作物学报 ›› 2024, Vol. 50 ›› Issue (8): 1971-1988.doi: 10.3724/SP.J.1006.2024.31080
所属专题: 小麦:遗传育种·种质资源·分子遗传学
        
               		高维东1,2( ), 胡城祯1,2, 张龙1,2, 张艳艳1,2, 张沛沛1, 杨德龙1,2,*(
), 胡城祯1,2, 张龙1,2, 张艳艳1,2, 张沛沛1, 杨德龙1,2,*( ), 陈涛1,2,*(
), 陈涛1,2,*( )
)
                  
        
        
        
        
    
        
               		GAO Wei-Dong1,2( ), HU Chen-Zhen1,2, ZHANG Long1,2, ZHANG Yan-Yan1,2, ZHANG Pei-Pei1, YANG De-Long1,2,*(
), HU Chen-Zhen1,2, ZHANG Long1,2, ZHANG Yan-Yan1,2, ZHANG Pei-Pei1, YANG De-Long1,2,*( ), CHEN Tao1,2,*(
), CHEN Tao1,2,*( )
)
			  
			
			
			
                
        
    
摘要:
E2泛素结合酶在调控植物生长发育和胁迫信号转导过程中发挥着重要作用。本研究以小麦抗旱品种晋麦47的cDNA为模板克隆出E2泛素结合酶TaUBC16, 该基因全长447 bp, 编码148个氨基酸。顺式作用元件分析发现, TaUBC16启动子区含有与分生组织发育、胁迫响应、植物激素应答相关的多种顺式作用元件。利用小麦RNA-Seq转录组数据结合qRT-PCR验证分析发现, TaUBC16在小麦不同组织器官和发育阶段普遍表达, 其中在30 d籽粒中的表达量较高, 且均能被PEG-6000、甘露醇和ABA显著诱导表达。烟草叶片和小麦原生质体亚细胞定位分析表明, TaUBC16蛋白分布于细胞质和细胞核。通过异源表达TaUBC16转基因拟南芥进行生长发育表型分析发现, 转基因株系开花时间早于野生型, 其籽粒相比于野生型更为饱满, 千粒重显著高于野生型。基于启动子区-388 bp位点(T-A)的多态性, 开发了TaUBC16基因的竞争性等位基因特异性PCR (kompetitive allele-specific PCR, KASP)标记, 鉴定了TaUBC16的单倍型, 发现TaUBC16-Hap I的千粒重、粒长和粒宽显著高于TaUBC16-Hap II, 并在我国小麦育种进程中得到正向选择。本研究结果将为进一步揭示TaUBC16基因参与调控小麦生长发育和响应逆境胁迫分子机理提供理论依据。
| [1] | Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J Cell Mol Biol, 2010, 61, 1029-1040. | 
| [2] | Collins G A, Goldberg A L. The logic of the 26S proteasome. Cell, 2017, 169: 792-806. doi: S0092-8674(17)30474-9 pmid: 28525752 | 
| [3] | Vierstra R D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci, 2003, 8: 135-142. doi: 10.1016/S1360-1385(03)00014-1 pmid: 12663224 | 
| [4] | Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004, 55: 555-590. pmid: 15377232 | 
| [5] | Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol, 2009, 10: 755-764. | 
| [6] | Pickart C M. Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001, 70: 503-533. pmid: 11395416 | 
| [7] | Xu L, Ménard R, Berr A, Fuchs J, Cognat V, Meyer D, Shen W H. The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J, 2009, 57: 279-288. | 
| [8] | Lau O S, Deng X W. Effect of Arabidopsis COP10 ubiquitin E2 enhancement activity across E2 families and functional conservation among its canonical homologues. Biochem J, 2009, 418: 683-690. | 
| [9] | Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol, 2014, 15: 548. | 
| [10] | Wen R, Wang S, Xiang D, Venglat P, Shi X, Zang Y, Datla R, Xiao W, Wang H. UBC13, an E2 enzyme for Lys63-linked ubiquitination, functions in root development by affecting auxin signaling and Aux/IAA protein stability. Plant J, 2014, 80: 424-436. | 
| [11] | Wang S, Li Q, Zhao L, Fu S, Qin L, Wei Y, Fu Y B, Wang H. Arabidopsis UBC22, an E2 able to catalyze lysine-11 specific ubiquitin linkage formation, has multiple functions in plant growth and immunity. Plant Sci, 2020, 297: 110520. | 
| [12] | Tang S, Zhao Z, Liu X, Sui Y, Zhang D, Zhi H, Gao Y, Zhang H, Zhang L, Wang Y, Zhao M, Li D, Wang K, He Q, Zhang R, Zhang W, Jia G, Tang W, Ye X, Wu C, Diao X. An E2-E3 pair contributes to seed size control in grain crops. Nat Commun, 2023, 14: 3091. doi: 10.1038/s41467-023-38812-y pmid: 37248257 | 
| [13] | Wang Y, Yue J, Yang N, Zheng C, Zheng Y, Wu X, Yang J, Zhang H, Liu L, Ning Y, Bhadauria V, Zhao W, Xie Q, Peng Y L, Chen Q. An ERAD-related ubiquitin-conjugating enzyme boosts broad- spectrum disease resistance and yield in rice. Nat Food, 2023, 4: 774-787. doi: 10.1038/s43016-023-00820-y pmid: 37591962 | 
| [14] | Li J, Zhang B, Duan P, Yan L, Yu H, Zhang L, Li N, Zheng L, Chai T, Xu R, Li Y. An endoplasmic reticulum-associated degradation-related E2-E3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice. Plant Cell, 2023, 35: 1076-1091. | 
| [15] | Chen K, Tang W S, Zhou Y B, Xu Z S, Chen J, Ma Y Z, Chen M, Li H Y. Overexpression of GmUBC9 gene enhances plant drought resistance and affects flowering time via histone H2B monoubiquitination. Front Plant Sci, 2020, 11: 555794. | 
| [16] | 张祥云, 赵思语, 温潇, 王宁, 郭彦, 赵庆臻. 小麦TaUBC基因泛素结合酶活性分析. 聊城大学学报(自然科学版), 2018, 31(3): 79-85. | 
| Zhang X Y, Zhao S Y, Wen X, Wang N, Guo Y, Zhao Q Z. Ubiquitin conjugating enzyme activity analysis of wheat TaUBC gene. J Liaocheng Univ (Nat Sci Edn), 2018, 31(3): 79-85 (in Chinese with English abstract). | |
| [17] | Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Mol Biol, 2005, 58: 367-384. pmid: 16021401 | 
| [18] | Feng H, Wang S, Dong D, Zhou R, Wang H. Arabidopsis Ubiquitin-conjugating enzymes UBC7, UBC13, and UBC14 are required in plant responses to multiple stress conditions. Plants (Basel), 2020, 9: 723. | 
| [19] | Zhou G A, Chang R Z, Qiu L J. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress- responsive gene expression in Arabidopsis. Plant Mol Biol, 2010, 72: 357-367. | 
| [20] | Dong C, Hu H, Jue D, Zhao Q, Chen H, Xie J, Jia L. The banana E2 gene family: genomic identification, characterization, expression profiling analysis. Plant Sci, 2016, 245: 11-24. doi: 10.1016/j.plantsci.2016.01.003 pmid: 26940488 | 
| [21] | Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell, 2012, 24: 233-244. | 
| [22] | Fernandez M A, Belda-Palazon B, Julian J, Coego A, Lozano- Juste J, Iñigo S, Rodriguez L, Bueso E, Goossens A, Rodriguez P L.  RBR-type E3 ligases and the ubiquitin-conjugating enzyme UBC26 regulate abscisic acid receptor levels and signaling. Plant Physiol, 2020, 182: 1723-1742. doi: 10.1104/pp.19.00898 pmid: 31699847 | 
| [23] | Wang L, Wen R, Wang J, Xiang D, Wang Q, Zang Y, Wang Z, Huang S, Li X, Datla R, Fobert P R, Wang H, Wei Y, Xiao W. Arabidopsis UBC13 differentially regulates two programmed cell death pathways in responses to pathogen and low-temperature stress. New Phytol, 2019, 221: 919-934. | 
| [24] | Shiferaw B. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur, 2013, 3: 307-327. | 
| [25] | Miao Y, Jing F, Ma J, Liu Y, Zhang P, Chen T, Che Z, Yang D. Major Genomic regions for wheat grain weight as revealed by QTL linkage mapping and meta-analysis. Front Plant Sci, 2022, 13: 802310. | 
| [26] | Fang Y, Liang L, Liu S, Xu B, Siddique K H, Palta J A, Chen Y. Wheat cultivars with small root length density in the topsoil increased post-anthesis water use and grain yield in the semi-arid region on the Loess Plateau. Eur J Agron, 2021, 124. | 
| [27] | 李静静, 任永哲, 白露, 吕伟增, 王志强, 辛泽毓, 林同保. PEG-6000模拟干旱胁迫下不同基因型小麦品种萌发期抗旱性的综合鉴定. 河南农业大学学报, 2020, 54: 368-377. | 
| Li J J, Ren Y Z, Bai L, Lyu W Z, Wang Z Q, Xin Z Y, Lin T B. Comprehensive identification and evaluation of drought tolerance of different genotypic wheat varieties at germination stage by PEG-6000 simulated drought stress. J Henan Agric Univ, 2020, 54: 368-377 (in Chinese with English abstract). | |
| [28] | 孙来虎, 李秀绒, 柴永峰, 王秋叶, 张建诚. 晋麦47号产量结构特点与高产栽培技术. 耕作与栽培, 2003, (5): 48-49. | 
| Sun L H, Li X R, Chai Y F, Wang Q Y, Zhang J C. Characteristics of yield structure and high-yield cultivation techniques of Jinmai 47. Till Cult, 2003, (5): 48-49 (in Chinese with English abstract). | |
| [29] | Fan X, Dong Y, Zhang Z, Ren F, Hu G. First report of vitis cryptic virus from grapevines in China. Plant Dis, 2022, 106, p 3006 | 
| [30] | He J, Li C, Hu N, Zhu Y, He Z, Sun Y, Wang Z, Wang Y. ECERIFERUM1-6A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat. Plant Physiol, 2022, 190: 1640-1657. doi: 10.1093/plphys/kiac394 pmid: 36000923 | 
| [31] | Guo L, Ma M, Wu L, Zhou M, Li M, Wu B, Li L, Liu X, Jing R, Chen W, Zhao H. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnol J, 2022, 20: 168-182. | 
| [32] | Zhang F, Tao W, Sun R, Wang J, Li C, Kong X, Tian H, Ding Z. PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana. PLoS Genet, 2020, 16: e1008044. | 
| [33] | Luo Z, Wang L, Wang Y, Zhang W, Guo Y, Shen Y, Jiang L, Wu Q, Zhang C, Cai Y, Dai J. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nat Commun, 2018, 9: 1930. doi: 10.1038/s41467-017-00806-y pmid: 29789541 | 
| [34] | Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008, 3: 1101-1108. doi: 10.1038/nprot.2008.73 pmid: 18546601 | 
| [35] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2002, 25: 402-408. | 
| [36] | Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D, Kang Z, Ni F. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant, 2021, 14: 1965-1968. doi: 10.1016/j.molp.2021.10.006 pmid: 34715393 | 
| [37] | Borrill P, Ramirez-Gonzalez R, Uauy C. ExpVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol, 2016, 170: 2172-2186. doi: 10.1104/pp.15.01667 pmid: 26869702 | 
| [38] | Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202. doi: S1674-2052(20)30187-8 pmid: 32585190 | 
| [39] | Hu B, Jin J, Guo A Y, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31, 1296-1297. doi: 10.1093/bioinformatics/btu817 pmid: 25504850 | 
| [40] | Zhang P, Zhang L, Chen T, Jing F, Liu Y, Ma J, Tian T, Yang D. Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep, 2022, 49: 2899-2913. | 
| [41] | Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592. doi: 10.1093/nar/gkad359 pmid: 37144476 | 
| [42] | Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable A L, Fang T, Doncheva N T, Pyysalo S, Bork P, Jensen L J, von Mering C. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res, 2023, 51: D638-D646. | 
| [43] | Shen H B, Chou K C. Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of gram- positive bacterial proteins. Prot Pept Lett, 2009, 16: 1478-1484. | 
| [44] | Zhang X, Henriques R, Lin S S, Niu Q W, Chua N H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Prot, 2006, 1: 641-646. | 
| [45] | Yu G, Hatta A, Periyannan S, Lagudah E, Wulff B B H. Isolation of wheat genomic DNA for gene mapping and cloning. Meth Mol Biol, 2017, 1659: 207-213. | 
| [46] | McFarlane H E, Gendre D, Western T L. Seed coat ruthenium red staining assay. Bio Prot, 2014, 4: e1096. | 
| [47] | Luo X, Liu B, Xie L, Wang K, Xu D, Tian X, Xie L, Li L, Ye X, He Z, Xia X, Yan L, Cao S. The TaSOC1-TaVRN1 module integrates photoperiod and vernalization signals to regulate wheat flowering. Plant Biotechno J, doi: 10.1111/pbi.14211. | 
| [48] | Guo W, Xin M, Wang Z, Yao Y, Hu Z, Song W, Yu K, Chen Y, Wang X, Guan P, Appels R, Peng H, Ni Z, Sun Q. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat Commun, 2020, 11: 5085. doi: 10.1038/s41467-020-18738-5 pmid: 33033250 | 
| [49] | Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. Ann Bot, 2007, 99: 787-822. | 
| [50] | Su T, Yang M, Wang P, Zhao Y, Ma C. Interplay between the ubiquitin proteasome system and ubiquitin-mediated autophagy in plants. Cells, 2020, 9: 2219. | 
| [51] | Bae H, Kim W T. The N-terminal tetra-peptide (IPDE) short extension of the U-box motif in rice SPL11 E3 is essential for the interaction with E2 and ubiquitin-ligase activity. Biochem Biophys Res Commun, 2013, 433: 266-271. | 
| [52] | Bae H, Kim W T. Classification and interaction modes of 40 rice E2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases. Biochem Biophys Res Commun, 2014, 444: 575-580. | 
| [53] | Criqui M C, de Almeida Engler J, Camasses A, Capron A, Parmentier Y, Inzé D, Genschik P. Molecular characterization of plant ubiquitin-conjugating enzymes belonging to the UbcP4/E2- C/UBCx/UbcH10 gene family. Plant Physiol, 2002, 130: 1230-1240. | 
| [54] | Li W, Schmidt W. A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots. Plant J, 2010, 62: 330-343. | 
| [55] | Chung E, Cho C W, So H A, Kang J S, Chung Y S, Lee J H. Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis. PloS One, 2013, 8: e66056. | 
| [56] | Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol, 2009, 10: 398-409. | 
| [57] | Maspero E, Mari S, Valentini E, Musacchio A, Fish A, Pasqualato S, Polo S. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep, 2011, 12: 342-349. doi: 10.1038/embor.2011.21 pmid: 21399620 | 
| [58] | Miller C, Wells R, McKenzie N, Trick M, Ball J, Fatihi A, Dubreucq B, Chardot T, Lepiniec L, Bevan M W. Variation in expression of the HECT E3 ligase UPL3 modulates LEC2 levels, seed size, and crop yields in Brassica napus. Plant Cell, 2019, 31: 2370-2385. | 
| [59] | Miao Y, Zentgraf U. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Plant J, 2010, 63: 179-188. | 
| [60] | Wang S, Cao L, Wang H. Arabidopsis ubiquitin-conjugating enzyme UBC22 is required for female gametophyte development and likely involved in Lys11-linked ubiquitination. J Exp Bot, 2016, 67: 3277-3288. doi: 10.1093/jxb/erw142 pmid: 27069118 | 
| [61] | Wang S, Li Q, Zhao L, Fu S, Wang H. Arabidopsis UBC22, an E2 able to catalyze lysine-11 specific ubiquitin linkage formation, has multiple functions in plant growth and immunity. Plant Sci, 2020, 297: 110520. | 
| [62] | Stone S L. Role of the ubiquitin proteasome system in plant response to abiotic stress. Int Rev Cell Mol Biol, 2019, 343: 65-110. doi: S1937-6448(18)30062-5 pmid: 30712675 | 
| [63] | Yu F, Wu Y, Xie Q. Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant, 2016, 9: 21-33. doi: S1674-2052(15)00392-5 pmid: 26455462 | 
| [64] | Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ, 2019, 42, 2931-2944. | 
| [65] | Jones D, Crowe E, Stevens T A, Candido E P. Functional and phylogenetic analysis of the ubiquitylation system in caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol, 2002, 3: RESEARCH0002. | 
| [66] | Jeon E H, Pak J H, Kim M J, Kim H J, Shin S H, Lee J H, Kim D H, Oh J S, Oh B J, Jung H W, Chung Y S. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana. Biochem Biophys Res Commun, 2012, 427: 309-314. | 
| [67] | Wan X, Mo A, Liu S, Yang L, Li L. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress- responsive gene expression. J Biosci Bioeng, 2011, 111: 478-484. | 
| [68] | Zhang X, Rerksiri W, Liu A, Zhou X, Xiong H, Xiang J, Chen X, Xiong X. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf. Gene, 2013, 530: 185-192. doi: 10.1016/j.gene.2013.08.048 pmid: 23994682 | 
| [69] | Liu H, Li H, Hao C, Wang K, Wang Y, Qin L, An D, Li T, Zhang X. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol J, 2020, 18: 1330-1342. | 
| [70] | Hu M J, Zhang H P, Cao J J, Zhu X F, Wang S X, Jiang H, Wu Z Y, Lu J, Chang C, Sun G L. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol Breed, 2016, 36: 25. | 
| [71] | Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J, 2016, 14: 1269-1280. doi: 10.1111/pbi.12492 pmid: 26480952 | 
| [72] | Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787-796. doi: 10.1111/pbi.12183 pmid: 24646323 | 
| [73] | Allen A M, Winfield M O, Burridge A J, Downie R C, Benbow H R, Barker G L, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley A R, Alda M, Jack P, Phillips A L, Edwards K J. Characterization of a wheat breeders’ array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J, 2017, 15: 390-401. | 
| [74] | Wang J, Wang R, Mao X, Zhang J, Liu Y, Xie Q, Yang X, Chang X, Li C, Zhang X, Jing R. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. J Exp Bot, 2020, 71: 5377-5388. | 
| [75] | Hanif M, Gao F, Liu J, Wen W, Cao S. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed, 2016, 36: 1. | 
| [76] | Lin Q, Junjie Z, Tian L, Jian H, Xueyong Z, Chenyang H. TaGW2, a good reflection of wheat polyploidization and evolution. Front Plant Sci, 2017, 8: 318. doi: 10.3389/fpls.2017.00318 pmid: 28326096 | 
| [77] | Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics, 2011, 11: 49-61. | 
| [1] | 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386. | 
| [2] | 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484. | 
| [3] | 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466. | 
| [4] | 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398. | 
| [5] | 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284. | 
| [6] | 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219. | 
| [7] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. | 
| [8] | 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990. | 
| [9] | 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189. | 
| [10] | 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086. | 
| [11] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. | 
| [12] | 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127. | 
| [13] | 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175. | 
| [14] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. | 
| [15] | 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047. | 
| 
 | ||