欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 1948-1960.doi: 10.3724/SP.J.1006.2024.31052

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析

彭小爱1(), 卢茂昂1, 张玲1, 刘童1, 曹磊1, 宋有洪1, 郑文寅1, 何贤芳2,*(), 朱玉磊1,*()   

  1. 1安徽农业大学农学院, 安徽合肥 230036
    2安徽省农业科学院作物研究所, 安徽合肥 230001
  • 收稿日期:2023-09-12 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-20
  • 通讯作者: * 朱玉磊, E-mail: zhuyulei2011@126.com;何贤芳, E-mail: xianfanghe@126.com
  • 作者简介:E-mail: Xiaoai12666@126.com
  • 基金资助:
    国家自然科学基金项目(31901540);青年骨干教师出国研修项目(202008775003);安徽省重点研究与开发计划(202104f06020023)

Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays

PENG Xiao-Ai1(), LU Mao-Ang1, ZHANG Ling1, LIU Tong1, CAO Lei1, SONG You-Hong1, ZHENG Wen-Yin1, HE Xian-Fang2,*(), ZHU Yu-Lei1,*()   

  1. 1College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
    2Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, Anhui, China
  • Received:2023-09-12 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-20
  • Contact: * E-mail: zhuyulei2011@126.com;E-mail: xianfanghe@126.com
  • Supported by:
    National Natural Science Foundation of China(31901540);Youth Backbone Teachers Overseas Academic Training Program(202008775003);Key Research and Development Plan of Anhui Province(202104f06020023)

摘要:

通过检测118份小麦材料3个环境下吸水率、蛋白质含量、容重、湿面筋含量、面团稳定时间、面团形成时间、沉降值和出粉率8个小麦籽粒品质的表型值, 结合小麦55K SNP芯片分析基因型, 采用Q+K混合模型进行全基因组关联分析。在不同环境下, 8个籽粒品质性状均具有广泛变异, 其中沉降值的变异系数最大为16.47%~17.03%, 各品质性状遗传力为0.71~0.85。118份小麦材料被分为3个亚群, 亚群I包括41 (34.75%)份, 安徽供试材料占绝大部分; 亚群II包括32 (27.12%)份, 是以安徽、江苏、四川为主体的群体; 亚群III包括45 (38.13%)份, 主要为安徽及江苏省份材料。22个与小麦籽粒品质性状显著关联的稳定位点(P<0.001)在2个及以上的环境中被重复检测到, 分布于染色体1B (4)、1D (1)、2B (1)、2D (1)、3B (2)、3D (1)、4D (1)、5A (1)、5B (1)、5D (3)、6B (2)、7B (3)和7D (1), 解释了8.53%~16.32%的表型变异。稳定位点中包含3个一因多效显著关联位点, 14个可能控制小麦品质性状的新遗传位点, 并筛选出11个可能与小麦籽粒品质性状相关的候选基因; 有利等位基因的数量越多, 品质性状表型值越高, 并发现了在8个主要品质性状均携带有利等位基因的载体材料, 其中, 华成859和济麦44包含最多的有利等位基因, 可供改良小麦品质的育种亲本使用。本研究结果为小麦优良品质小麦培育提供了理论依据、亲本材料和分子标记。

关键词: 小麦, 品质性状, 全基因组关联分析, 55K芯片, 有利等位基因

Abstract:

To meet people's demand for wheat quality, exploring relevant candidate genes can provide a theoretical basis for genetic improvement and molecular marker-assisted selection of high-quality wheat cultivars. In this study, phenotypic values of eight wheat grain quality traits, including water absorption, grain protein content, volume weight, wet gluten content, dough stability time, dough development time, sedimentation value, and flour yield, were detected in 118 wheat genotypes in three environments. The genotypes were analyzed using 55K SNP arrays, and a genome-wide association study was conducted using the Q+K mixed model. In three different environments, the eight grain quality traits had extensive variation, the maximum variation coefficient of sedimentation value was 16.47%-17.03%, and the heritability of each quality trait was 0.71-0.85. The 118 wheat genotypes were divided into three subgroups: subgroup I, consisting of 41 (34.75%) genotypes, mainly from Anhui; subgroup II, consisting of 32 (27.12%) genotypes, predominantly from Anhui, Jiangsu, and Sichuan provinces; and subgroup III, consisting of 45 (38.13%) genotypes, mainly from Anhui and Jiangsu provinces. 22 stable loci significantly associated with wheat grain quality traits (P < 0.001) were repeatedly detected in two or three environments, distributed on chromosomes 1B (4), 1D (1), 2B (1), 2D (1), 3B (2), 3D (1), 4D (1), 5A (1), 5B (1), 5D (3), 6B (2), 7B (3), and 7D (1), explaining 8.53% to 16.32% of the phenotypic variation. Among the stable loci, three exhibited significant pleiotropic effects, 14 were identified as novel loci for controlling wheat quality traits, and 11 candidate genes possibly associated with wheat grain quality traits were screened. The higher the number of favorable alleles, the higher the phenotypic values of quality traits. Furthermore, it was discovered that several genotypes carried favorable alleles for all eight major quality traits. Among them, the wheat cultivars Huacheng 859 and Jimai 44 contained the highest number of favorable alleles, making them valuable breeding parents for improving wheat quality. The results of this study provide a theoretical basis, parental materials, and molecular markers for the breeding of high-quality wheat.

Key words: Triticum aestivum L., quality traits, genome-wide association study, 55K array, favorable alleles

表1

118份小麦材料品质相关指标统计分析"

性状
Trait
环境
Environment
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV (%)
吸水率WA (%) E1 60.60 69.27 65.38 1.74 2.66
E2 61.03 68.57 65.43 1.63 2.49
E3 57.77 67.70 64.03 1.66 2.59
平均值Mean 61.17 68.04 64.95 1.47 2.26
BLUP 61.77 67.56 64.95 1.23 1.90
蛋白质含量GPC (%) E1 11.34 18.62 13.97 1.29 9.20
E2 11.52 18.74 14.02 1.40 9.96
E3 11.38 18.76 14.36 1.34 9.31
平均值Mean 11.88 17.37 14.12 1.08 7.65
BLUP 12.53 16.44 14.13 0.77 5.44
容重VW (g L-1) E1 771.67 821.67 802.94 10.26 1.28
E2 775.33 824.00 802.23 9.79 1.22
E3 755.67 818.33 790.61 12.61 1.60
平均值Mean 776.44 816.11 798.60 8.89 1.11
BLUP 782.89 810.84 798.50 6.27 0.78
湿面筋含量WGC (%) E1 25.59 39.98 30.78 2.55 8.28
E2 25.43 37.09 30.83 2.65 8.59
E3 26.09 40.33 31.67 2.62 8.27
平均值Mean 26.69 35.64 31.09 2.07 6.67
BLUP 28.06 34.27 31.12 1.44 4.63
面团稳定时间DST (min) E1 6.30 11.93 8.81 1.06 11.99
E2 5.40 11.20 8.86 1.10 12.42
E3 6.13 12.20 9.09 1.13 12.47
平均值Mean 6.43 11.42 8.92 0.95 10.62
BLUP 6.90 10.96 8.93 0.77 8.63
面团形成时间DDT (min) E1 2.87 5.40 3.98 0.49 12.40
E2 2.97 5.30 4.05 0.54 13.36
E3 2.87 5.13 3.95 0.45 11.40
平均值Mean 3.23 4.92 3.99 0.41 10.16
BLUP 3.43 4.69 4.00 0.30 7.59
沉降值SV (mL) E1 18.20 39.97 27.60 4.70 17.03
E2 17.57 42.67 29.13 5.15 17.69
E3 21.57 46.77 31.24 5.15 16.47
平均值Mean 21.10 40.14 29.32 4.13 14.10
BLUP 23.17 37.52 29.36 3.12 10.61
出粉率FY (%) E1 60.73 68.23 64.47 1.56 2.42
E2 61.10 68.73 64.52 1.39 2.15
E3 59.27 67.23 63.08 1.73 2.74
平均值Mean 61.12 67.16 64.02 1.27 1.99
BLUP 61.90 66.26 63.99 0.92 1.44

表2

118份小麦材料8个品质性状的方差分析"

性状Trait 基因型Genotype (G) 环境Environment (E) 基因×环境G×E 遗传力h2
吸水率WA 755.15*** 148.94*** 230.34*** 0.85
蛋白质含量GPC 409.43*** 10.30*** 221.66*** 0.73
容重VW 27,756.82*** 11,309.32*** 14,384.27*** 0.74
湿面筋含量WGC 1509.86*** 59.44*** 874.64*** 0.71
面团稳定时间DST 315.00*** 5.37*** 108.16*** 0.83
面团形成时间DDT 57.76*** 0.72*** 28.66*** 0.75
沉降值SV 5998.01*** 787.16*** 2792.60*** 0.77
出粉率FY 568.39*** 156.04*** 290.40*** 0.74

图1

118份小麦材料8个品质性状的相关性分析及分布直方图 ***: 在P < 0.001水平差异显著。WA: 吸水率; GPC: 蛋白质含量; VW: 容重; WGC: 湿面筋含量; DST: 面团稳定时间; DDT: 面团形成时间; SV: 沉降值; FY: 出粉率。"

图2

118份小麦材料的群体遗传结构分析及LD衰减图"

图3

118份小麦材料主要品质性状BLUP值的曼哈顿图 虚线表示阈值-log10(P)为3.00; 虚线上方位点代表显著位点。"

表3

118份小麦材料8个品质性状的显著关联SNP位点"

性状
Trait
位点
Marker
染色体
Chr.
物理位置
Position (Mb)
P
P-value
表型贡献率
R2 (%)
环境
Environment
先前已报道位点
Previously reported QTL
WA AX-111041836 1B 476.88 9.02E-04-9.37E-04 13.28-14.10 E1/E3/Mean QLGSC.cau-1B[11]
AX-110620539 3B 488.53-491.73 3.41E-04-8.85E-04 9.02-11.97 E1/E3/Mean
GPC AX-111049977 4D 486.54-489.74 1.48E-04-8.08E-04 8.87-11.79 E1/E3/Mean/BLUP
AX-110476332 5D 6.39 7.59E-04-9.61E-04 9.06-11.21 E1/E3/Mean QNWA.cau-5D[11]
AX-110071501 6B 172.73 9.04E-04-9.48E-04 12.45-13.10 E1/E3
AX-108729524 6B 615.98 8.81E-04-9.28E-04 12.36-12.70 E1/E3 qSV6B.1[25]
AX-95253477 7B 609.78-611.62 2.32E-04-7.52E-04 9.36-15.83 E2/E3/Mean/BLUP qHA7B.2[25]
VW AX-109484985 1B 535.59-536.59 1.79E-04-9.96E-04 8.53-12.86 E1/E3/Mean/BLUP
AX-108887454 3D 590.04 4.71E-04-6.35E-04 11.46-13.93 E1/E3/Mean
AX-111573142 5A 663.29 4.54E-04-9.49E-04 8.65-10.81 E1/E3/Mean AX-95112961[26]
WGC AX-111049977 4D 486.54-489.74 1.85E-04-9.84E-04 9.00-14.33 E1/E3/Mean/BLUP
AX-110132720 5D 227.32 4.68E-04-9.95E-04 11.64-14.72 E1/E3
DST AX-111007062 2B 201.24-209.08 2.67E-04-9.47E-04 9.17-15.37 E1/E3/Mean/BLUP
AX-110940091 2D 143.48-145.67 1.87E-04-9.92E-04 11.31-16.32 E1/E3/Mean/BLUP
AX-111505579 5D 53.19-59.29 1.61E-04-9.49E-04 12.15-13.99 E1/E2/E3/Mean/BLUP
AX-111760043 7B 628.83-634.86 8.17E-05-9.88E-04 8.88-14.90 E1/E3/Mean/BLUP qHA7B.2[25]
DDT AX-111472988 5B 544.40 9.27E-04-9.88E-04 9.80-10.65 E1/E3/Mean
AX-111760043 7B 628.83-634.86 2.70E-04-9.30E-04 9.02-15.91 E1/E3/Mean/BLUP qHA7B.2[25]
AX-110040847 7B 741.32-741.40 9.67E-04-9.87E-04 11.45-13.22 E1/E2/E3/Mean
SV AX-110101967 1B 622.47 1.27E-04-7.49E-04 13.42-16.76 E1/E3/Mean/BLUP AX-110369038[18]
AX-95253477 7B 609.78-611.62 1.51E-04-9.35E-04 9.83-15.14 E2/E3/BLUP qHA7B.2[25]
SV AX-94657532 7D 562.12 1.51E-04-9.35E-04 9.83-13.93 E2/E3/BLUP AX-108974357[18]
FY AX-109414218 1B 676.09-676.46 1.80E-04-8.17E-04 9.32-12.46 E1/E3
AX-109346236 1D 485.11-485.55 3.24E-04-8.61E-04 9.18-10.72 E1/E3/BLUP AX-94935157[18]
AX-110524075 3B 68.87 3.07E-04-4.28E-04 10.79-11.30 E1/E3/BLUP

表4

稳定位点筛选获得候选基因信息"

性状
Trait
位点
Marker
染色体
Chr.
物理位置
Position (Mb)
基因
Gene
基因注释或编码蛋白
Gene annotation or coding protein
WA AX-111041836 1B 476.88 TraesCS1B01G269100 谷胱甘肽S-转移酶
Glutathione S-transferase
GPC AX-110476332 5D 6.39 TraesCS5D01G009100 细胞色素b6
Cytochrome b6
AX-110071501 6B 172.73 TraesCS6B01G162500 F-box家族蛋白
F-box family protein
AX-108729524 6B 615.98 TraesCS6B01G347600 脂转移蛋白
Lipid transfer protein
VW AX-111573142 5A 663.29 TraesCS5A01G492000 非特异性丝氨酸/苏氨酸蛋白激酶
Non-specific serine/threonine protein kinase
DST AX-111007062 2B 201.24-209.08 TraesCS2B01G215800 富含甘氨酸蛋白
Glycine-rich protein
DDT AX-110040847 7B 741.32-741.40 TraesCS7B01G484400 赤霉素调节蛋白2, 推定
Gibberellin-regulated protein 2, putative
FY AX-109414218 1B 676.09-676.46 TraesCS1B01G459700 氨基酸转运蛋白家族蛋白
Amino acid transporter family protein
DST, DDT AX-111760043 7B 628.83-634.86 TraesCS7B01G365300 NAC结构域蛋白
NAC domain protein
GPC, WGC AX-111049977 4D 486.54-489.74 TraesCS4D01G325200 蛋白激酶家族蛋白, 推定, 表达
Protein kinase family protein, putative, expressed
GPC, SV AX-95253477 7B 609.78-611.62 TraesCS7B01G353100 过氧化物酶
Peroxidase

图4

基于显著关联位点的118份小麦材料的有利等位基因数量和表型值关系分析 ***: 在P < 0.001水平差异显著。WA: 吸水率; GPC: 蛋白质含量; VW: 容重; WGC: 湿面筋含量; DST: 面团稳定时间; DDT: 面团形成时间; SV: 沉降值; FY: 出粉率。"

表5

显著关联位点的有利等位变异、表型效应和典型载体材料"

性状
Trait
等位变异
Allele
优异带型
Excellent
belt type
表型效应Phenotypic effect 材料数
No. of
genotypes
典型载体
Typical carrier
E1 E2 E3
WA AX-111041836 C 0.85 0.76 0.32 78 济麦44, 郑7698
Jimai 44, Zheng 7698
AX-110620539 T 0.88 0.74 0.67 70
GPC AX-111049977 C 0.47 -0.02 0.10 90 扬辐麦6号, 皖麦606
Yangfumai 6, Wanmai 606
AX-110476332 T 0.74 0.8 0.39 29
AX-110071501 A 0.36 0.42 0.31 105
AX-108729524 A 0.01 0.07 -0.04 101
AX-95253477 T 0.28 -0.04 0.24 55
VW AX-109484985 C 9.65 7.67 5.69 21 乐麦207 Lemai 207, 18B187, 18B248
AX-108887454 G 7.78 6.93 4.29 88
AX-111573142 T 4.05 4.90 5.19 63
WGC AX-111049977 G 1.51 1.55 1.51 103 皖麦606, 华成859, 扬辐麦6号
Wanmai 606, Huacheng 859, Yangfumai 6
AX-110132720 G 1.32 1.85 0.71 59
DST AX-111007062 G 0.42 0.40 0.52 44 烟农19, 华成859, 济麦44
Yannong 19, Huacheng 859, Jimai 44
AX-110940091 A 0.52 0.53 0.57 49
AX-111505579 G 0.47 0.70 0.58 54
AX-111760043 T 0.31 0.36 0.46 52
DDT AX-111472988 C 0.33 0.42 0.14 32 华成859 Huacheng 859,
F06-4198
AX-111760043 G 0.19 0.22 0.17 54
AX-110040847 T 0.27 0.32 0.34 30
SV AX-110101967 G 3.57 2.63 1.90 37 亿麦9号 Yimai 9, 2011
AX-95253477 T 1.85 1.72 2.12 70
AX-94657532 T 1.85 1.72 2.12 70
FY AX-109414218 G 1.24 1.16 0.99 17 2011, 浩麦1号 Haomai 1
AX-109346236 A 0.82 0.82 0.64 20
AX-110524075 T 0.85 0.74 0.34 58
[1] Zörb C, Ludewig U, Hawkesford M J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci, 2018, 23: 1029-1037.
doi: S1360-1385(18)30192-4 pmid: 30249481
[2] Guzman C, Peña R J, Singh R, Autrique E, Dreisigacker S, Crossa J, Rutkoski J, Poland J, Battenfield S. Wheat quality improvement at CIMMYT and the use of genomic selection on it. Appl Translat Genom, 2016, 11: 3-8.
[3] Muqaddasi Q H, Brassac J, Ebmeyer E, Kollers S, Korzun V, Argillier O, Stiewe G, Plieske J, Ganal M W, Röder M S. Prospects of GWAS and predictive breeding for European winter wheat’s grain protein content, grain starch content, and grain hardness. Sci Rep, 2020, 10: 1-17.
[4] Shewry P R, Hey S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J Cereal Sci, 2015, 65: 236-243.
[5] 赵俊杰. 小麦52个产量、品质、抗性和适应性基因的育种选择研究. 中国农业科学院硕士学位论文, 北京, 2018.
Zhao J J. Breeding Selection on 52 Genes Controlling Yield, Quality, Stress Resistance and Adaptation in Bread Wheat. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[6] Yang Y, Chai Y, Zhang X, Lu S, Zhao Z, Wei D, Chen L, Hu Y G. Multi-locus GWAS of quality traits in bread wheat: mining more candidate genes and possible regulatory network. Front Plant Sci, 2020, 11: 1091.
doi: 10.3389/fpls.2020.01091 pmid: 32849679
[7] Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012, 44: 32-39.
[8] 杨豪, 向仕华, 刘丽, 杨雪, 舒英杰, 何庆元. 川渝大豆生育期性状的全基因组关联分析. 作物学报, 2023, 49: 2727-2742.
Yang H, Xiang S H, Liu L, Yang X, Shu Y J, He Q Y. Genome-wide association analysis of growth period traits in soybean of Sichuan and Chongqing. Acta Agron Sin, 2023, 49: 2727-2742 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24210
[9] Kumar A, Mantovani E E, Simsek S, Jain S L, Elias E M, Mergoum M. Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite × non-adapted bread wheat cross. PLoS One, 2019, 14: e0221826.
[10] Chen J H, Zhang F Y, Zhao C J, Lv G G, Sun C W, Pan Y B, Guo X Y, Chen F. Genome-wide association study of six quality traits reveals the association of the TaRPP13L1 gene with flour colour in Chinese bread wheat. Plant Biotechnol J, 2019, 17: 2106-2122.
[11] Lou H Y, Zhang R Q, Liu Y T, Guo D D, Zhai S S, Chen A Y, Zhang Y F, Xie C J, You M S, Peng H R, Liang R Q, Ni Z F, Sun Q X, Li B Y. Genome-wide association study of six quality-related traits in common wheat (Triticum aestivum L.) under two sowing conditions. Theor Appl Genet, 2021, 134: 399-418.
[12] Gao L, Meng C S, Yi T F, Xu K, Cao H W, Zhang S H, Yang X J, Zhao Y. Genome-wide association study reveals the genetic basis of yield-and quality-related traits in wheat. BMC Plant Biol, 2021, 21: 144.
doi: 10.1186/s12870-021-02925-7 pmid: 33740889
[13] Liu J J, Luo W, Qin N N, Ding P Y, Zhang H, Yang C C, Mu Y, Tang H P, Liu Y X, Li W, Jiang Q T, Chen G Y, Wei Y M, Zheng Y L, Liu C J, Lan X J, Ma J. A 55K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor Appl Genet, 2018, 131: 2439-2450.
[14] Ren T H, Hu Y S, Tang Y Z, Li C S, Yan B J, Ren Z L, Tan F Q, Tang Z X, Fu S L, Li Z. Utilization of a wheat 55K SNP array for mapping of major QTL for temporal expression of the tiller number. Front Plant Sci, 2018, 9: 333.
[15] Wu J H, Huang S, Zeng Q D, Liu S J, Wang Q L, Mu J M, Yu S Z, Han D J, Kang Z S. Comparative genome-wide mapping versus extreme pool-genotyping and development of diagnostic SNP markers linked to QTL for adult plant resistance to stripe rust in common wheat. Theor Appl Genet, 2018, 131: 1777-1792.
doi: 10.1007/s00122-018-3113-7 pmid: 29909527
[16] Mo Z Q, Zhu J, Wei J T, Zhou J G, Xu Q, Tang H P, Mu Y, Deng M, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Qi P F, Li W, Wei Y M, Zheng Y L, Lan X J, Ma J. The 55K SNP-based exploration of QTLs for spikelet number per spike in a tetraploid wheat (Triticum turgidum L.) population: Chinese landrace “Ailanmai” × wild emmer. Front Plant Sci, 2021, 12: 732837.
[17] Xiong H C, Li Y T, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Liu L X. Genetic mapping by integration of 55K SNP array and KASP markers reveals candidate genes for important agronomic traits in hexaploid wheat. Front Plant Sci, 2021, 12: 628478.
[18] 严勇亮, 时晓磊, 张金波, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2021, 54: 4033-4047.
doi: 10.3864/j.issn.0578-1752.2021.19.001
Yan Y L, Shi X L, Zhang J B, Geng H W, Xiao J, Lu Z F, Ni Z F, Cong H. Genome-wide association study of grain quality related characteristics of spring wheat. Sci Agric Sin, 2021, 54: 4033-4047 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.19.001
[19] 赵春. 不同生态条件下小麦籽粒品质形成及其生理基础. 山东农业大学, 山东泰安, 2006.
Zhao C. Effects of Ecological Condition on Grain Quality Formation in Winter Wheat and Its Physiological Basis. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2006 (in Chinese with English abstract).
[20] 董一帆, 任毅, 程宇坤, 王睿, 张志辉, 时晓磊, 耿洪伟. 冬小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2023, 56: 2047-2063.
doi: 10.3864/j.issn.0578-1752.2023.11.002
Dong Y F, Ren Y, Cheng Y K, Wang R, Zhang Z H, Shi X L, Geng H W. Genome-wide association traits in winter wheat study of grain main quality related. Sci Agric Sin, 2023, 56: 2047-2063 (in Chinese with English abstract).
[21] Yu J M, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702 pmid: 16380716
[22] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析. 作物学报, 2021, 47: 1891-1902.
doi: 10.3724/SP.J.1006.2021.01078
Xie L, Ren Y, Zhang X Z, Wang J Q, Zhang Z H, Shi S B, Geng H W. Genome-wide association study of pre-harvest sprouting traits in wheat. Acta Agron Sin, 2021, 47: 1891-1902 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01078
[23] 朱玉磊, 王升星, 赵良侠, 张德新, 胡建帮, 曹雪连, 杨亚杰, 常成, 马传喜, 张海萍. 以关联分析发掘小麦整穗发芽抗性基因分子标记. 作物学报, 2014, 40: 1725-1732.
doi: 10.3724/SP.J.1006.2014.01725
Zhu Y L, Wang S X, Zhao L X, Zhang D X, Hu J B, Cao X L, Yang Y J, Chang C, Ma C X, Zhang H P. Exploring molecular markers of preharvest sprouting resistance gene using wheat intact spikes by association analysis. Acta Agron Sin, 2014, 40: 1725-1732 (in Chinese with English abstract).
[24] Gao Y T, Xu X R, Jin J J, Duan S N, Zhen W C, Xie C J, Ma J. Dissecting the genetic basis of grain morphology traits in Chinese wheat by genome wide association study. Euphytica, 2021, 217: 1-12.
[25] Hao S Y, Lou H Y, Wang H W, Shi J H, Liu D, Baogerile, Tao J G, Miao S M, Pei Q C, Yu L L, Wu M, Gao M, Zhao N H, Dong J C, You M S, Xin M M. Genome-wide association study reveals the genetic basis of five quality traits in Chinese wheat. Front Plant Sci, 2022, 13: 835306.
[26] 翟俊鹏. 普通小麦主要农艺性状和品质性状的全基因组关联分析. 河南农业大学, 河南郑州, 2019.
Zhai J P. Genome-wide Association Study for Main Agronomic and Quality Traits in Common Wheat. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).
[27] 张红梅, 熊雅文, 许文静, 张威, 王琼, 刘晓庆, 刘慧, 崔晓艳, 陈新, 陈华涛. 大豆R6期籽粒氨基酸含量的全基因组关联分析. 作物学报, 2023, 49: 3277-3288.
doi: 10.3724/SP.J.1006.2023.34031
Zhang H M, Xiong Y W, Xu W J, Zhang W, Wang Q, Liu X Q, Liu H, Cui X Y, Chen X, Chen H T. Genome-wide association study for amino acid content at R6 stage in soybean (Glycine max L.) seed. Acta Agron Sin, 2023, 49: 3277-3288 (in Chinese with English abstract).
[28] 张芳, 任毅, 曹俊梅, 李法计, 夏先春, 耿洪伟. 基于SNP标记的小麦籽粒性状全基因组关联分析. 中国农业科学, 2021, 54: 2053-2064.
doi: 10.3864/j.issn.0578-1752.2021.10.002
Zhang F, Ren Y, Cao J M, Li F J, Xia X C, Geng H W. Genome-wide association analysis of wheat grain size related traits based on SNP markers. Sci Agric Sin, 2021, 54: 2053-2064 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.10.002
[29] 吴新元, 芦静, 张新忠, 黄天荣, 李建疆, 周安定, 梁晓东, 曹俊梅, 高永红, 曾潮武. 新疆小麦品质生态区划研究. 新疆农业科学, 2017, 54: 1373-1383.
doi: 10.6048/j.issn.1001-4330.2017.08.001
Wu X Y, Lu J, Zhang X Z, Huang T R, Li J J, Zhou A D, Liang X D, Cao J M, Gao Y H, Zeng C W. Study of ecological division for wheat quality in Xinjiang. Xinjiang Agric Sci, 2017, 54: 1373-1383 (in Chinese with English abstract).
doi: 10.6048/j.issn.1001-4330.2017.08.001
[30] Frova C. The plant glutathione transferase gene family: genomic structure, functions, expression and evolution. Physiol Plant, 2003, 119: 469-479.
[31] George S, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol, 2010, 167: 311-318.
[32] 付爱根, 赵锋锋, 王娟, 郝亚琦. 植物叶绿体细胞色素b6f复合体的研究进展. 山地农业生物学报, 2015, 34: 1-9.
Fu A G, Zhao F F, Wang J, Hao Y Q. Research progress of plant chloroplast cytochrome b6f complex. J Mountain Agric Biol, 2015, 34: 1-9 (in Chinese with English abstract).
[33] Diao P F, Chen C, Zhang Y Z, Meng Q W, Lv W, Ma N N. The role of NAC transcription factor in plant cold response. Plant Signal Behav, 2020, 15: 1785668.
[34] 马雪祺, 阴艳红, 冯婧娴, 陈万生, 孙连娜, 肖莹. 植物NAC转录因子研究进展. 植物生理学报, 2021, 57: 2225-2234.
Ma X Q, Yin Y H, Feng J X, Chen W S, Sun L N, Xiao Y. Research progress of NAC transcription factors in plant. Plant Physiol J, 2021, 57: 2225-2234 (in Chinese with English abstract).
[35] 贾琪, 孙松, 孙天昊, 林文雄. F-box蛋白家族在植物抗逆响应中的作用机制. 中国生态农业学报, 2018, 26: 1125-1136.
Jia Q, Sun S, Sun T H, Lin W X. Mechanism of F-box protein family in plant resistance response to environmental stress. Chin J Eco-Agric, 2018, 26: 1125-1136 (in Chinese with English abstract).
[36] Buhot N, Douliez J P, Jacquemard A, Marion D, Tran V, Maume B F, Milat M L, Ponchet M, Mikès V, Kader J C, Blein J P. A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett, 2001, 509: 27-30.
doi: 10.1016/s0014-5793(01)03116-7 pmid: 11734200
[37] Hemalatha M S, Manu B T, Bhagwat S G, Leelavathi K, Prasada Rao U J S. Protein characteristics and peroxidase activities of different Indian wheat varieties and their relationship to chapati-making quality. Eur Food Res Technol, 2007, 225: 463-471.
[38] 胡瑞波, 田纪春. 小麦主要品质性状与面粉色泽的关系. 麦类作物学报, 2006, 26: 96-101.
Hu R B, Tian J C. Relationship between main quality characteristics and wheat flour color. J Triticeae Crops, 2006, 26: 96-101 (in Chinese with English abstract).
[39] 胡新中, 卢为利, 阮侦区, 罗勤贵, 郑建梅, 欧阳韶晖, 张国权. 影响小麦面粉白度的品质指标分析. 中国农业科学, 2007, 40: 1142-1149.
Hu X Z, Lu W L, Ruan Z Q, Luo Q G, Zheng J M, Ou-Yang S H, Zhang G Q. Analysis of the quality indices affecting wheat flour whiteness. Sci Agric Sin, 2007, 40: 1142-1149 (in Chinese with English abstract).
[1] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[2] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[3] 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178.
[4] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[5] 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090.
[6] 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884.
[7] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[8] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[9] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[10] 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1420.
[11] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[12] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[13] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[14] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206.
[15] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .