作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2279-2296.doi: 10.3724/SP.J.1006.2024.33049
所属专题: 玉米:遗传育种·种质资源·分子遗传学
叶靓(
), 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静*(
)
YE Liang(
), ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing*(
)
摘要:
玉米是我国第一大粮食作物, 实现玉米的高产稳产对于我国粮食安全、农业稳定有重要意义。穗腐病是一种严重危害全球玉米的真菌性病害, 会造成玉米大幅减产和品质劣变。本研究选用我国玉米穗腐病的优势致病菌拟轮枝镰孢(Fusarium verticillioides), 对241份来源广泛的玉米自交系进行2年田间人工接种抗性鉴定, 同时利用20,586个高质量SNP标记通过全基因组关联分析(genome-wide association study, GWAS), 鉴定拟轮枝镰孢穗腐病抗性显著关联的SNP位点; 在此基础上选取对拟轮枝镰孢穗腐病表现高抗和高感的玉米自交系各1份, 其籽粒在室内接种拟轮枝镰孢, 通过对3个不同侵染时间的籽粒进行转录组测序(RNA-seq), 分析抗感材料差异表达基因(differentially expressed genes, DEGs)及其富集情况; 结合GWAS和RNA-seq结果, 共同定位筛选抗病候选基因。主要研究结果如下: (1) 综合2年田间抗性鉴定结果, 筛选到4份抗拟轮枝镰孢穗腐病的玉米自交系, 其中含有热带血缘的玉米种质对拟轮枝镰孢穗腐病表现出更好的抗性。(2) 2年GWAS分析共检测到26个与拟轮枝镰孢穗腐病抗性显著关联的SNP位点, 其中有18个位点位于前人定位到的QTL范围内。(3) RNA-seq结果表明, 抗感材料对病原菌的响应基因不同。与感病材料相比, 抗病材料均显示出更多的DEGs, 且都有更多的上调基因; 在抗感材料特异性DEGs共同富集的GO条目和KEGG通路中, 抗病材料中富集到的DEGs占比显著多于感病材料; 一些与植物防御病原菌相关的条目和通路也仅在抗病材料中被特异富集。(4) 在GWAS检测到的显著关联位点上下游100 kb范围内筛选与转录组DEGs共同定位到的候选基因, 结果16个基因被GWAS和RNA-seq同时检测到; 根据这些基因的蛋白功能及相关文献报道, 从中预测到6个与拟轮枝镰孢穗腐病抗性相关的候选基因。综上所述, 本研究筛选出4份抗拟轮枝镰孢穗腐病的玉米自交系, 来自热带、亚热带的玉米种质可以作为抗逆性品种选育的研究重点; 对抗感玉米自交系响应拟轮枝镰孢侵染的DEGs及其相关抗病机制进行了初步解析, 联合GWAS和RNA-seq共定位到6个与拟轮枝镰孢穗腐病抗性相关的候选基因, 研究结果为玉米穗腐病抗性基因的克隆验证与抗性品种的培育提供了一定的理论依据。
| [1] | Ullstrup A J. An undescribed ear rot of corn caused by physalospora zeae. PhytoPathol, 1946, 36: 201-212. |
| [2] | Atlin G N, Enersom P M, McGirr L G, Hunter R B. Gibberella ear rot development and zenrnlenone and vomitoxin production as affected by maize genotype and Gibberella zeae strain. Can J Plant Sci, 1983, 63: 847-853. |
| [3] | Folcher L, Jarry M, Weissenberger A, Gerault F, Eychenne N, Delos M, Regnault-Roger C. Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers and Fusarium mycoflflora in maize (Zea mays L.) fields. Crop Prot, 2009, 28: 302-308. |
| [4] |
Lanubile A, Maschietto V, Borrelli V M, Stagnati L, Logrieco A F, Marocco A. Molecular basis of resistance to fusarium ear rot in maize. Front Plant Sci, 2017, 8: 1774.
doi: 10.3389/fpls.2017.01774 pmid: 29075283 |
| [5] | Rheeder J P, Marasas W F O, Van Wyk P S, Van Schalkwyki D J. Reaction of South African maize cultivars to ear inoculation with Fusarium moniliforme, Fusarium graminearum and Diplodia maydis. Phytophylaetica, 1990, 22: 213-218. |
| [6] |
段灿星, 王晓鸣, 宋凤景, 孙素丽, 周丹妮, 朱振东. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48: 2152-2164.
doi: 10.3864/j.issn.0578-1752.2015.11.007 |
| Duan C X, Wang X M, Song F J, Sun S L, Zhou D N, Zhu Z D. Advances in research on maize resistance to ear rot. Sci Agric Sin, 2015, 48: 2152-2164 (in Chinese with English abstract). | |
| [7] | 席靖豪. 黄淮海夏玉米穗腐病病原多样性分析及玉米新品种抗病性鉴定. 河南农业大学硕士学位论文, 河南郑州, 2018. |
| Xi J H. Pathogen Diversity of Summer Maize Ear Rot in Huang- Huai-Hai Region and Resistance Identification of New Maize Cultivars. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018 (in Chinese with English abstract). | |
| [8] | 杨石有, 刘倩宇, 万亚美, 郭聪聪, 庞民好, 刘颖超, 董金皋. 拟轮枝镰孢对多菌灵的敏感性及抗性菌株生物学性状和交互抗性. 农药学学报, 2020, 22: 439-446. |
| Yang S Y, Liu Q Y, Wan Y M, Guo C C, Pang M H, Liu Y C, Dong J G. Sensitivity of Fusarium verticillioides to carbendazim and biological characteristics of resistant isolates and cross resistance. Chin J Pestic Sci, 2020, 22: 439-446 (in Chinese with English abstract). | |
| [9] | 程璐, 陈家斌, 张艺璇, 杨丹丹, 谭静. 两种优势病原菌玉米穗腐病的研究比较. 云南大学学报(自然科学版), 2022, 44: 647-654. |
| Cheng L, Chen J B, Zhang Y X, Yang D D, Tan J. Research comparison of two dominant pathogens on maize ear rot. J Yunnan Univ (Nat Sci Edn), 2022, 44: 647-654 (in Chinese with English abstract). | |
| [10] | 胡颖雄, 刘玉博, 王慧, 靳林朋, 林凤, 张学才, 郑洪建. 玉米穗腐病抗性遗传与育种研究进展. 玉米科学, 2021, 29(2): 171-178. |
| Hu Y X, Liu Y B, Wang H, Jin L P, Lin F, Zhang X C, Zheng H J. Research progress on ear rot resistant genetics and breeding in maize. J Maize Sci, 2021, 29(2): 171-178 (in Chinese with English abstract). | |
| [11] | 张帆, 万雪琴, 潘光堂. 玉米抗穗粒腐病QTL定位. 作物学报, 2007, 33: 491-496. |
| Zhang F, Wan X Q, Pan G T. Molecular mapping of QTL for resistance to maize ear rot caused by Fusarium moniliforme. Acta Agron Sin, 2007, 33: 491-496 (in Chinese with English abstract). | |
| [12] | 张艳, 谭静. 玉米穗粒腐病的研究进展. 现代农业科技, 2014, (21): 121-122. |
| Zhang Y, Tan J. Research progress on ear rot in maize. Modern Agric Sci Technol 2014, (21): 121-122 (in Chinese with English abstract). | |
| [13] | 邹刚, 杨建, 陈莉. 西南区玉米主要病害研究. 现代农业科技, 2014, (8): 124-125. |
| Zou G, Yang J, Chen L. Research on diseases of maize in southwest of China. Mod Agric Sci Technol, 2014, (8): 124-125 (in Chinese with English abstract). | |
| [14] | Mesterházy A, Lemmens M, Reid L M. Breeding for resistance to ear rots caused by Fusarium spp. in maize: a review. Plant Breed, 2012, 131: 1-19. |
| [15] | 李辉, 向葵, 张志明, 袁广胜, 潘光堂. 玉米穗腐病抗性机制及抗病育种研究进展. 玉米科学, 2019, 27(4): 167-174. |
| Li H, Xiang K, Zhang Z M, Yuan G S, Pan G T. Research progress on ear rot resistant mechanism and resistant breeding in maize. J Maize Sci, 2019, 27(4): 167-174 (in Chinese with English abstract). | |
| [16] | 宋立秋, 魏利民, 王振营, 何康来, 丛斌. 亚洲玉米螟与串珠镰孢菌复合侵染对玉米产量损失的影响. 植物保护学报, 2009, 36: 487-490. |
| Song L Q, Wei L M, Wang Z Y, He K L, Cong B. Effect of infestation by the Asian corn borer together with Fusarium verticillioides on corn yield loss. Acta Phytophy Sin, 2009, 36: 487-490 (in Chinese with English abstract). | |
| [17] | 王宝宝. 玉米穗腐病致病镰孢菌鉴定与寄主抗性. 中国农业科学院硕士学位论文, 北京, 2020. |
| Wang B B. Identification of Pathogenic Fusarium Species Causing Maize Ear Rot and Study on Host Resistance. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2020 (in Chinese with English abstract). | |
| [18] |
Rogers K D, Cannistra J C, Gloer J B, Wicklow D T. Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Mycotoxin Res, 2014, 30: 61-70.
doi: 10.1007/s12550-014-0188-0 pmid: 24504633 |
| [19] | Sabrova P, Adam V, Vasatikova A, Beklova M, Zeman L, Kizek R. Deoxynivalenol and its toxicity. Inter Toxic, 2010, 3: 94-99. |
| [20] | Wu F. Measuring the economic impacts of Fusarium toxins in animal feeds. Anim Feed Sci Technol, 2007, 137: 363-374. |
| [21] | 王晓英, 刘秀梅. 串珠镰刀菌伏马菌素产毒株分子遗传学研究进展. 卫生研究, 2005, 34: 248-251. |
| Wang X Y, Liu X M. Molecular genetics on fumonisin-producing strains of Fusarium verticillioides. J Hyg Res, 2005, 34: 248-251 (in Chinese with English abstract). | |
| [22] | 赵献军. 串珠镰刀菌素研究进展. 动物医学进展, 2002, 23(4): 19-22. |
| Zhao X J. The progress in research of moniliformin. Prog Vet Med, 2002, 23(4): 19-22 (in Chinese with English abstract). | |
| [23] | 陈威, 吴建宇, 袁虹霞. 玉米穗粒腐病抗病资源鉴定. 玉米科学, 2002, 10(4): 59-60. |
| Chen W, Wu J Y, Yuan H X. Identification of resistance on maize germplasm to maize ear rot. J Maize Sci, 2002, 10(4): 59-60 (in Chinese with English abstract). | |
| [24] | 陈甲法. 关联分析结合连锁分析鉴定玉米穗粒腐病的抗性QTL. 河南农业大学博士学位论文, 河南郑州, 2012. |
| Chen J F. Combine Association and Linkage Mapping Method to Identify the Resistance QTL for Fusarium Ear Rot. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2012 (in Chinese with English abstract). | |
| [25] | 张小飞, 邹成佳, 崔丽娜, 李晓, 杨晓蓉, 罗怀海. 西南地区玉米穗腐病病原分离鉴定及接种方法研究. 西南农业学报, 2012, 25: 2078-2082. |
| Zhang X F, Zou C J, Cui L N, Li X, Yang X R, Luo H H. Identification of pathogen causing maize ear rot and inoculation technique in Southwest China. Southwest China J Agric Sci, 2012, 25: 2078-2082 (in Chinese with English abstract). | |
| [26] |
段灿星, 王晓鸣, 武小菲, 杨知还, 宋凤景, 赵立萍, 孙素丽, 朱振东. 玉米种质和新品种对腐霉茎腐病和镰孢穗腐病的抗性分析. 植物遗传资源学报, 2015, 16: 947-954.
doi: 10.13430/j.cnki.jpgr.2015.05.004 |
|
Duan C X, Wang X M, Wu X F, Yang Z H, Song F J, Zhao L P, Sun S L, Zhu Z D. Analysis of maize accessions resistance to Pythium stalk rot and Fusarium ear rot. J Plant Genet Resour, 2015, 16: 947-954 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2015.05.004 |
|
| [27] |
Guo Z F, Zou C, Liu X G, Wang S H, Li W X, Jeffers D, Fan X M, Xu M L, Xu Y B. Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic prediction. Plant Dis, 2020, 104: 1725-1735.
doi: 10.1094/PDIS-07-19-1552-RE pmid: 32320373 |
| [28] | Yao L S, Li Y M, Ma C Y, Tong L X, Du F L, Xu M L. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J Integr Plant Biol, 2020, 62: 1535-1551. |
| [29] |
段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析. 作物学报, 2022, 48: 2155-2167.
doi: 10.3724/SP.J.1006.2022.13055 |
| Duan C X, Cui L N, Xia Y S, Dong H Y, Yang Z H, Hu Q Y, Sun S L, Li X, Zhu Z D, Wang X M. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot. Acta Agron Sin, 2022, 48: 2155-2167 (in Chinese with English abstract). | |
| [30] |
夏玉生, 郭成, 温胜慧, 孙素丽, 朱振东, 段灿星. 玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析. 植物遗传资源学报, 2022, 23: 61-71.
doi: 10.13430/j.cnki.jpgr.20210727001 |
| Xia Y S, Guo C, Wen S H, Sun S L, Zhu Z D, Duan C X. Identification of maize germplasm resistant to Fusarium ear rot and Gibberella ear rot and genetic diversity analysis of resistant lines. J Plant Genet Resour, 2022, 23: 61-71 (in Chinese with English abstract). | |
| [31] | Santiago R, Cao A, Malvar R A, Butron A. Genomics of maize resistance to Fusarium ear rot and fumonisin contamination. Toxins, 2020, 12: 431. |
| [32] | Pérez-Brito D, Jeffers D, González-De-León D, Khairallah M, Srinivasan G. QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, Mexico. Agrociencia, 2001, 35: 181-196. |
| [33] | Ding J Q, Wang X M, Chander S, Yan J B, Li J S. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed, 2008, 22: 395-403. |
| [34] | Li Z M, Ding J Q, Wang R X, Chen J F, Sun X D, Chen W, Song W B, Dong H F, Dai X D, Xia Z L, Wu J Y. A new QTL for resistance to Fusarium ear rot in maize. J Appl Genet, 2011, 52: 403-406. |
| [35] | Chen J F, Ding J Q, Li H M, Li Z M, Sun X D, Li J J, Wang R X, Dai X D, Dong H F, Song W B, Chen W, Xia Z L, Wu J Y. Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed, 2012, 30: 1649-1656. |
| [36] |
Septiani P, Lanubile A, Stagnati L, Busconi M, Nelissen H, Pe M E, Dell’Acqua M, Marocco A. Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: novel targets for breeding. Sci Rep, 2019, 9: 5665.
doi: 10.1038/s41598-019-42248-0 pmid: 30952942 |
| [37] | 郑德波, 邹成林, 谭华, 翟瑞宁, 莫润秀, 黄爱花, 黄开健. 玉米抗穗粒腐病QTL定位研究. 广东农业科学, 2019, 46(8): 104-110. |
| Zheng D B, Zou C L, Tan H, Zhai R N, Mo R X, Huang A H, Huang K J. QTL mapping for resistance to Fusarium ear rot in maize. Guangdong Agric Sci, 2019, 46(8): 104-110 (in Chinese with English abstract). | |
| [38] | 刘玉博. 玉米穗粒腐病抗病遗传规律解析及全基因组预测研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2020. |
| Liu Y B. Genetic Dissection of Fusarium Ear Rot Resistance in Maize and Genomic Prediction Analysis. PhD Dissertation of Shenyang Agricultural University, Liaoning, Shenyang, China, 2020 (in Chinese with English abstract). | |
| [39] |
闻竞, 沈彦岐, 韩四平, 邢跃先, 张叶, 王梓钰, 李世界, 杨小红, 郝东云, 张艳. 玉米拟轮枝镰孢菌穗腐病抗性基因的挖掘. 作物学报, 2020, 46: 1303-1311.
doi: 10.3724/SP.J.1006.2020.03004 |
| Wen J, Shen Y Q, Han S P, Xing Y X, Zhang Y, Wang Z Y, Li S J, Yang X H, Hao D Y, Zhang Y. Exploration of specific gene(s) for ear rot resistance to Fusarium verticilloides in maize. Acta Agron Sin, 2020, 46: 1303-1311 (in Chinese with English abstract). | |
| [40] | Xia Y S, Wang B B, Zhu L H, Wu W Q, Sun S L, Zhu Z D, Li X H, Weng J F, Duan C X. Identification of a Fusarium ear rot resistance gene in maize by QTL mapping and RNA Sequencing. Front Plant Sci, 2022, 13: 954546. |
| [41] | Feng X J, Xiong H, Zheng D, Xin X B, Zhang X M, Wang Q J, Wu F K, Xu J, Lu Y L. Identification of Fusarium verticillioides resistance alleles in three maize populations with Teosinte gene introgression. Front Plant Sci, 2022, 13: 942397. |
| [42] | Ma P P, Li H J, Liu E P, He K W, Song Y X, Dong C P, Wang Z, Zhang X C, Zhou Z J, Xu Y F, Wu J Y, Zhang H Y. Evaluation and identification of resistance lines and QTLs of maize to seedborne Fusarium verticillioides. Plant Dis, 2022, 106: 2066-2073. |
| [43] | 吴亚滨. 玉米第四染色体对穗粒腐病抗性的遗传解析. 河南农业大学博士学位论文, 河南郑州, 2017. |
| Wu Y B. Inheritance of Resistance to Fusarium Ear Rot on Chromosome 4 in Maize.PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2017 (in Chinese with English abstract). | |
| [44] | 王丽娟, 徐秀德, 刘志恒, 董怀玉, 姜钰, 张明会. 玉米抗镰刀菌穗腐病接种方法及抗病资源筛选研究. 植物遗传资源学报, 2007, 8: 145-148. |
| Wang L J, Xu X D, Liu Z H, Dong H Y, Jiang Y, Zhang M H. Inoculation technique and screening maize germplasm resistance to Fusarium ear rot. J Plant Genet Resour, 2007, 8: 145-148 (in Chinese with English abstract). | |
| [45] | 王昭, 穆聪, 李云梦, 高景阳, 宋云霞, 董朝沛, 马培培, 赫可伟, 许静, 董华芳, 孙小东, 韩亚楠, 周子健, 陈甲法, 吴建宇. 玉米穗轴对穗腐病抗性鉴定体系与优异抗源的研究. 玉米科学, 2020, 28(6): 162-167. |
| Wang Z, Mu C, Li Y M, Gao J Y, Song Y X, Dong C P, Ma P P, He K W, Xu J, Dong H F, Sun X D, Han Y N, Zhou Z J, Chen J F, Wu J Y. Study on cob inoculation system and elite resistant inbred lines screened to maize ear rot. J Maize Sci, 2020, 28(6): 162-167 (in Chinese with English abstract). | |
| [46] |
Cao A, Santiago R, Ramos A J, Marin S, Reid L M, Butron A. Environmental factors related to fungal infection and fumonisin accumulation during the development and drying of white maize kernels. Int J Food Microbiol, 2013, 164: 15-22.
doi: 10.1016/j.ijfoodmicro.2013.03.012 pmid: 23587708 |
| [47] | Zila C T, Samayoa L F, Santiago R, Butron A, Holland J B. A genome-wide association study reveals genes associated with fusarium ear rot resistance in a maize core diversity panel. G3: Gene Genome Genet, 2013, 3: 2095-2104. |
| [48] | Yuan G S, Zhang Z M, Xiang K, Zhao M J, Shen Y O, Pan G T. Large-scale identification of differentially expressed genes in maize inbreds susceptible and resistant to Fusarium ear rot. Plant Omics, 2012, 5: 471-475. |
| [49] |
Atanasova-Penichon V, Barreau C, Richard-Forget F. Antioxidant secondary metabolites in cereals: potential involvement in resistance to Fusarium and mycotoxin accumulation. Front Microbiol, 2016, 7: 566.
doi: 10.3389/fmicb.2016.00566 pmid: 27148243 |
| [50] | 杨晨旭, 哈斯巴根, 杜超. 植物NAC转录因子结构和功能研究进展. 分子植物育种, 网络首发[2023-04-04], http://kns.cnki.net/kcms/detail/46.1068.S.20230403.1809.023.html. |
| Yang C X, Khasbagan, Du C. Research progress on the structure and function of plant NAC transcription factors. Mol Plant Breed, Published online [2023-04-04], http://kns.cnki.net/kcms/detail/46.1068.S.20230403.1809.023.html (in Chinese with English abstract). | |
| [51] |
Tan X X, Zhang H H, Yang Z H, Wei Z Y, Li Y J, Chen J P, Sun Z T. NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice. PLoS Pathog, 2022, 18: e1010548.
doi: 10.1371/journal.ppat.1010548 pmid: 35560151 |
| [52] | Xing J J, Li X J, Wang X H, Lv X Q, Wang L, Zhang L, Zhu Y F, Shen Q H, Baluska F, Samaj J, Lin J X. Secretion of phospholipase D delta functions as a regulatory mechanism in plant innate immunity. Plant Cell, 2019, 31: 3015-3032. |
| [53] | Chen G, Greer M S, Weselake R J. Plant phospholipase A: advances in molecular biology, biochemistry, and cellular function. BioMol Concep, 2013, 4: 527-532. |
| [54] |
Liu H X, Ravichandran S, Teh O K, McVey S, Lilley C, Teresinski H J, Gonzalez-Ferrer C, Mullen R T, Hofius D, Prithiviraj B, Stone S L. The RING-Type E3 ligase XBAT35.2 is involved in cell death induction and pathogen response. Plant Physiol, 2017, 175: 1469-1483.
doi: 10.1104/pp.17.01071 pmid: 28951488 |
| [55] | Liu Q N, Yan T Y, Tan X X, Wei Z Y, Li Y J, Sun Z T, Zhang H H, Chen J P. Genome-wide identification and gene expression analysis of the OTU DUB family in Oryza sativa. Viruses, 2022, 14: 392. |
| [1] | 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398. |
| [2] | 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284. |
| [3] | 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138. |
| [4] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. |
| [5] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. |
| [6] | 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813. |
| [7] | 胡蒙, 沙丹, 张晟瑞, 谷勇哲, 张世碧, 李静, 孙君明, 邱丽娟, 李斌. 大豆分枝数QTL定位及候选基因筛选[J]. 作物学报, 2025, 51(7): 1747-1756. |
| [8] | 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444. |
| [9] | 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568. |
| [10] | 张金泽, 周庆国, 肖莉晶, 金海润, 欧阳青静, 龙旭, 晏中彬, 田恩堂. 芥菜型油菜不同组织硫苷含量的QTL定位与候选基因分析[J]. 作物学报, 2025, 51(5): 1166-1177. |
| [11] | 王亚雯, 戚正阳, 尤佳琦, 聂新辉, 曹娟, 杨细燕, 涂礼莉, 张献龙, 王茂军. 棉花60K功能位点基因芯片的制备及应用[J]. 作物学报, 2025, 51(5): 1178-1188. |
| [12] | 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408. |
| [13] | 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899. |
| [14] | 林伟津, 郭泽佳, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 陈小平, 洪彦彬, 李少雄, 鲁清. 花生荚果产量相关性状QTL定位与候选基因分析[J]. 作物学报, 2025, 51(4): 969-981. |
| [15] | 张金泽, 周庆国, 杨旭, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析[J]. 作物学报, 2025, 51(3): 621-631. |
|
||