欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 1971-1988.doi: 10.3724/SP.J.1006.2024.31080

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦泛素结合酶TaUBC16基因的克隆与功能分析

高维东1,2(), 胡城祯1,2, 张龙1,2, 张艳艳1,2, 张沛沛1, 杨德龙1,2,*(), 陈涛1,2,*()   

  1. 1省部共建干旱生境作物学国家重点实验室, 甘肃兰州 730070
    2甘肃农业大学生命科学技术学院, 甘肃兰州 730070
  • 收稿日期:2023-12-16 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-18
  • 通讯作者: * 杨德龙, E-mail: yangd1@gsau.edu.cn;陈涛, E-mail: chent@gsau.edu.cn
  • 作者简介:E-mail: 15294208264@163.com
  • 基金资助:
    中央引导地方科技发展资金项目(23ZYQA0322);甘肃省高校产业支持计划项目(2022CYZC-44);甘肃省重点科技专项(22ZD6NA009);国家自然科学基金项目(32360518);国家自然科学基金项目(32160487);甘肃省优秀研究生“创新之星”项目(2023CXZX-684)

Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat

GAO Wei-Dong1,2(), HU Chen-Zhen1,2, ZHANG Long1,2, ZHANG Yan-Yan1,2, ZHANG Pei-Pei1, YANG De-Long1,2,*(), CHEN Tao1,2,*()   

  1. 1State Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, China
    2College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2023-12-16 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-18
  • Contact: * E-mail: yangd1@gsau.edu.cn;E-mail: chent@gsau.edu.cn
  • Supported by:
    Central Guidance on Science & Technology Development of Gansu(23ZYQA0322);Industrial Support Plan of Colleges and Universities in Gansu Province(2022CYZC-44);Key Sci & Tech Special Project of Gansu Province(22ZD6NA009);National Natural Science Foundation of China(32360518);National Natural Science Foundation of China(32160487);“Innovation Star” Project of Gansu Province Outstanding Postgraduate Students(2023CXZX-684)

摘要:

E2泛素结合酶在调控植物生长发育和胁迫信号转导过程中发挥着重要作用。本研究以小麦抗旱品种晋麦47的cDNA为模板克隆出E2泛素结合酶TaUBC16, 该基因全长447 bp, 编码148个氨基酸。顺式作用元件分析发现, TaUBC16启动子区含有与分生组织发育、胁迫响应、植物激素应答相关的多种顺式作用元件。利用小麦RNA-Seq转录组数据结合qRT-PCR验证分析发现, TaUBC16在小麦不同组织器官和发育阶段普遍表达, 其中在30 d籽粒中的表达量较高, 且均能被PEG-6000、甘露醇和ABA显著诱导表达。烟草叶片和小麦原生质体亚细胞定位分析表明, TaUBC16蛋白分布于细胞质和细胞核。通过异源表达TaUBC16转基因拟南芥进行生长发育表型分析发现, 转基因株系开花时间早于野生型, 其籽粒相比于野生型更为饱满, 千粒重显著高于野生型。基于启动子区-388 bp位点(T-A)的多态性, 开发了TaUBC16基因的竞争性等位基因特异性PCR (kompetitive allele-specific PCR, KASP)标记, 鉴定了TaUBC16的单倍型, 发现TaUBC16-Hap I的千粒重、粒长和粒宽显著高于TaUBC16-Hap II, 并在我国小麦育种进程中得到正向选择。本研究结果将为进一步揭示TaUBC16基因参与调控小麦生长发育和响应逆境胁迫分子机理提供理论依据。

关键词: 小麦, TaUBC16, 基因表达, 亚细胞定位, 转基因, KASP标记

Abstract:

E2 ubiquitin-conjugating enzyme plays an important role in regulating plant growth and development, and stress signal transduction. In this study, the TaUBC16 gene encoding E2 ubiquitin-conjugating enzyme was cloned from the cDNA of the drought-tolerant wheat cultivar Jinmai 47. The gene was 447 bp in length and encoded 148 amino acids. The cis-acting element analysis showed that the promoter region of TaUBC16 contained various cis-acting elements related to meristem development, stress responses, and plant hormone responses. By the wheat RNA-seq transcriptome data analysis combined with qRT-PCR validation, it was found that TaUBC16 was generally expressed in different tissues/organs and at different growth stages of wheat, whereas the highest expression level was exhibited in developing grains at 30 days after anthesis. The relative expression level of TaUBC16 was highly induced by PEG, mannitol, and ABA stresses. The subcellular localization in tobacco leaves and wheat protoplasts showed that TaUBC16 proteins were located in both cytoplasm and nucleus. The phenotypic analysis of the heterologous expression of TaUBC16 in transgenic Arabidopsis revealed that the transgenic lines had earlier flowering time than the wild type, and its seeds were more plumpness with higher 1000-grain weight than the wild type. Based on the polymorphism of the promoter region -388 bp site (T-A), a kompetitive allele-specific PCR (KASP) marker of TaUBC16 gene was developed and its haplotypes were identified. The haplotype TaUBC16-Hap I had higher thousand-kernel weight, kernel length and width than TaUBC16-Hap II, and had been subjected to positive selection in wheat breeding processes in China. The results of this study provide a theoretical basis for further revealing the involvement of the TaUBC16 gene in the regulation of wheat growth and development and the molecular mechanism responding to adverse stresses.

Key words: wheat, TaUBC16, gene expression, subcellular localization, transgenesis, KASP marker

附表1

246份小麦自然群体中-388 bp单核苷酸突变位点的KASP检测数据"

序号
Accession No.
名称
Name
标记
Marker (bp)
基因型
Allele
1 08-133-13-2-2-1-4 −388 T/T
2 09-228-9-2-1-1-1-2 −388 T/T
3 10-160-6-1-1-5-2-3 −388 T/T
4 11-257-4--1 −388 T/T
5 12-37-10-1-4 −388 T/T
6 B160-2-2-1-1 −388 T/T
7 Q9086 −388 T/T
8 北京837 Beijing837 −388 T/T
9 北京8694 Beijing8694 −388 T/T
10 沧麦6001 Cangmai6001 −388 T/T
11 沧麦6005 Cangmai6005 −388 T/T
12 昌乐5 Changle5 −388 T/T
13 冬03-07 Dong03-07 −388 T/T
14 泛麦8 Fanmai8 −388 T/T
15 旱选1 Hanxuan1 −388 T/T
16 衡观35 Hengguan35 −388 T/T
17 济麦19 Jimai19 −388 T/T
18 济麦22 Jimai22 −388 T/T
19 济麦23 Jimai23 −388 T/T
20 济南13 Jinan13 −388 T/T
21 济南17 Jinan17 −388 T/T
22 冀麦32 Jimai32 −388 T/T
23 京冬8 Jingdong8 −388 T/T
24 京双2 Jingshuang2 −388 T/T
25 康庄974 Kangzhuang974 −388 T/T
26 莱州953 Laizhou953 −388 T/T
27 兰天20 Lantian20 −388 T/T
28 兰天21 Lantian21 −388 T/T
29 兰天2 Lantian2 −388 T/T
30 兰天4 Lantian4 −388 T/T
31 良星99 Liangxing99 −388 T/T
32 陇育5 Longyu5 −388 T/T
33 鲁麦15 Lumai15 −388 T/T
34 鲁麦17 Lumai17 −388 T/T
35 轮抗7 Lunkang7 −388 T/T
36 洛旱6 Luohan6 −388 T/T
37 漯麦8 Luomai8 −388 T/T
38 漯优7 Luoyou7 −388 T/T
39 宁冬11 Ningdong11 −388 T/T
40 青麦7 Qingmai7 −388 T/T
41 清山843 Qingshan843 −388 T/T
42 山农辐63 Shannongfu63 −388 T/T
43 太13606 Tai13606 −388 T/T
44 泰山1 Taishan1 −388 T/T
45 泰山23 Taishan23 −388 T/T
46 皖麦19 Wanmai19 −388 T/T
47 西峰16 Xifeng16 −388 T/T
48 西峰28 Xifeng28 −388 T/T
49 西农219 Xinong219 −388 T/T
50 鑫麦296 Xinmai296 −388 T/T
51 偃展1 Yanzhan1 −388 T/T
52 豫麦2 Yumai29 −388 T/T
53 郑丰9962 Zhengfeng9962 −388 T/T
54 郑州24 Zhengzhou24 −388 T/T
55 中7902 Zhong7902 −388 T/T
56 中优9507 Zhongyou9507 −388 T/T
57 周麦18 Zhoumai18 −388 T/T
58 0025-17-1 −388 A/A
59 00-71 −388 A/A
60 45329 −388 A/A
61 1-4-8-1 −388 A/A
62 1R1 −388 A/A
63 1R14 −388 A/A
64 1R25 −388 A/A
65 1R38 −388 A/A
66 21-30 −388 A/A
67 22-23 −388 A/A
68 45318 −388 A/A
69 47151 −388 A/A
70 85-173-4 −388 A/A
71 94164-1 −388 A/A
72 980-4-1-1-2 −388 A/A
73 988-4-2-4-1 −388 A/A
74 99384-2-1 −388 A/A
75 A80-3-1-1-3 −388 A/A
76 A8-4-4-2 −388 A/A
77 A88-4-2-4 −388 A/A
78 B11-2-3-1-1-2 −388 A/A
79 B17-2-3-2-1 −388 A/A
80 B61-2-3-2-1 −388 A/A
81 C130-5-1-1 −388 A/A
82 C42-2-3-3 −388 A/A
83 C47-1-1-2 −388 A/A
84 C49-1-1-1-2 −388 A/A
85 C55-8-1-3-1 −388 A/A
86 C78-3-6-1-3 −388 A/A
87 E69-4-1 −388 A/A
88 E71-2-6 −388 A/A
89 E72-2-2 −388 A/A
90 H-4-2-2-1 −388 A/A
91 白齐麦 Baiqimai −388 A/A
92 百农160 Bainong160 −388 A/A
93 东农024 Dongnong024 −388 A/A
94 冬协2 Dongxie2 −388 A/A
95 丰产1 Fengchan1 −388 A/A
96 邯4589 Han4589 −388 A/A
97 邯6172 Han6172 −388 A/A
98 旱选2 Hanxuan2 −388 A/A
99 旱选3 Hanxuan3 −388 A/A
100 航选01 Hangxuan01 −388 A/A
101 航选121 Hangxuan121 −388 A/A
102 衡136 Heng136 −388 A/A
103 衡216 Heng216 −388 A/A
104 衡4399 Heng4399 −388 A/A
105 衡5229 Heng5229 −388 A/A
106 衡7228 Heng7228 −388 A/A
107 衡水6404 Hengshui6404 −388 A/A
108 衡优18 Hengyou18 −388 A/A
109 红良4 Hongliang4 −388 A/A
110 互助红 Huzhuhong −388 A/A
111 花培6 Huapei6 −388 A/A
112 华北187 Huabei187 −388 A/A
113 淮麦18 Huaimai18 −388 A/A
114 淮麦25 Huaimai25 −388 A/A
115 淮沭10 Huaishu10 −388 A/A
116 济麦20 Jimai20 −388 A/A
117 济麦262 Jimai62 −388 A/A
118 济麦44 Jimai44 −388 A/A
119 济麦4 Jimai4 −388 A/A
120 济麦6 Jimai6 −388 A/A
121 冀麦22 Jimai22 −388 A/A
122 冀麦26 Jimai26 −388 A/A
123 冀麦29 Jimai29 −388 A/A
124 冀麦6 Jimai6 −388 A/A
125 冀麦9 Jimai9 −388 A/A
126 鉴26 Jian26 −388 A/A
127 晋2148-7 Jin2148-7 −388 A/A
128 晋麦17 Jinmai17 −388 A/A
129 晋麦25 Jinmai25 −388 A/A
130 晋麦39 Jinmai39 −388 A/A
131 晋麦44 Jinmai44 −388 A/A
132 晋麦51 Jinmai51 −388 A/A
133 晋麦54 Jinmai54 −388 A/A
134 晋麦68 Jinmai68 −388 A/A
135 晋麦72 Jinmai72 −388 A/A
136 京东82东307 Jingdong82dong307 −388 A/A
137 京花1 Jinghua1 −388 A/A
138 科农199 Kenong199 −388 A/A
139 兰天10 Lantian10 −388 A/A
140 兰天12 Lantian12 −388 A/A
141 兰天13 Lantian13 −388 A/A
142 兰天14 Lantian14 −388 A/A
143 兰天15 Lantian15 −388 A/A
144 临138 Lin138 −388 A/A
145 临汾8050 Linfen8050 −388 A/A
146 临丰3(临旱5) Linfeng3 (Linhan5) −388 A/A
147 临丰615 Linfeng615 −388 A/A
148 临旱51241 Linhan51241 −388 A/A
149 临旱538 Linhan538 −388 A/A
150 陇鉴103 Longjian103 −388 A/A
151 陇鉴107 Longjian107 −388 A/A
152 陇鉴110 Longjian110 −388 A/A
153 陇鉴111 Longjian111 −388 A/A
154 陇鉴127 Longjian127 −388 A/A
155 陇鉴294 Longjian294 −388 A/A
156 陇鉴301 Longjian301 −388 A/A
157 陇麦079 Longmai079 −388 A/A
158 陇麦838 Longmai838 −388 A/A
159 陇麦847 Longmai847 −388 A/A
160 陇育218 Longyu218 −388 A/A
161 陇原937 Longyuan937 −388 A/A
162 陇源036 Longyuan036 −388 A/A
163 陇中1 Longzhong1 −388 A/A
164 陇中2 Longzhong2 −388 A/A
165 鲁德1 Lude1 −388 A/A
166 鲁麦14 Lumai14 −388 A/A
167 鲁麦19 Lumai19 −388 A/A
168 鲁麦3 Lumai3 −388 A/A
169 鲁麦5 Lumai5 −388 A/A
170 轮选987 Lunxuan987 −388 A/A
171 洛旱11 Luohan11 −388 A/A
172 洛旱2 Luohan2 −388 A/A
173 洛旱3 Luohan3 −388 A/A
174 洛旱7 Luohan7 −388 A/A
175 洛旱8 Luohan8 −388 A/A
176 洛麦21 Luomai21 −388 A/A
177 洛麦22 Luomai22 −388 A/A
178 洛麦23 Luomai23 −388 A/A
179 漯抗2 Luokang2 −388 A/A
180 漯麦9 Luomai9 −388 A/A
181 内麦11 Neimai11 −388 A/A
182 宁麦12 Ningmai12 −388 A/A
183 农大146 Nongda146 −388 A/A
184 清农3 Qingnong3 −388 A/A
185 清山 851 Qingshan851 −388 A/A
186 清山782 Qingshan782 −388 A/A
187 清山821 Qingshan821 −388 A/A
188 山农优麦2 Shannongyoumai2 −388 A/A
189 陕229 Shan229 −388 A/A
190 陕旱8675 Shanhan8675 −388 A/A
191 陕优225 Shanyou225 −388 A/A
192 石4185 Shi4185 −388 A/A
193 石家庄8 ShiJiazhuang8 −388 A/A
194 石麦12 Shimai12 −388 A/A
195 石麦13 Shimai13 −388 A/A
196 石麦15 Shimai15 −388 A/A
197 石麦19 Shimai19 −388 A/A
198 石优17 Shiyou17 −388 A/A
199 石优20 Shiyou20 −388 A/A
200 舜麦1718 Shunmai1718 −388 A/A
201 四棱红葫芦头 Silenghonghulutou −388 A/A
202 太原633 Taiyuan633 −388 A/A
203 温麦6 Wenmai6 −388 A/A
204 西峰20 Xifeng20 −388 A/A
205 西峰24 Xifeng24 −388 A/A
206 西农1018 Xinong1018 −388 A/A
207 西农1043 Xinong1043 −388 A/A
208 西农189 Xinong189 −388 A/A
209 西农318 Xinong318 −388 A/A
210 西农688 Xinong688 −388 A/A
211 西农797 Xinong797 −388 A/A
212 咸农4 Xiannong4 −388 A/A
213 新冬18 Xindong18 −388 A/A
214 新冬22 Xindong22 −388 A/A
215 徐州21 Xuzhou21 −388 A/A
216 烟农19 Yannong19 −388 A/A
217 烟农21 Yannong20 −388 A/A
218 延安15 Yanan15 −388 A/A
219 豫麦13 Yumai13 −388 A/A
220 豫麦29 Yumai29 −388 A/A
221 豫农416 Yunong416 −388 A/A
222 豫农949 Yunong949 −388 A/A
223 豫展4 Yuzhan4 −388 A/A
224 原冬3 Yuandong3 −388 A/A
225 运旱102 Yunhan102 −388 A/A
226 运旱115 Yunhan115 −388 A/A
227 运旱2028 Yunhan2028 −388 A/A
228 运旱21-30 Yunhan21-30 −388 A/A
229 运旱618 Yunhan618 −388 A/A
230 运旱719 Yunhan719 −388 A/A
231 运旱805 Yunhan805 −388 A/A
232 长4640 Chang4640 −388 A/A
233 长4738 Chang4738 −388 A/A
234 长6154 Chang6154 −388 A/A
235 长6359 Chang6359 −388 A/A
236 长6878 Chang6878 −388 A/A
237 长844 Chang844 −388 A/A
238 长8744 Chang8744 −388 A/A
239 长旱4738 Changhan4738 −388 A/A
240 长武521 Changwu521 −388 A/A
241 长治516 Changzhi516 −388 A/A
242 长治620 Changzhi620 −388 A/A
243 长治6406 Changzhi6406 −388 A/A
244 中麦36 Zhongmai36 −388 A/A
245 中麦553 Zhongmai553 −388 A/A
246 周麦16 Zhoumai16 −388 A/A

表1

本研究所用的引物"

引物名称Primer name 引物序列Primer sequence (5'-3') 用途Purpose
TaUBC16-F ATGGCGTCCAAGAGGATCCT TaUBC16基因克隆
TaUBC16-R GCCCATGGCGTACTTCTGTG Cloning of TaUBC16
TaUBC16-qRT-PCR-F CGTTCACCGGTGGTCTATTT TaUBC16荧光定量PCR
TaUBC16-qRT-PCR-R GGCTCCACTGTTCCTTGAGA TaUBC16 fluorescent quantitative PCR
TaUBC16-OE-F CGACAGTGGTCCCAAAGAT 异源表达拟南芥鉴定
TaUBC16-OE-R GCCCATGGCGTACTTCTGTG Identification of heterologous expression in Arabidopsis
TaACTIN-F CCTTCCGTGTTCCCACTGTTG 小麦qRT-PCR内参(胁迫)[30]
TaACTIN-R ATGCCCTTGAGGTTTCCCTC qRT-PCR internal reference gene of wheat (stress)
TaGAPDH-F GACCCAGACAACTCGCAAC 小麦qRT-PCR内参(组织)[31]
TaGAPDH-R GGAATCCATGACCACCTAC qRT-PCR internal reference gene of wheat
(organization)
AtACTIN2-F GGCTCCTCTTAACCCAAAGGC 拟南芥RT-PCR内参[32]
AtACTIN2-R CACACCATCACCAGAATCCAG RT-PCR internal reference gene of Arabidopsis
TaUBC16-KASP-F1 GAAGGTCGGAGTCAACGGATTGTGGGGAGGGAAATAAGCA 竞争性等位基因特异性PCR (KASP)标记引物
Kompetitive allele-specific PCR (KASP) marker
TaUBC16-KASP-F2 GAAGGTGACCAAGTTCATGCTGGTGGGGAGGGAAATAAGCT
TaUBC16-KASP-R TGGCGTCTTGTTTGCGAA

表2

生物信息学分析所用软件的网址列表"

软件Software 用途Function 网址Website
GSDS [39] 基因结构分析 Gene structure analysis http://gsds.gao-lab.org/
PlantCARE [40] 顺式作用元件分析 Cis-element analysis https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
ChiPlot [41] 进化分析 Phylogenetic analysis https://www.chiplot.online/chitree.html
STRING [42] 蛋白互作分析 Protein interaction analysis https://string-db.org/
Gpos-mPLoc [43] 亚细胞定位预测 Subcellular localization prediction http://www.csbio.sjtu.edu.cn/bioinf/Gposmulti/

图1

TaUBC16的CDS序列分析 A: TaUBC16基因CDS区的PCR扩增。B: 晋麦47与中国春TaUBC16基因序列比对。C: 小麦TaUBC16基因结构分析。"

图2

TaUBC16的亚细胞定位 A: TaUBC16在烟草叶片中的亚细胞定位。B: TaUBC16在小麦原生质体中的亚细胞定位。将35S::eGFP载体和35S::TaUBC16-eGFP融合蛋白载体分别导入烟草叶片和小麦原生质体中。用激光扫描共聚焦显微镜观察eGFP。标尺为10 μm。"

图3

TaUBC16序列分析 A: 小麦TaUBC16蛋白保守基序分析。B: 小麦TaUBC16启动子顺式作用元件分析。GD: 生长发育; HR: 激素响应; SR: 胁迫响应。"

表3

TaUBC16基因的顺式作用元件及功能注释"

顺式元件
Cis-acting element
数量
Number
功能
Function
as-1 1 压力响应元件 Pressure response element
CCGTCC-box 2 响应昼夜节律相关顺式作用元件 Response to circadian rhythm related cis-acting elements
CCGTCC motif 2 分生组织表达顺式作用元件 Expression of cis-acting elements in meristem tissue
CGTCA-motif 1 茉莉酸响应顺式作用元件 Jasmonic acid responsive cis-acting element
circadian 1 分生组织特异性激活顺式作用元件 Meridian specific activation cis-acting elements
ERE 1 乙烯响应元件 Ethylene responsive element
GC-motif 1 缺氧特异性诱导元件 Hypoxia specific induction element
LTR 3 低温响应元件 Low temperature responsive elements
STRE 5 热休克、营养饥饿和低pH诱导响应元件
Response elements induced by heat shock, nutritional starvation and low pH
TATC-box 1 环境响应和抗性相关元件 Environmental response and resistance related elements
TCA-element 2 水杨酸反应涉及的顺式作用元件 Cis-acting elements involved in salicylic acid reaction
TGACG-motif 1 MeJA反应的顺式作用元件 Cis-acting element of MeJA reaction
WRE3 1 损伤诱导元件 Damage inducing element

图4

TaUBC16蛋白的进化关系及互作网络分析 A: 小麦TaUBC16与其他植物同源蛋白的进化分析。Ta: 小麦; Zm: 玉米; Os: 水稻; At: 拟南芥; Tu: 乌拉尔图小麦; Sl: 番茄; As: 拟斯卑尔托山羊草; Nt: 烟草; Gm: 大豆; St: 马铃薯; Bd: 二穗短柄草; Hv: 大麦。B: TaUBC16蛋白的互作网络。"

图5

小麦TaUBC16在不同发育时期的表达谱分析 A: TaUBC16基因在小麦品种中国春不同发育时期和不同组织/器官中的表达热图。B: TaUBC16在小麦不同组织中的表达量。C: TaUBC16在小麦籽粒中的表达量。D: TaUBC16在小麦籽粒不同组织中的表达量。误差线代表±标准差。"

图6

小麦幼苗TaUBC16在不同非生物胁迫处理下的表达谱 A: TaUBC16基因在中国春不同非生物胁迫下的表达热图。B: 200 mmol L-1氯化钠处理。C: 20% PEG-6000处理。D: 200 mmol L-1甘露醇处理。E: 100 μmol L-1脱落酸处理。误差线代表平均值±标准差。*: P < 0.05; **: P < 0.01。"

图7

TaUBC16的核苷酸多态性和KASP标记的开发 A: 小麦TaUBC16基因结构和存在于2种TaUBC16单倍型中SNPs的示意图。B: TaUBC16中SNP-388 bp的KASP标记。其中蓝点代表FAM型等位基因A, 红点代表HEX型等位基因T。"

图8

TaUBC16基因不同单倍型的关联分析与时空分布 A, B, C为5种环境下TaUBC16等位变异与产量相关性状的关联分析。E1~E3: 2020、2021和2022年甘肃通渭; E4~E5: 2022年和2023年甘肃庄浪; 1000-kernel weight: 千粒重; Kernel length: 粒长; Kernel width: 粒宽。D为中国TaUBC16单倍型品种的地理分布, 中国标准地图: 审图号GS (2022) 4310号, 底图边界无修改。E为中国小麦育种进程中TaUBC16等位基因在不同年代的变异频率。有星号表示均值之间有显著差异(* P< 0.05; ** P < 0.01)。误差值, ±SE。不同的颜色代表不同的单倍型。"

图9

TaUBC16异源表达拟南芥鉴定 A: TaUBC16异源表达拟南芥鉴定。L1~L6: 株系1~6; WT: 野生型; P: 质粒。B: RT-PCR技术确定TaUBC16在转基因拟南芥中的表达水平。"

图10

野生型和TaUBC16转基因拟南芥表型观察 A: 野生型和转基因株系的生长状态。B: 野生型和转基因株系抽薹后的莲座叶数统计。C: 野生型和转基因株系的角果形态。D: 野生型和转基因株系的角果长度统计。E: 野生型和转基因株系的株高, 标尺为5 cm。F: 野生型和转基因株系的株高统计。G: 野生型和转基因株系的籽粒形态, 标尺为100 μm。H: 野生型和转基因株系的千粒重。*表示显著性差异(0.01 < P < 0.05); **表示极显著差异(P < 0.01)。"

[1] Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J Cell Mol Biol, 2010, 61, 1029-1040.
[2] Collins G A, Goldberg A L. The logic of the 26S proteasome. Cell, 2017, 169: 792-806.
doi: S0092-8674(17)30474-9 pmid: 28525752
[3] Vierstra R D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci, 2003, 8: 135-142.
doi: 10.1016/S1360-1385(03)00014-1 pmid: 12663224
[4] Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004, 55: 555-590.
pmid: 15377232
[5] Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol, 2009, 10: 755-764.
[6] Pickart C M. Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001, 70: 503-533.
pmid: 11395416
[7] Xu L, Ménard R, Berr A, Fuchs J, Cognat V, Meyer D, Shen W H. The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J, 2009, 57: 279-288.
[8] Lau O S, Deng X W. Effect of Arabidopsis COP10 ubiquitin E2 enhancement activity across E2 families and functional conservation among its canonical homologues. Biochem J, 2009, 418: 683-690.
[9] Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol, 2014, 15: 548.
[10] Wen R, Wang S, Xiang D, Venglat P, Shi X, Zang Y, Datla R, Xiao W, Wang H. UBC13, an E2 enzyme for Lys63-linked ubiquitination, functions in root development by affecting auxin signaling and Aux/IAA protein stability. Plant J, 2014, 80: 424-436.
[11] Wang S, Li Q, Zhao L, Fu S, Qin L, Wei Y, Fu Y B, Wang H. Arabidopsis UBC22, an E2 able to catalyze lysine-11 specific ubiquitin linkage formation, has multiple functions in plant growth and immunity. Plant Sci, 2020, 297: 110520.
[12] Tang S, Zhao Z, Liu X, Sui Y, Zhang D, Zhi H, Gao Y, Zhang H, Zhang L, Wang Y, Zhao M, Li D, Wang K, He Q, Zhang R, Zhang W, Jia G, Tang W, Ye X, Wu C, Diao X. An E2-E3 pair contributes to seed size control in grain crops. Nat Commun, 2023, 14: 3091.
doi: 10.1038/s41467-023-38812-y pmid: 37248257
[13] Wang Y, Yue J, Yang N, Zheng C, Zheng Y, Wu X, Yang J, Zhang H, Liu L, Ning Y, Bhadauria V, Zhao W, Xie Q, Peng Y L, Chen Q. An ERAD-related ubiquitin-conjugating enzyme boosts broad- spectrum disease resistance and yield in rice. Nat Food, 2023, 4: 774-787.
doi: 10.1038/s43016-023-00820-y pmid: 37591962
[14] Li J, Zhang B, Duan P, Yan L, Yu H, Zhang L, Li N, Zheng L, Chai T, Xu R, Li Y. An endoplasmic reticulum-associated degradation-related E2-E3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice. Plant Cell, 2023, 35: 1076-1091.
[15] Chen K, Tang W S, Zhou Y B, Xu Z S, Chen J, Ma Y Z, Chen M, Li H Y. Overexpression of GmUBC9 gene enhances plant drought resistance and affects flowering time via histone H2B monoubiquitination. Front Plant Sci, 2020, 11: 555794.
[16] 张祥云, 赵思语, 温潇, 王宁, 郭彦, 赵庆臻. 小麦TaUBC基因泛素结合酶活性分析. 聊城大学学报(自然科学版), 2018, 31(3): 79-85.
Zhang X Y, Zhao S Y, Wen X, Wang N, Guo Y, Zhao Q Z. Ubiquitin conjugating enzyme activity analysis of wheat TaUBC gene. J Liaocheng Univ (Nat Sci Edn), 2018, 31(3): 79-85 (in Chinese with English abstract).
[17] Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Mol Biol, 2005, 58: 367-384.
pmid: 16021401
[18] Feng H, Wang S, Dong D, Zhou R, Wang H. Arabidopsis Ubiquitin-conjugating enzymes UBC7, UBC13, and UBC14 are required in plant responses to multiple stress conditions. Plants (Basel), 2020, 9: 723.
[19] Zhou G A, Chang R Z, Qiu L J. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress- responsive gene expression in Arabidopsis. Plant Mol Biol, 2010, 72: 357-367.
[20] Dong C, Hu H, Jue D, Zhao Q, Chen H, Xie J, Jia L. The banana E2 gene family: genomic identification, characterization, expression profiling analysis. Plant Sci, 2016, 245: 11-24.
doi: 10.1016/j.plantsci.2016.01.003 pmid: 26940488
[21] Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell, 2012, 24: 233-244.
[22] Fernandez M A, Belda-Palazon B, Julian J, Coego A, Lozano- Juste J, Iñigo S, Rodriguez L, Bueso E, Goossens A, Rodriguez P L. RBR-type E3 ligases and the ubiquitin-conjugating enzyme UBC26 regulate abscisic acid receptor levels and signaling. Plant Physiol, 2020, 182: 1723-1742.
doi: 10.1104/pp.19.00898 pmid: 31699847
[23] Wang L, Wen R, Wang J, Xiang D, Wang Q, Zang Y, Wang Z, Huang S, Li X, Datla R, Fobert P R, Wang H, Wei Y, Xiao W. Arabidopsis UBC13 differentially regulates two programmed cell death pathways in responses to pathogen and low-temperature stress. New Phytol, 2019, 221: 919-934.
[24] Shiferaw B. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur, 2013, 3: 307-327.
[25] Miao Y, Jing F, Ma J, Liu Y, Zhang P, Chen T, Che Z, Yang D. Major Genomic regions for wheat grain weight as revealed by QTL linkage mapping and meta-analysis. Front Plant Sci, 2022, 13: 802310.
[26] Fang Y, Liang L, Liu S, Xu B, Siddique K H, Palta J A, Chen Y. Wheat cultivars with small root length density in the topsoil increased post-anthesis water use and grain yield in the semi-arid region on the Loess Plateau. Eur J Agron, 2021, 124.
[27] 李静静, 任永哲, 白露, 吕伟增, 王志强, 辛泽毓, 林同保. PEG-6000模拟干旱胁迫下不同基因型小麦品种萌发期抗旱性的综合鉴定. 河南农业大学学报, 2020, 54: 368-377.
Li J J, Ren Y Z, Bai L, Lyu W Z, Wang Z Q, Xin Z Y, Lin T B. Comprehensive identification and evaluation of drought tolerance of different genotypic wheat varieties at germination stage by PEG-6000 simulated drought stress. J Henan Agric Univ, 2020, 54: 368-377 (in Chinese with English abstract).
[28] 孙来虎, 李秀绒, 柴永峰, 王秋叶, 张建诚. 晋麦47号产量结构特点与高产栽培技术. 耕作与栽培, 2003, (5): 48-49.
Sun L H, Li X R, Chai Y F, Wang Q Y, Zhang J C. Characteristics of yield structure and high-yield cultivation techniques of Jinmai 47. Till Cult, 2003, (5): 48-49 (in Chinese with English abstract).
[29] Fan X, Dong Y, Zhang Z, Ren F, Hu G. First report of vitis cryptic virus from grapevines in China. Plant Dis, 2022, 106, p 3006
[30] He J, Li C, Hu N, Zhu Y, He Z, Sun Y, Wang Z, Wang Y. ECERIFERUM1-6A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat. Plant Physiol, 2022, 190: 1640-1657.
doi: 10.1093/plphys/kiac394 pmid: 36000923
[31] Guo L, Ma M, Wu L, Zhou M, Li M, Wu B, Li L, Liu X, Jing R, Chen W, Zhao H. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnol J, 2022, 20: 168-182.
[32] Zhang F, Tao W, Sun R, Wang J, Li C, Kong X, Tian H, Ding Z. PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana. PLoS Genet, 2020, 16: e1008044.
[33] Luo Z, Wang L, Wang Y, Zhang W, Guo Y, Shen Y, Jiang L, Wu Q, Zhang C, Cai Y, Dai J. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nat Commun, 2018, 9: 1930.
doi: 10.1038/s41467-017-00806-y pmid: 29789541
[34] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008, 3: 1101-1108.
doi: 10.1038/nprot.2008.73 pmid: 18546601
[35] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2002, 25: 402-408.
[36] Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D, Kang Z, Ni F. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant, 2021, 14: 1965-1968.
doi: 10.1016/j.molp.2021.10.006 pmid: 34715393
[37] Borrill P, Ramirez-Gonzalez R, Uauy C. ExpVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol, 2016, 170: 2172-2186.
doi: 10.1104/pp.15.01667 pmid: 26869702
[38] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[39] Hu B, Jin J, Guo A Y, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31, 1296-1297.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850
[40] Zhang P, Zhang L, Chen T, Jing F, Liu Y, Ma J, Tian T, Yang D. Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep, 2022, 49: 2899-2913.
[41] Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592.
doi: 10.1093/nar/gkad359 pmid: 37144476
[42] Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable A L, Fang T, Doncheva N T, Pyysalo S, Bork P, Jensen L J, von Mering C. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res, 2023, 51: D638-D646.
[43] Shen H B, Chou K C. Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of gram- positive bacterial proteins. Prot Pept Lett, 2009, 16: 1478-1484.
[44] Zhang X, Henriques R, Lin S S, Niu Q W, Chua N H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Prot, 2006, 1: 641-646.
[45] Yu G, Hatta A, Periyannan S, Lagudah E, Wulff B B H. Isolation of wheat genomic DNA for gene mapping and cloning. Meth Mol Biol, 2017, 1659: 207-213.
[46] McFarlane H E, Gendre D, Western T L. Seed coat ruthenium red staining assay. Bio Prot, 2014, 4: e1096.
[47] Luo X, Liu B, Xie L, Wang K, Xu D, Tian X, Xie L, Li L, Ye X, He Z, Xia X, Yan L, Cao S. The TaSOC1-TaVRN1 module integrates photoperiod and vernalization signals to regulate wheat flowering. Plant Biotechno J, doi: 10.1111/pbi.14211.
[48] Guo W, Xin M, Wang Z, Yao Y, Hu Z, Song W, Yu K, Chen Y, Wang X, Guan P, Appels R, Peng H, Ni Z, Sun Q. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat Commun, 2020, 11: 5085.
doi: 10.1038/s41467-020-18738-5 pmid: 33033250
[49] Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. Ann Bot, 2007, 99: 787-822.
[50] Su T, Yang M, Wang P, Zhao Y, Ma C. Interplay between the ubiquitin proteasome system and ubiquitin-mediated autophagy in plants. Cells, 2020, 9: 2219.
[51] Bae H, Kim W T. The N-terminal tetra-peptide (IPDE) short extension of the U-box motif in rice SPL11 E3 is essential for the interaction with E2 and ubiquitin-ligase activity. Biochem Biophys Res Commun, 2013, 433: 266-271.
[52] Bae H, Kim W T. Classification and interaction modes of 40 rice E2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases. Biochem Biophys Res Commun, 2014, 444: 575-580.
[53] Criqui M C, de Almeida Engler J, Camasses A, Capron A, Parmentier Y, Inzé D, Genschik P. Molecular characterization of plant ubiquitin-conjugating enzymes belonging to the UbcP4/E2- C/UBCx/UbcH10 gene family. Plant Physiol, 2002, 130: 1230-1240.
[54] Li W, Schmidt W. A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots. Plant J, 2010, 62: 330-343.
[55] Chung E, Cho C W, So H A, Kang J S, Chung Y S, Lee J H. Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis. PloS One, 2013, 8: e66056.
[56] Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol, 2009, 10: 398-409.
[57] Maspero E, Mari S, Valentini E, Musacchio A, Fish A, Pasqualato S, Polo S. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep, 2011, 12: 342-349.
doi: 10.1038/embor.2011.21 pmid: 21399620
[58] Miller C, Wells R, McKenzie N, Trick M, Ball J, Fatihi A, Dubreucq B, Chardot T, Lepiniec L, Bevan M W. Variation in expression of the HECT E3 ligase UPL3 modulates LEC2 levels, seed size, and crop yields in Brassica napus. Plant Cell, 2019, 31: 2370-2385.
[59] Miao Y, Zentgraf U. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Plant J, 2010, 63: 179-188.
[60] Wang S, Cao L, Wang H. Arabidopsis ubiquitin-conjugating enzyme UBC22 is required for female gametophyte development and likely involved in Lys11-linked ubiquitination. J Exp Bot, 2016, 67: 3277-3288.
doi: 10.1093/jxb/erw142 pmid: 27069118
[61] Wang S, Li Q, Zhao L, Fu S, Wang H. Arabidopsis UBC22, an E2 able to catalyze lysine-11 specific ubiquitin linkage formation, has multiple functions in plant growth and immunity. Plant Sci, 2020, 297: 110520.
[62] Stone S L. Role of the ubiquitin proteasome system in plant response to abiotic stress. Int Rev Cell Mol Biol, 2019, 343: 65-110.
doi: S1937-6448(18)30062-5 pmid: 30712675
[63] Yu F, Wu Y, Xie Q. Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant, 2016, 9: 21-33.
doi: S1674-2052(15)00392-5 pmid: 26455462
[64] Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ, 2019, 42, 2931-2944.
[65] Jones D, Crowe E, Stevens T A, Candido E P. Functional and phylogenetic analysis of the ubiquitylation system in caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol, 2002, 3: RESEARCH0002.
[66] Jeon E H, Pak J H, Kim M J, Kim H J, Shin S H, Lee J H, Kim D H, Oh J S, Oh B J, Jung H W, Chung Y S. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana. Biochem Biophys Res Commun, 2012, 427: 309-314.
[67] Wan X, Mo A, Liu S, Yang L, Li L. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress- responsive gene expression. J Biosci Bioeng, 2011, 111: 478-484.
[68] Zhang X, Rerksiri W, Liu A, Zhou X, Xiong H, Xiang J, Chen X, Xiong X. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf. Gene, 2013, 530: 185-192.
doi: 10.1016/j.gene.2013.08.048 pmid: 23994682
[69] Liu H, Li H, Hao C, Wang K, Wang Y, Qin L, An D, Li T, Zhang X. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol J, 2020, 18: 1330-1342.
[70] Hu M J, Zhang H P, Cao J J, Zhu X F, Wang S X, Jiang H, Wu Z Y, Lu J, Chang C, Sun G L. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol Breed, 2016, 36: 25.
[71] Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J, 2016, 14: 1269-1280.
doi: 10.1111/pbi.12492 pmid: 26480952
[72] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787-796.
doi: 10.1111/pbi.12183 pmid: 24646323
[73] Allen A M, Winfield M O, Burridge A J, Downie R C, Benbow H R, Barker G L, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley A R, Alda M, Jack P, Phillips A L, Edwards K J. Characterization of a wheat breeders’ array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J, 2017, 15: 390-401.
[74] Wang J, Wang R, Mao X, Zhang J, Liu Y, Xie Q, Yang X, Chang X, Li C, Zhang X, Jing R. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. J Exp Bot, 2020, 71: 5377-5388.
[75] Hanif M, Gao F, Liu J, Wen W, Cao S. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed, 2016, 36: 1.
[76] Lin Q, Junjie Z, Tian L, Jian H, Xueyong Z, Chenyang H. TaGW2, a good reflection of wheat polyploidization and evolution. Front Plant Sci, 2017, 8: 318.
doi: 10.3389/fpls.2017.00318 pmid: 28326096
[77] Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics, 2011, 11: 49-61.
[1] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[2] 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247.
[3] 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178.
[4] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[5] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[6] 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090.
[7] 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884.
[8] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[9] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[10] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[11] 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1420.
[12] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[13] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[14] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
[15] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .