161-164. |
Zhang X Y, Sui Y Y. Summarization on the effect of soil compaction on crop. Trans CSAM, 2005, 36(10): 161-164 (in Chinese with English abstract). | |
[15] | Canarache A, Colibas I, Colibas M, Horobeanu I, Trandafirescu T. Effect of induced compaction by wheel traffic on soil physical properties and yield of maize in Romania. Soil Tillage Res, 1984, 4: 199-213. |
[16] | Gaultney L, Krutz G, Steinhardt G, Liljedahl J. Effects of subsoil compaction on corn yields. Trans ASABE, 1980, 25: 563-569. |
[17] |
王群, 李潮海, 李全忠, 薛帅. 紧实胁迫对不同类型土壤玉米根系时空分布及活力的影响. 中国农业科学, 2011, 44: 2039-2050.
doi: 10.3864/j.issn.0578-1752.2011.10.009 |
Wang Q, Li C H, Li Q Z, Xue S. Effects of compaction stress on temporal and spatial distribution and vigor of maize roots in different types of soil. Sci Agric Sin, 2011, 44: 2039-2050 (in Chinese with English abstract). | |
[18] |
Wasson A P, Richards R A, Chatrath R, Misra S C, Prasad S V S, Rebetzke G J, Kirkegaard J A, Christopher J, Watt M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot, 2012, 63: 3485-3498.
doi: 10.1093/jxb/ers111 pmid: 22553286 |
[19] | Jordon D, Ponder J F, Hubbard V C. Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity. Appl Soil Ecol, 2003, 23: 33-41. |
[20] | Tracy S R, Black C R, Roberts J A, McNeill A, Davidson R, Tester M, Samec M, Korosak D, Sturrock C, Mooney S J. Quantifying the effect of soil compaction on three varieties of wheat (Triticum aestivum L.) using X-ray Micro Computed Tomography (CT). Plant Soil, 2012, 353: 195-208. |
[21] | Whalley W R, Watts C W, Gregory A S, Mooney S J, Clark L J, Whitmore A P. The effect of soil strength on the yield of wheat. Plant Soil, 2008, 306: 237-247. |
[22] | 王空军, 郑洪建, 刘开昌, 张吉旺, 董熟亭, 胡昌浩. 我国玉米品种更替过程中根系时空分布特性的演变. 植物生态学报, 2001, 25: 472-475. |
Wang K J, Zheng H J, Liu K C, Zhang J W, Dong S T, Hu C H. Evolution of temporal and spatial distribution characteristics of root system during maize variety replacement in China. J Plant Ecol, 2001, 25: 472-475 (in Chinese with English abstract). | |
[23] | Xiong P, Zhang Z B, Hallett P D, Peng X H. Variable responses of maize root architecture in elite cultivars due to soil compaction and moisture. Plant Soil, 2020, 455: 79-91. |
[24] | 杨晓娟, 李春俭. 机械压实对土壤质量、作物生长、土壤生物及环境的影响. 中国农业科学, 2008, 41: 2008-2015. |
Yang X J, Li C J. Effects of mechanical compaction on soil quality, crop growth, soil biology and environment. Sci Agric Sin, 2008, 41: 2008-2015 (in Chinese with English abstract). | |
[25] | Tullberg J N, Ziebarth P J, Li Y X. Tillage and traffic effects on runoff. Aust J Soil Res, 2001, 39: 249-257. |
[26] | Wang X, He J, Bai M, Liu L, Gao S, Chen K, Zhuang H. The impact of traffic-induced compaction on soil bulk density, soil stress distribution and key growth indicators of maize in North China Plain. Agriculture, 2022, 12: 1220. |
[27] | 刘晚苟, 山仑, 邓西平. 植物对土壤紧实度的反应. 植物生理学通讯, 2001, 37: 254-260. |
Liu W G, Shan L, Deng X P. Plant response to soil compactness. Plant Physiol Commun, 2001, 37: 254-260 (in Chinese). | |
[28] | Alameda D, Villar R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environ Exp Bot, 2012, 79: 49-57. |
[29] | Grzesiak S, Grzesiak M T, Hura T, Marcińska I, Rzepka A. Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction. Environ Exp Bot, 2013, 88: 2-10. |
[30] |
Correa J, Postma J A, Watt M, Wojciechowski T. Soil compaction and the architectural plasticity of root systems. J Exp Bot, 2019, 70: 6019-6034.
doi: 10.1093/jxb/erz383 pmid: 31504740 |
[31] | Wolfe D W, Topoleski D T, Gundersheim N A, Ingall B A. Growth and yield sensitivity of four vegetable crops to soil compaction. J Am Soc Hortic Sci, 1995, 120: 956-963. |
[32] | Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol, 2000, 27: 595-607. |
[33] | Yu P, Li X, White P J, Li C. A large and deep root system underlies high nitrogen-use efficiency in maize production. PLoS One, 2015, 10: e0126293. |
[34] | Battisti R, Sentelhas P C. Improvement of soybean resilience to drought through deep root system in Brazil. Agron J, 2017, 109: 1612-1622. |
[35] | Xie Y, Islam S, Legesse H T, Kristensen H L. Deep root uptake of leachable nitrogen in two soil types is reduced by high availability of soil nitrogen in fodder radish grown as catch crop. Plant Soil, 2021, 456: 213-227. |
[36] | Wu X, Li H, Rengel Z, Whalley W R, Li H, Zhang F, Shen J, Jin K. Localized nutrient supply can facilitate root proliferation and increase nitrogen-use efficiency in compacted soil. Soil Tillage Res, 2022, 215: 105198. |
[37] | Bushamuka V N, Zobel R W. Differential genotypic and root type penetration of compacted soil layers. Crop Sci, 1998, 38: 776-781. |
[38] | Tubeileh A, Groleau-Renaud V, Plantureux S, Guckert. Effect of soil compaction on photosynthesis and carbon partitioning within a maize-soil system. Soil Tillage Res, 2003, 71: 151-161. |
[39] | 关军锋, 马春红, 李广敏. 干旱胁迫下小麦根冠生物量变化及其与抗旱性的关系. 河北农业大学学报, 2004, 27(1): 1-5. |
Guan J F, Ma C H, Li G M. Changes of root and shoot biomass of wheat under drought stress and its relationship with drought resistance. J Agric Univ Hebei, 2004, 27(1): 1-5 (in Chinese with English abstract). | |
[40] | 李鲁华, 李世清, 翟军海, 史俊通. 小麦根系与土壤水分胁迫关系的研究进展. 西北植物学报, 2001, 2(1): 1-7. |
Li L H, Li S Q, Zhai J H, Shi J T. Research progress on the relationship between wheat roots and soil water stress. Acta Bot Boreal-Occident Sin, 2001, 21(1): 1-7 (in Chinese with English abstract). | |
[41] |
张玉芹, 杨恒山, 李从锋, 赵明, 罗方, 张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响. 作物学报, 2020, 46: 902-913.
doi: 10.3724/SP.J.1006.2020.93053 |
Zhang Y Q, Yang H S, Li C F, Zhao M, Luo F, Zhang R F. Effect of strip tillage and dislocation planting on yield formation and crown and root characteristics of spring maize in irrigation area. Acta Agron Sin, 2020, 46: 902-913 (in Chinese with English abstract). | |
[42] | 张大勇, 姜新华. 对于作物生产的生态学思考. 植物生态学报, 2000, 24: 383-384. |
Zhang D Y, Jiang X H. An ecological perspective on crop production. J Plant Ecol, 2000, 24: 383-384 (in Chinese). | |
[43] |
Pandey B K, Huang G Q, Bhosale R, Hartman S, Sturrock C J, Jose L, Martin O C, Karady M, Voesenek L A C J, Ljung K, Lynch J P, Brown K M, Whalley W R, Mooney S J, Zhang D B, Bennett M J. Plant roots sense soil compaction through restricted ethylene diffusion. Science, 2021, 371: 276-280.
doi: 10.1126/science.abf3013 pmid: 33446554 |
[44] | Huang G Q, Kilic A, Karady M, Zhang J, Mehra P, Song X Y, Sturrock C J, Zhu W W, Qin H, Hartman S, Schneider H M, Bhosale R, Dodd I C, Sharp R E, Huang R F, Mooney S J, Liang W Q, Bennett M J, Zhang D B, Pandey B K. Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin- mediated mechanisms. Proc Natl Acad Sci USA, 2022, 119: e2201072119. |
[1] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[2] | 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395. |
[3] | 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013. |
[4] | 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10、ZmCCT9、ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970. |
[5] | 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077. |
[6] | 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933. |
[7] | 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906. |
[8] | 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4型ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657. |
[9] | 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876. |
[10] | 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627. |
[11] | 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434. |
[12] | 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450. |
[13] | 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222. |
[14] | 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324. |
[15] | 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123. |
|