欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2279-2296.doi: 10.3724/SP.J.1006.2024.33049

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因

叶靓(), 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静*()   

  1. 云南大学农学院, 云南昆明 650500
  • 收稿日期:2023-08-18 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-06-12
  • 通讯作者: *谭静, E-mail: tanjingli@sina.com
  • 作者简介:E-mail: 1319733729@qq.com
  • 基金资助:
    国家自然科学基金项目(32260516)

Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis

YE Liang(), ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing*()   

  1. School of Agriculture, Yunnan University, Kunming 650500, Yunnan, China
  • Received:2023-08-18 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-06-12
  • Contact: *E-mail: tanjingli@sina.com
  • Supported by:
    National Natural Science Foundation of China(32260516)

摘要:

玉米是我国第一大粮食作物, 实现玉米的高产稳产对于我国粮食安全、农业稳定有重要意义。穗腐病是一种严重危害全球玉米的真菌性病害, 会造成玉米大幅减产和品质劣变。本研究选用我国玉米穗腐病的优势致病菌拟轮枝镰孢(Fusarium verticillioides), 对241份来源广泛的玉米自交系进行2年田间人工接种抗性鉴定, 同时利用20,586个高质量SNP标记通过全基因组关联分析(genome-wide association study, GWAS), 鉴定拟轮枝镰孢穗腐病抗性显著关联的SNP位点; 在此基础上选取对拟轮枝镰孢穗腐病表现高抗和高感的玉米自交系各1份, 其籽粒在室内接种拟轮枝镰孢, 通过对3个不同侵染时间的籽粒进行转录组测序(RNA-seq), 分析抗感材料差异表达基因(differentially expressed genes, DEGs)及其富集情况; 结合GWAS和RNA-seq结果, 共同定位筛选抗病候选基因。主要研究结果如下: (1) 综合2年田间抗性鉴定结果, 筛选到4份抗拟轮枝镰孢穗腐病的玉米自交系, 其中含有热带血缘的玉米种质对拟轮枝镰孢穗腐病表现出更好的抗性。(2) 2年GWAS分析共检测到26个与拟轮枝镰孢穗腐病抗性显著关联的SNP位点, 其中有18个位点位于前人定位到的QTL范围内。(3) RNA-seq结果表明, 抗感材料对病原菌的响应基因不同。与感病材料相比, 抗病材料均显示出更多的DEGs, 且都有更多的上调基因; 在抗感材料特异性DEGs共同富集的GO条目和KEGG通路中, 抗病材料中富集到的DEGs占比显著多于感病材料; 一些与植物防御病原菌相关的条目和通路也仅在抗病材料中被特异富集。(4) 在GWAS检测到的显著关联位点上下游100 kb范围内筛选与转录组DEGs共同定位到的候选基因, 结果16个基因被GWAS和RNA-seq同时检测到; 根据这些基因的蛋白功能及相关文献报道, 从中预测到6个与拟轮枝镰孢穗腐病抗性相关的候选基因。综上所述, 本研究筛选出4份抗拟轮枝镰孢穗腐病的玉米自交系, 来自热带、亚热带的玉米种质可以作为抗逆性品种选育的研究重点; 对抗感玉米自交系响应拟轮枝镰孢侵染的DEGs及其相关抗病机制进行了初步解析, 联合GWAS和RNA-seq共定位到6个与拟轮枝镰孢穗腐病抗性相关的候选基因, 研究结果为玉米穗腐病抗性基因的克隆验证与抗性品种的培育提供了一定的理论依据。

关键词: 玉米穗腐病, 拟轮枝镰孢, 关联分析, 转录组分析, 抗性种质, 候选基因

Abstract:

Maize, as the largest grain crop in China, holds great significance for food security and agricultural stability, making it crucial to achieve high and stable yields. Ear rot, a fungal disease, poses a serious threat to global corn production, resulting in significant yield reduction and quality deterioration. This study focused on the dominant pathogen Fusarium verticillioides and aimed to identify resistance in 241 maize inbred lines from diverse sources through two years of artificial inoculation in the field. Additionally, a genome-wide association study (GWAS) was conducted using 20,586 high-quality SNP markers to identify SNP loci significantly associated with ear rot resistance. Based on this research, one maize inbred line with high resistance and one with high susceptibility to F. verticillioides-induced ear rot were selected. The young kernels of these lines were subjected to RNA transcriptome sequencing (RNA-seq) at three different infection stages, and differentially expressied genes (DEGs) and enrichment analysis were conducted. The results of GWAS and RNA-seq were combined to identify candidate resistant genes. The main findings were as followed: (1) Four inbred lines resistant to F. verticillioides-induced ear rot were selected based on two years of field resistance identification. Maize germplasm with tropical consanguinity exhibited higher resistance. (2) A total of 26 SNP loci associated with ear rot resistance were detected through two years of GWAS analysis, with 18 loci located within previously identified QTL regions. (3) RNA-seq analysis revealed differential response genes between resistant and susceptible lines upon F. verticillioides infection. The resistant line exhibited a greater number of DEGs and up-regulated genes. In the co-enriched GO entries and KEGG pathways specific to the DEGs of resistant and susceptible lines, the proportion of DEGs enriched in the resistant line was significantly higher. Moreover, some entries and pathways related to plant defense against pathogens were specifically enriched in the resistant line. (4) Sixteen genes, detected by both GWAS and RNA-seq, were identified as candidate genes by screening those co-located with transcriptome DEGs within a range of 100 kb upstream and downstream of significant association loci. Based on protein function and relevant literature reports, six candidate genes related to ear rot resistance were predicted. In summary, this study identified four maize lines resistant to F. verticillioides-induced ear rot. Maize germplasm from tropical and subtropical regions holds promise for stress-tolerant variety breeding. The preliminary analysis of DEGs and related resistance mechanisms of maize in response to F. verticillioides infection was conducted. Furthermore, six candidate genes associated with ear rot resistance were identified through the integration of GWAS and RNA-seq. These findings provide a theoretical basis for the cloning and validation of maize ear rot resistance genes, as well as the breeding of resistant varieties.

Key words: maize ear rot, Fusarium verticillioides, association analysis, transcriptome analysis, resistant germplasm, candidate genes

附表1

本研究关联群体包含的玉米自交系材料"

序号
No.
名称
Name
系谱
Pedigree
来源
Source
类群
Type
序号
No.
名称
Name
系谱
Pedigree
来源
Source
类群
Type
1 SNP001 DTMA-1 CIMMYT TST 122 SNP172 B111 China Mixed
2 SNP002 DTMA-33 CIMMYT TST 123 SNP173 B77 China Mixed
3 SNP003 DTMA-42 CIMMYT TST 124 SNP174 BS16 China Mixed
4 SNP004 CML269 CIMMYT TST 125 SNP175 GEMS11 USA TEM
5 SNP005 DTMA-89 CIMMYT TST 126 SNP176 GEMS16 USA UNK
6 SNP006 DTMA-94 CIMMYT TST 127 SNP177 GEMS19 USA TST
7 SNP008 DTMA-17 CIMMYT TST 128 SNP178 GEMS20 USA TEM
8 SNP010 CML323 CIMMYT TST 129 SNP179 GEMS21 USA TEM
9 SNP011 CML325 CIMMYT TST 130 SNP180 GEMS24 USA TST
10 SNP012 CML326 CIMMYT TST 131 SNP181 GEMS25 USA Mixed
11 SNP013 DTMA-166 CIMMYT TST 132 SNP182 GEMS28 USA Mixed
12 SNP014 CML370 CIMMYT TST 133 SNP183 GEMS30 USA TST
13 SNP015 CML373 CIMMYT TST 134 SNP184 GEMS33 USA TEM
14 SNP017 DTMA-38 CIMMYT TST 135 SNP185 GEMS42 USA TEM
15 SNP019 DTMA-31 CIMMYT TST 136 SNP186 GEMS45 USA Mixed
16 SNP020 CML421 CIMMYT TST 137 SNP187 GEMS47 USA TEM
17 SNP021 CML444 CIMMYT TST 138 SNP188 GEMS48 USA TEM
18 SNP022 DTMA-25 CIMMYT TST 139 SNP189 GEMS51 USA TEM
19 SNP023 CML454 CIMMYT TST 140 SNP190 GEMS52 USA TEM
20 SNP024 CML-486 CIMMYT TST 141 SNP191 GEMS53 USA TEM
21 SNP025 DTMA-28 CIMMYT TST 142 SNP192 GEMS54 USA TST
22 SNP027 CL-02725 CIMMYT TST 143 SNP193 GEMS59 USA TEM
23 SNP029 CLA18 CIMMYT TST 144 SNP194 GEMS61 USA TST
24 SNP030 CLA35 C47 CIMMYT TST 145 SNP195 GEMS63 USA TEM
25 SNP031 CLA41 CIMMYT TST 146 SNP196 GEMS64 USA TEM
26 SNP035 CLA195 CIMMYT TST 147 SNP197 GEMS65 USA UNK
27 SNP038 CL-G1624 CIMMYT TST 148 SNP199 150 China Mixed
28 SNP039 CL-G1632 CIMMYT TST 149 SNP200 268 China TEM
29 SNP040 CL-G1839 CIMMYT TST 150 SNP201 812 China TEM
30 SNP041 CL-G1844 CIMMYT TST 151 SNP202 4019 China TEM
31 SNP042 CLQ-RCWQ103 CIMMYT TST 152 SNP203 5213 China Mixed
32 SNP046 CL-RCY018 CIMMYT TST 153 SNP204 8902 China Mixed
33 SNP047 CL-RCY023 CIMMYT TST 154 SNP205 526018 China TEM
34 SNP048 CL-P10201 CIMMYT TST 155 SNP207 384-2 China Mixed
35 SNP050 DTMA-217 CIMMYT TST 156 SNP208 4F1 China TEM
36 SNP053 DTMA-271 CIMMYT TST 157 SNP209 835a China TEM
37 SNP054 DTMA-218 CIMMYT TST 158 SNP210 By4839 China TEM
38 SNP055 DTMA-229 CIMMYT TST 159 SNP211 By4944 China TEM
39 SNP058 DTMA-235 CIMMYT TST 160 SNP212 By807 China TEM
40 SNP059 DTMA-240 CIMMYT TST 161 SNP213 Chang3 China Mixed
41 SNP061 DTMA-279 CIMMYT TST 162 SNP214 CI7 USA Mixed
42 SNP062 DTMA-251 CIMMYT TST 163 SNP215 D047 China Mixed
43 SNP063 DTMA-253 CIMMYT TST 164 SNP216 D863F China TEM
44 SNP065 DTMA-268 CIMMYT TST 165 SNP217 Dan3130 China TEM
45 SNP066 DTMA-246 CIMMYT TST 166 SNP218 DE.EX USA TEM
46 SNP067 DTMA-252 CIMMYT TST 167 SNP219 DH29 China Mixed
47 SNP069 DTMA-288 CIMMYT TST 168 SNP220 DH3732 China Mixed
48 SNP071 DTMA-242 CIMMYT TST 169 SNP221 Dong237 China TEM
49 SNP072 DTMA-255 CIMMYT TST 170 SNP223 ES40 China Mixed
50 SNP073 DTMA-248 CIMMYT TST 171 SNP224 Gy220 China TEM
51 SNP074 DTMA-267 CIMMYT TST 172 SNP225 Gy237 China TEM
52 SNP075 DTMA-292 CIMMYT TST 173 SNP226 Gy462 China TEM
53 SNP078 DTMA-82 CIMMYT TST 174 SNP227 IRF291 China TEM
54 SNP079 DTMA-79 CIMMYT TST 175 SNP228 IRF314 China TEM
55 SNP082 DTMA-118 CIMMYT TST 176 SNP229 J4112 China Mixed
56 SNP085 DTMA-41 CIMMYT TST 177 SNP230 JH59 China TEM
57 SNP086 DTMA-18 CIMMYT TST 178 SNP231 Ji63 China TEM
58 SNP087 DTMA-109 CIMMYT TST 179 SNP232 Ji846 China TEM
59 SNP088 DTMA-125 CIMMYT TST 180 SNP233 Ji853 China Mixed
60 SNP089 DTMA-97 CIMMYT TST 181 SNP234 Jiao51 China Mixed
61 SNP090 DTMA-140 CIMMYT TST 182 SNP235 JY01 China TEM
62 SNP091 DTMA-167 CIMMYT TST 183 SNP236 L3180 China Mixed
63 SNP092 DTMA-22 CIMMYT TST 184 SNP237 Liao138 China TEM
64 SNP094 DTMA-117 CIMMYT TST 185 SNP238 Liao159 China Mixed
65 SNP095 DTMA-114 CIMMYT TST 186 SNP239 Liao5114 China Mixed
66 SNP096 DTMA-161 CIMMYT TST 187 SNP240 Liao5263 China TEM
67 SNP097 DTMA-133 CIMMYT TST 188 SNP241 Lv28 China TEM
68 SNP100 DTMA-112 CIMMYT TST 189 SNP242 M165 China TEM
69 SNP101 DTMA-51 CIMMYT TST 190 SNP243 M97 China TEM
70 SNP102 DTMA-2 CIMMYT TST 191 SNP244 MN China Mixed
71 SNP103 DTMA-163 CIMMYT TST 192 SNP245 NMJT China Mixed
72 SNP104 DTMA-36 CIMMYT TST 193 SNP246 R08 China TEM
73 SNP105 1368 CIMMYT TST 194 SNP247 Ry684 China TEM
74 SNP106 4001 CIMMYT TST 195 SNP248 Shen5003 China TEM
75 SNP108 DTMA-29 CIMMYT TST 196 SNP249 Si444 China TEM
76 SNP109 DTMA-159 CIMMYT TST 197 SNP250 Si446 China TEM
77 SNP110 DTMA-119 CIMMYT TST 198 SNP251 Tian77 China Mixed
78 SNP112 CML116 CIMMYT TST 199 SNP252 Tie7922 China TEM
79 SNP113 CML162 CIMMYT TST 200 SNP253 TT16 China Mixed
80 SNP117 CML290 CIMMYT TST 201 SNP254 TX5 China TEM
81 SNP118 CML307 CIMMYT TST 202 SNP255 TY1 China Mixed
82 SNP119 CML31 CIMMYT TST 203 SNP256 TY11 China Mixed
83 SNP120 CML415 CIMMYT TST 204 SNP257 TY2 China Mixed
84 SNP121 CIMBL10 CIMMYT TST 205 SNP258 TY5 China Mixed
85 SNP122 CIMBL100 CIMMYT TST 206 SNP259 TY6 China Mixed
86 SNP123 CIMBL105 CIMMYT TST 207 SNP261 TY8 China Mixed
87 SNP124 CIMBL109 CIMMYT TST 208 SNP262 W138 China TEM
88 SNP125 CIMBL115 CIMMYT TST 209 SNP264 Wu109 China Mixed
89 SNP127 CIMBL136 CIMMYT TST 210 SNP265 Xun971 China Mixed
90 SNP128 CIMBL144 CIMMYT TEM 211 SNP266 Ye52106 China TEM
91 SNP129 CIMBL147 CIMMYT TST 212 SNP267 Ye8001 China Mixed
92 SNP130 CIMBL152 CIMMYT TST 213 SNP268 ZB648 China TEM
93 SNP131 CIMBL153 CIMMYT TST 214 SNP269 Zheng29 China Mixed
94 SNP132 CIMBL154 CIMMYT Mixed 215 SNP270 Zheng30 China TEM
95 SNP133 CIMBL2 CIMMYT TST 216 SNP271 Zhi41 China TEM
96 SNP134 CIMBL22 CIMMYT TST 217 SNP273 ZZ01 China TEM
97 SNP135 CIMBL23 CIMMYT TST 218 SNP276 chuan48-2 China Mixed
98 SNP136 CIMBL24 CIMMYT TST 219 SNP277 HZS China Mixed
99 SNP137 CIMBL25 CIMMYT TST 220 SNP278 K22 China TEM
100 SNP138 CIMBL28 CIMMYT TST 221 SNP279 Mo17 China TEM
101 SNP139 CIMBL32 CIMMYT TST 222 SNP280 Ye478 China Mixed
102 SNP142 CIMBL40 CIMMYT TST 223 SNP281 Zheng58 China TEM
103 SNP143 CIMBL44 CIMMYT TST 224 SNP282 Chang7-2 China Mixed
104 SNP144 CIMBL5 CIMMYT TST 225 SNP283 Dan340 China TEM
105 SNP145 CIMBL52 CIMMYT TST 226 SNP284 Ye107 China Mixed
106 SNP146 CIMBL55 CIMMYT TST 227 SNP285 K12 China TEM
107 SNP149 CIMBL70 CIMMYT TST 228 SNP286 1218 China UNK
108 SNP151 CIMBL74 CIMMYT TST 229 SNP287 H21 China UNK
109 SNP152 CIMBL78 CIMMYT TST 230 SNP288 Xue 1325 China UNK
110 SNP156 CIMBL95 CIMMYT Mixed 231 SNP289 Su 9 China UNK
111 SNP158 CIMBL99 CIMMYT TST 232 SNP291 HuangGai China UNK
112 SNP159 B11 China TST 233 SNP292 Qin795 China UNK
113 SNP160 Qi319 China TEM 234 SNP294 81565 China UNK
114 SNP161 Shen137 China TEM 235 SNP295 PJ-1 China UNK
115 SNP162 Y32 Thailand TST 236 SNP296 D5bai China UNK
116 SNP163 Ki50-2-2 Thailand TST 237 SNP297 200B China UNK
117 SNP167 Y46 Thailand TST 238 SNP299 N87-1 China UNK
118 SNP168 NC250 USA UNK 239 SNP301 Z06MG63A Thailand TST
119 SNP169 T234 USA UNK 240 SNP302 P1505 Thailand TST
120 SNP170 Pa860 USA UNK 241 SNP303 PS61-20 Thailand TST
121 SNP171 A619 USA TEM

表1

拟轮枝镰孢穗腐病病级的描述性分析"

年份
Year
数量
Number
最小值
Mix.
最大值
Max.
平均值
Mean
标准差
SD
方差
Variance
偏度
Skewness
峰度
Kurtosis
2019 204 1 9 5.1 2.330 5.43 0.131 -1.074
2021 165 1.3 9 6.9 1.935 3.74 -0.589 -0.685

表2

拟轮枝镰孢穗腐病病级的方差分析"

变异来源
Variety source
自由度
DF
平方和
SS
均方
MS
F
F-value
P
P-value
年份间Years 1 261.336 261.336 86.213 1.505E-16
材料间Materials 153 947.545 6.193 2.043 6.000E-6

表3

GWAS定位到的与拟轮枝镰孢穗腐病显著关联的SNP标记及其上下游100 kb基因"

SNP标记
SNP marker
染色体
Chr.
位置
Position
Bin -log10 P 解释率
R2
上下游100 kb基因
±100 kb gene
AX86264384 1 982,217 1 3.031,20 0.054,82 intergenic
AX86239689 1 58,448,040 1.04 3.214,92 0.058,74 Zm00001eb016580
Zm00001eb016590
Zm00001eb016600
Zm00001eb016610
Zm00001eb016620
AX86240599 1 162,867,459 1.05 3.001,50 0.070,05 intergenic
AX86265634 1 177,443,709 1.06 3.413,71 0.064,56 Zm00001eb031680
Zm00001eb031690
Zm00001eb031700
Zm00001eb031720
AX86244185 3 53,147,014 3.04 3.216,04 0.059,48 Zm00001eb130060
Zm00001eb130130
AX86281919 3 57,099,660 3.04 3.288,93 0.060,88 Zm00001eb130540
Zm00001eb130620
AX86263059 4 234,604,561 4.09 3.629,20 0.068,04 Zm00001eb204400
Zm00001eb204410
Zm00001eb204420
Zm00001eb206420
AX86327405 5 61,001,643 5.03 3.355,63 0.062,73 Zm00001eb227450
Zm00001eb228010
AX86247989 5 17,227,961 5.03 3.202,36 0.076,92 Zm00001eb218580
Zm00001eb218590
Zm00001eb218600
Zm00001eb218610
Zm00001eb218620
Zm00001eb218920
AX86327352 5 35,709,957 5.03 3.112,58 0.073,17 Zm00001eb223110
Zm00001eb223120
Zm00001eb223130
Zm00001eb223140
Zm00001eb223150
Zm00001eb223450
AX86315513 5 127,605,217 5.04 3.060,36 0.073,38 Zm00001eb236820
AX86281732 5 188,847,011 5.05 3.286,45 0.061,14 Zm00001eb248520
AX86278532 5 195,444,128 5.06 3.065,45 0.055,59 Zm00001eb249220
Zm00001eb249230
Zm00001eb249240
Zm00001eb249250
Zm00001eb249260
Zm00001eb249270
Zm00001eb249280
Zm00001eb250480
AX86260761 6 72,898,758 6.01 3.201,10 0.058,85 Zm00001eb269500
Zm00001eb269510
Zm00001eb270670
AX86327616 6 82,620,628 6.01 3.366,46 0.062,11 Zm00001eb270710
Zm00001eb270720
Zm00001eb270730
Zm00001eb272010
AX86324688 7 126,535,776 7.02 3.325,53 0.078,94 Zm00001eb313980
Zm00001eb314000
Zm00001eb314010
Zm00001eb314020
Zm00001eb314030
Zm00001eb315060
AX116871835 7 137,546,858 7.03 3.417,68 0.081,50 Zm00001eb316500
Zm00001eb316510
Zm00001eb316520
Zm00001eb316530
Zm00001eb317410
AX86254010 8 160,401,941 8.06 4.021,00 0.077,28 intergenic
AX86297501 9 28,017,219 9.03 3.475,91 0.064,54 Zm00001eb378930
AX86297651 9 55,348,563 9.03 3.375,03 0.080,60 Zm00001eb382490
AX86254635 9 55,509,133 9.03 3.229,12 0.077,42 Zm00001eb382500
AX86297705 9 63,969,724 9.03 3.114,85 0.072,97 intergenic
AX86322919 10 121,729,641 10.04 3.142,13 0.058,30 Zm00001eb423120
Zm00001eb423130
Zm00001eb423140
Zm00001eb423150
Zm00001eb423160
AX86256765 10 121,898,083 10.04 3.402,57 0.063,66 Zm00001eb423170
AX86282683 10 122,953,537 10.04 3.488,80 0.064,83 Zm00001eb423440
Zm00001eb424280
AX86278095 10 123,371,489 10.04 3.671,69 0.069,48 Zm00001eb423520
Zm00001eb423540
Zm00001eb423550
Zm00001eb423560
Zm00001eb423570
Zm00001eb423580
Zm00001eb423590
Zm00001eb424400

图1

拟轮枝镰孢穗腐病抗性关联分析的Manhattan图和QQ图 A: 2019年关联分析Manhattan图; B: 2019年关联分析QQ图; C: 2021年关联分析Manhattan图; D: 2021年关联分析QQ图。"

附表2

拟轮枝镰孢穗腐病抗性关联SNP标记和已有QTL比较"

标记 染色体 位置 Bin 文献
Marker Chr. Position References
AX86240599 1 162,867,459 1.05 [1], [2]
AX86265634 1 177,443,709 1.06 [1]
AX86244185 3 53,147,014 3.04 [1], [3]-[4]
AX86281919 3 57,099,660 3.04
AX86263059 4 234,604,561 4.09 [5], [6]
AX86327405 5 61,001,643 5.03 [3], [7]
AX86247989 5 17,227,961 5.03
AX86327352 5 35,709,957 5.03
AX86315513 5 127,605,217 5.04 [1], [3], [8]
AX86260761 6 72,898,758 6.01 [2]
AX86327616 6 82,620,628 6.01
AX86324688 7 126,535,776 7.02 [2], [4]
AX116871835 7 137,546,858 7.03 [1], [4], [9], [10]
AX86254010 8 160,401,941 8.06 [1], [11]
AX86322919 10 121,729,641 10.04 [4], [9]
AX86256765 10 121,898,083 10.04
AX86282683 10 122,953,537 10.04
AX86278095 10 123,371,489 10.04

表4

抗病材料和感病材料不同处理间在3个取样时间的DEGs数目"

组合
Paired sample
5 min 1.5 hpi 6 hpi
上调
Up
下调
Down
总共
All
上调
Up
下调
Down
总共
All
上调
Up
下调
Down
总共
All
Rv vs R_CK 480 777 1257 633 192 825 2190 628 2818
Sv vs S_CK 219 860 1079 187 156 343 934 296 1230

图2

抗病材料3个取样时间DEGs的GO和KEGG分析 A: 5 min DEGs GO分析; B: 5 min DEGs KEGG分析; C: 1.5 hpi DEGs GO分析; D: 1.5 hpi DEGs KEGG分析; E: 6 hpi DEGs GO分析; F: 6 hpi DEGs KEGG分析。"

图3

感病材料3个取样时间DEGs的GO和KEGG分析 A: 5 min DEGs GO分析; B: 5 min DEGs KEGG分析; C: 1.5 hpi DEGs GO分析; D: 1.5 hpi DEGs KEGG分析; E: 6 hpi DEGs GO分析; F: 6 hpi DEGs KEGG分析。"

图4

材料特异性DEGs的GO和KEGG分析 A: 抗病材料I型基因GO分析; B: 抗病材料I型基因KEGG分析; C: 感病材料I型基因GO分析; D: 感病材料I型基因KEGG分析。"

图5

两个材料共有DEGs的GO和KEGG分析 A: 共有一致基因的GO分析; B: 共有一致基因的KEGG分析; C: 共有相反基因的GO分析; D: 共有相反基因的KEGG分析。"

表5

GWAS与RNA-seq共定位基因"

基因
Gene
描述
Description
Zm00001eb249280 含DUF632结构域蛋白 DUF632 domain-containing protein
Zm00001eb317410 II型肌醇多磷酸5-磷酸酶15 Type II inositol polyphosphate 5-phosphatase 15
Zm00001eb204420 含RING型结构域蛋白 RING-type domain-containing protein
Zm00001eb130130 半乳糖氧化酶/kelch重复序列超家族蛋白 Galactose oxidase/kelch repeat superfamily protein
m00001eb206420 甘油磷酸二酯磷酸二酯酶 Glycerophosphodiester phosphodiesterase
Zm00001eb016610 干燥相关蛋白PCC13-62 Desiccation-related protein PCC13-62
Zm00001eb218620 含GCK结构域的蛋白质 GCK domain-containing protein
Zm00001eb269500 含有C2结构域的蛋白质 C2 domain-containing protein
Zm00001eb423140 含有OTU结构域的蛋白质 OTU domain-containing protein
Zm00001eb218610 核转录因子Y亚单位 Nuclear transcription factor Y subunit
Zm00001eb130060 喹啉合酶 Quinolinate synthase
Zm00001eb249230 磷脂酶A1-β2叶绿体 Phospholipase A1-beta2 chloroplastic
Zm00001eb316510 磷脂酶A2, IVB族同种型6 Phospholipase A2, group IVB isoform 6
Zm00001eb423160 推定NAC结构域转录因子超家族蛋白 Putative NAC domain transcription factor superfamily protein
Zm00001eb272010 细胞周期蛋白-B2-4 Cyclin-B2-4
Zm00001eb236820 双向糖转运蛋白SWEET Bidirectional sugar transporter SWEET
[1] Ullstrup A J. An undescribed ear rot of corn caused by physalospora zeae. PhytoPathol, 1946, 36: 201-212.
[2] Atlin G N, Enersom P M, McGirr L G, Hunter R B. Gibberella ear rot development and zenrnlenone and vomitoxin production as affected by maize genotype and Gibberella zeae strain. Can J Plant Sci, 1983, 63: 847-853.
[3] Folcher L, Jarry M, Weissenberger A, Gerault F, Eychenne N, Delos M, Regnault-Roger C. Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers and Fusarium mycoflflora in maize (Zea mays L.) fields. Crop Prot, 2009, 28: 302-308.
[4] Lanubile A, Maschietto V, Borrelli V M, Stagnati L, Logrieco A F, Marocco A. Molecular basis of resistance to fusarium ear rot in maize. Front Plant Sci, 2017, 8: 1774.
doi: 10.3389/fpls.2017.01774 pmid: 29075283
[5] Rheeder J P, Marasas W F O, Van Wyk P S, Van Schalkwyki D J. Reaction of South African maize cultivars to ear inoculation with Fusarium moniliforme, Fusarium graminearum and Diplodia maydis. Phytophylaetica, 1990, 22: 213-218.
[6] 段灿星, 王晓鸣, 宋凤景, 孙素丽, 周丹妮, 朱振东. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48: 2152-2164.
doi: 10.3864/j.issn.0578-1752.2015.11.007
Duan C X, Wang X M, Song F J, Sun S L, Zhou D N, Zhu Z D. Advances in research on maize resistance to ear rot. Sci Agric Sin, 2015, 48: 2152-2164 (in Chinese with English abstract).
[7] 席靖豪. 黄淮海夏玉米穗腐病病原多样性分析及玉米新品种抗病性鉴定. 河南农业大学硕士学位论文, 河南郑州, 2018.
Xi J H. Pathogen Diversity of Summer Maize Ear Rot in Huang- Huai-Hai Region and Resistance Identification of New Maize Cultivars. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018 (in Chinese with English abstract).
[8] 杨石有, 刘倩宇, 万亚美, 郭聪聪, 庞民好, 刘颖超, 董金皋. 拟轮枝镰孢对多菌灵的敏感性及抗性菌株生物学性状和交互抗性. 农药学学报, 2020, 22: 439-446.
Yang S Y, Liu Q Y, Wan Y M, Guo C C, Pang M H, Liu Y C, Dong J G. Sensitivity of Fusarium verticillioides to carbendazim and biological characteristics of resistant isolates and cross resistance. Chin J Pestic Sci, 2020, 22: 439-446 (in Chinese with English abstract).
[9] 程璐, 陈家斌, 张艺璇, 杨丹丹, 谭静. 两种优势病原菌玉米穗腐病的研究比较. 云南大学学报(自然科学版), 2022, 44: 647-654.
Cheng L, Chen J B, Zhang Y X, Yang D D, Tan J. Research comparison of two dominant pathogens on maize ear rot. J Yunnan Univ (Nat Sci Edn), 2022, 44: 647-654 (in Chinese with English abstract).
[10] 胡颖雄, 刘玉博, 王慧, 靳林朋, 林凤, 张学才, 郑洪建. 玉米穗腐病抗性遗传与育种研究进展. 玉米科学, 2021, 29(2): 171-178.
Hu Y X, Liu Y B, Wang H, Jin L P, Lin F, Zhang X C, Zheng H J. Research progress on ear rot resistant genetics and breeding in maize. J Maize Sci, 2021, 29(2): 171-178 (in Chinese with English abstract).
[11] 张帆, 万雪琴, 潘光堂. 玉米抗穗粒腐病QTL定位. 作物学报, 2007, 33: 491-496.
Zhang F, Wan X Q, Pan G T. Molecular mapping of QTL for resistance to maize ear rot caused by Fusarium moniliforme. Acta Agron Sin, 2007, 33: 491-496 (in Chinese with English abstract).
[12] 张艳, 谭静. 玉米穗粒腐病的研究进展. 现代农业科技, 2014, (21): 121-122.
Zhang Y, Tan J. Research progress on ear rot in maize. Modern Agric Sci Technol 2014, (21): 121-122 (in Chinese with English abstract).
[13] 邹刚, 杨建, 陈莉. 西南区玉米主要病害研究. 现代农业科技, 2014, (8): 124-125.
Zou G, Yang J, Chen L. Research on diseases of maize in southwest of China. Mod Agric Sci Technol, 2014, (8): 124-125 (in Chinese with English abstract).
[14] Mesterházy A, Lemmens M, Reid L M. Breeding for resistance to ear rots caused by Fusarium spp. in maize: a review. Plant Breed, 2012, 131: 1-19.
[15] 李辉, 向葵, 张志明, 袁广胜, 潘光堂. 玉米穗腐病抗性机制及抗病育种研究进展. 玉米科学, 2019, 27(4): 167-174.
Li H, Xiang K, Zhang Z M, Yuan G S, Pan G T. Research progress on ear rot resistant mechanism and resistant breeding in maize. J Maize Sci, 2019, 27(4): 167-174 (in Chinese with English abstract).
[16] 宋立秋, 魏利民, 王振营, 何康来, 丛斌. 亚洲玉米螟与串珠镰孢菌复合侵染对玉米产量损失的影响. 植物保护学报, 2009, 36: 487-490.
Song L Q, Wei L M, Wang Z Y, He K L, Cong B. Effect of infestation by the Asian corn borer together with Fusarium verticillioides on corn yield loss. Acta Phytophy Sin, 2009, 36: 487-490 (in Chinese with English abstract).
[17] 王宝宝. 玉米穗腐病致病镰孢菌鉴定与寄主抗性. 中国农业科学院硕士学位论文, 北京, 2020.
Wang B B. Identification of Pathogenic Fusarium Species Causing Maize Ear Rot and Study on Host Resistance. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2020 (in Chinese with English abstract).
[18] Rogers K D, Cannistra J C, Gloer J B, Wicklow D T. Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Mycotoxin Res, 2014, 30: 61-70.
doi: 10.1007/s12550-014-0188-0 pmid: 24504633
[19] Sabrova P, Adam V, Vasatikova A, Beklova M, Zeman L, Kizek R. Deoxynivalenol and its toxicity. Inter Toxic, 2010, 3: 94-99.
[20] Wu F. Measuring the economic impacts of Fusarium toxins in animal feeds. Anim Feed Sci Technol, 2007, 137: 363-374.
[21] 王晓英, 刘秀梅. 串珠镰刀菌伏马菌素产毒株分子遗传学研究进展. 卫生研究, 2005, 34: 248-251.
Wang X Y, Liu X M. Molecular genetics on fumonisin-producing strains of Fusarium verticillioides. J Hyg Res, 2005, 34: 248-251 (in Chinese with English abstract).
[22] 赵献军. 串珠镰刀菌素研究进展. 动物医学进展, 2002, 23(4): 19-22.
Zhao X J. The progress in research of moniliformin. Prog Vet Med, 2002, 23(4): 19-22 (in Chinese with English abstract).
[23] 陈威, 吴建宇, 袁虹霞. 玉米穗粒腐病抗病资源鉴定. 玉米科学, 2002, 10(4): 59-60.
Chen W, Wu J Y, Yuan H X. Identification of resistance on maize germplasm to maize ear rot. J Maize Sci, 2002, 10(4): 59-60 (in Chinese with English abstract).
[24] 陈甲法. 关联分析结合连锁分析鉴定玉米穗粒腐病的抗性QTL. 河南农业大学博士学位论文, 河南郑州, 2012.
Chen J F. Combine Association and Linkage Mapping Method to Identify the Resistance QTL for Fusarium Ear Rot. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2012 (in Chinese with English abstract).
[25] 张小飞, 邹成佳, 崔丽娜, 李晓, 杨晓蓉, 罗怀海. 西南地区玉米穗腐病病原分离鉴定及接种方法研究. 西南农业学报, 2012, 25: 2078-2082.
Zhang X F, Zou C J, Cui L N, Li X, Yang X R, Luo H H. Identification of pathogen causing maize ear rot and inoculation technique in Southwest China. Southwest China J Agric Sci, 2012, 25: 2078-2082 (in Chinese with English abstract).
[26] 段灿星, 王晓鸣, 武小菲, 杨知还, 宋凤景, 赵立萍, 孙素丽, 朱振东. 玉米种质和新品种对腐霉茎腐病和镰孢穗腐病的抗性分析. 植物遗传资源学报, 2015, 16: 947-954.
doi: 10.13430/j.cnki.jpgr.2015.05.004
Duan C X, Wang X M, Wu X F, Yang Z H, Song F J, Zhao L P, Sun S L, Zhu Z D. Analysis of maize accessions resistance to Pythium stalk rot and Fusarium ear rot. J Plant Genet Resour, 2015, 16: 947-954 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2015.05.004
[27] Guo Z F, Zou C, Liu X G, Wang S H, Li W X, Jeffers D, Fan X M, Xu M L, Xu Y B. Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic prediction. Plant Dis, 2020, 104: 1725-1735.
doi: 10.1094/PDIS-07-19-1552-RE pmid: 32320373
[28] Yao L S, Li Y M, Ma C Y, Tong L X, Du F L, Xu M L. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J Integr Plant Biol, 2020, 62: 1535-1551.
[29] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析. 作物学报, 2022, 48: 2155-2167.
doi: 10.3724/SP.J.1006.2022.13055
Duan C X, Cui L N, Xia Y S, Dong H Y, Yang Z H, Hu Q Y, Sun S L, Li X, Zhu Z D, Wang X M. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot. Acta Agron Sin, 2022, 48: 2155-2167 (in Chinese with English abstract).
[30] 夏玉生, 郭成, 温胜慧, 孙素丽, 朱振东, 段灿星. 玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析. 植物遗传资源学报, 2022, 23: 61-71.
doi: 10.13430/j.cnki.jpgr.20210727001
Xia Y S, Guo C, Wen S H, Sun S L, Zhu Z D, Duan C X. Identification of maize germplasm resistant to Fusarium ear rot and Gibberella ear rot and genetic diversity analysis of resistant lines. J Plant Genet Resour, 2022, 23: 61-71 (in Chinese with English abstract).
[31] Santiago R, Cao A, Malvar R A, Butron A. Genomics of maize resistance to Fusarium ear rot and fumonisin contamination. Toxins, 2020, 12: 431.
[32] Pérez-Brito D, Jeffers D, González-De-León D, Khairallah M, Srinivasan G. QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, Mexico. Agrociencia, 2001, 35: 181-196.
[33] Ding J Q, Wang X M, Chander S, Yan J B, Li J S. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed, 2008, 22: 395-403.
[34] Li Z M, Ding J Q, Wang R X, Chen J F, Sun X D, Chen W, Song W B, Dong H F, Dai X D, Xia Z L, Wu J Y. A new QTL for resistance to Fusarium ear rot in maize. J Appl Genet, 2011, 52: 403-406.
[35] Chen J F, Ding J Q, Li H M, Li Z M, Sun X D, Li J J, Wang R X, Dai X D, Dong H F, Song W B, Chen W, Xia Z L, Wu J Y. Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed, 2012, 30: 1649-1656.
[36] Septiani P, Lanubile A, Stagnati L, Busconi M, Nelissen H, Pe M E, Dell’Acqua M, Marocco A. Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: novel targets for breeding. Sci Rep, 2019, 9: 5665.
doi: 10.1038/s41598-019-42248-0 pmid: 30952942
[37] 郑德波, 邹成林, 谭华, 翟瑞宁, 莫润秀, 黄爱花, 黄开健. 玉米抗穗粒腐病QTL定位研究. 广东农业科学, 2019, 46(8): 104-110.
Zheng D B, Zou C L, Tan H, Zhai R N, Mo R X, Huang A H, Huang K J. QTL mapping for resistance to Fusarium ear rot in maize. Guangdong Agric Sci, 2019, 46(8): 104-110 (in Chinese with English abstract).
[38] 刘玉博. 玉米穗粒腐病抗病遗传规律解析及全基因组预测研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2020.
Liu Y B. Genetic Dissection of Fusarium Ear Rot Resistance in Maize and Genomic Prediction Analysis. PhD Dissertation of Shenyang Agricultural University, Liaoning, Shenyang, China, 2020 (in Chinese with English abstract).
[39] 闻竞, 沈彦岐, 韩四平, 邢跃先, 张叶, 王梓钰, 李世界, 杨小红, 郝东云, 张艳. 玉米拟轮枝镰孢菌穗腐病抗性基因的挖掘. 作物学报, 2020, 46: 1303-1311.
doi: 10.3724/SP.J.1006.2020.03004
Wen J, Shen Y Q, Han S P, Xing Y X, Zhang Y, Wang Z Y, Li S J, Yang X H, Hao D Y, Zhang Y. Exploration of specific gene(s) for ear rot resistance to Fusarium verticilloides in maize. Acta Agron Sin, 2020, 46: 1303-1311 (in Chinese with English abstract).
[40] Xia Y S, Wang B B, Zhu L H, Wu W Q, Sun S L, Zhu Z D, Li X H, Weng J F, Duan C X. Identification of a Fusarium ear rot resistance gene in maize by QTL mapping and RNA Sequencing. Front Plant Sci, 2022, 13: 954546.
[41] Feng X J, Xiong H, Zheng D, Xin X B, Zhang X M, Wang Q J, Wu F K, Xu J, Lu Y L. Identification of Fusarium verticillioides resistance alleles in three maize populations with Teosinte gene introgression. Front Plant Sci, 2022, 13: 942397.
[42] Ma P P, Li H J, Liu E P, He K W, Song Y X, Dong C P, Wang Z, Zhang X C, Zhou Z J, Xu Y F, Wu J Y, Zhang H Y. Evaluation and identification of resistance lines and QTLs of maize to seedborne Fusarium verticillioides. Plant Dis, 2022, 106: 2066-2073.
[43] 吴亚滨. 玉米第四染色体对穗粒腐病抗性的遗传解析. 河南农业大学博士学位论文, 河南郑州, 2017.
Wu Y B. Inheritance of Resistance to Fusarium Ear Rot on Chromosome 4 in Maize.PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2017 (in Chinese with English abstract).
[44] 王丽娟, 徐秀德, 刘志恒, 董怀玉, 姜钰, 张明会. 玉米抗镰刀菌穗腐病接种方法及抗病资源筛选研究. 植物遗传资源学报, 2007, 8: 145-148.
Wang L J, Xu X D, Liu Z H, Dong H Y, Jiang Y, Zhang M H. Inoculation technique and screening maize germplasm resistance to Fusarium ear rot. J Plant Genet Resour, 2007, 8: 145-148 (in Chinese with English abstract).
[45] 王昭, 穆聪, 李云梦, 高景阳, 宋云霞, 董朝沛, 马培培, 赫可伟, 许静, 董华芳, 孙小东, 韩亚楠, 周子健, 陈甲法, 吴建宇. 玉米穗轴对穗腐病抗性鉴定体系与优异抗源的研究. 玉米科学, 2020, 28(6): 162-167.
Wang Z, Mu C, Li Y M, Gao J Y, Song Y X, Dong C P, Ma P P, He K W, Xu J, Dong H F, Sun X D, Han Y N, Zhou Z J, Chen J F, Wu J Y. Study on cob inoculation system and elite resistant inbred lines screened to maize ear rot. J Maize Sci, 2020, 28(6): 162-167 (in Chinese with English abstract).
[46] Cao A, Santiago R, Ramos A J, Marin S, Reid L M, Butron A. Environmental factors related to fungal infection and fumonisin accumulation during the development and drying of white maize kernels. Int J Food Microbiol, 2013, 164: 15-22.
doi: 10.1016/j.ijfoodmicro.2013.03.012 pmid: 23587708
[47] Zila C T, Samayoa L F, Santiago R, Butron A, Holland J B. A genome-wide association study reveals genes associated with fusarium ear rot resistance in a maize core diversity panel. G3: Gene Genome Genet, 2013, 3: 2095-2104.
[48] Yuan G S, Zhang Z M, Xiang K, Zhao M J, Shen Y O, Pan G T. Large-scale identification of differentially expressed genes in maize inbreds susceptible and resistant to Fusarium ear rot. Plant Omics, 2012, 5: 471-475.
[49] Atanasova-Penichon V, Barreau C, Richard-Forget F. Antioxidant secondary metabolites in cereals: potential involvement in resistance to Fusarium and mycotoxin accumulation. Front Microbiol, 2016, 7: 566.
doi: 10.3389/fmicb.2016.00566 pmid: 27148243
[50] 杨晨旭, 哈斯巴根, 杜超. 植物NAC转录因子结构和功能研究进展. 分子植物育种, 网络首发[2023-04-04], http://kns.cnki.net/kcms/detail/46.1068.S.20230403.1809.023.html.
Yang C X, Khasbagan, Du C. Research progress on the structure and function of plant NAC transcription factors. Mol Plant Breed, Published online [2023-04-04], http://kns.cnki.net/kcms/detail/46.1068.S.20230403.1809.023.html (in Chinese with English abstract).
[51] Tan X X, Zhang H H, Yang Z H, Wei Z Y, Li Y J, Chen J P, Sun Z T. NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice. PLoS Pathog, 2022, 18: e1010548.
doi: 10.1371/journal.ppat.1010548 pmid: 35560151
[52] Xing J J, Li X J, Wang X H, Lv X Q, Wang L, Zhang L, Zhu Y F, Shen Q H, Baluska F, Samaj J, Lin J X. Secretion of phospholipase D delta functions as a regulatory mechanism in plant innate immunity. Plant Cell, 2019, 31: 3015-3032.
[53] Chen G, Greer M S, Weselake R J. Plant phospholipase A: advances in molecular biology, biochemistry, and cellular function. BioMol Concep, 2013, 4: 527-532.
[54] Liu H X, Ravichandran S, Teh O K, McVey S, Lilley C, Teresinski H J, Gonzalez-Ferrer C, Mullen R T, Hofius D, Prithiviraj B, Stone S L. The RING-Type E3 ligase XBAT35.2 is involved in cell death induction and pathogen response. Plant Physiol, 2017, 175: 1469-1483.
doi: 10.1104/pp.17.01071 pmid: 28951488
[55] Liu Q N, Yan T Y, Tan X X, Wei Z Y, Li Y J, Sun Z T, Zhang H H, Chen J P. Genome-wide identification and gene expression analysis of the OTU DUB family in Oryza sativa. Viruses, 2022, 14: 392.
[1] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[2] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[3] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[4] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[5] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[6] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[7] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[8] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[9] 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad YOUSOF, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103.
[10] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[11] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[12] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[13] 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956.
[14] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[15] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!