欢迎访问作物学报,今天是

作物学报

• •    

强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响

方宇辉,齐学礼,李艳,张煜,彭超军,华夏,陈艳艳,郭瑞,胡琳,许为钢*   

  1. 河南省作物分子育种研究院 / 河南省小麦生物学重点实验室 / 神农种业实验室,河南郑州 450002
  • 收稿日期:2023-12-01 修回日期:2024-01-30 接受日期:2024-01-30 网络出版日期:2024-02-20
  • 基金资助:
    本研究由河南省农业科学院自主创新基金项目(2023ZC090), 河南省科技攻关项目(232102110203), 神农种业实验室“一流课题”项目(SN01-2022-01), 农业生物育种重大项目(2023ZD0402302)和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03-7)资助。

Effects of high light stress on photosynthesis and physiological characteristics of wheat with C4-type ZmPEPC+ZmPPDK gene#br#

FANG Yu-Hui,QI Xue-Li, LI Yan,ZHANG Yu,PENG Chao-Jun,HUA Xia,CHEN Yan-Yan,GUO Rui,HU Lin,XU Wei-Gang*   

  1. Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences / Key Laboratory for Wheat Biology of Henan Province / Shennong Laboratory, Zhengzhou, Henan 450002, China
  • Received:2023-12-01 Revised:2024-01-30 Accepted:2024-01-30 Published online:2024-02-20
  • Supported by:
    This study was supported by the Independent Innovation Foundation of Henan Academy of Agricultural Sciences (2023ZC090), the Henan Provincial Science and Technology Research Project (232102110203), the ‘First-class Project’ of Shennong Laboratory (SN01-2022-01), the Major Project of Agricultural Biological Breeding (2023ZD0402302), and the China Agriculture Research System of MOF and MARA (CARS-03-7).

摘要:

为研究转玉米C4PEPC (磷酸烯醇式丙酮酸羧化酶基因)PPDK(丙酮酸磷酸双激酶基因)双基因小麦对强光胁迫的光合和生理响应,以转ZmPEPC+ZmPPDK基因小麦株系PCK30PCK60及其野生型对照材料(WT)为试验材料,鉴定了外源基因在转基因小麦中的表达量,在抽穗期和灌浆期测定正常光强(NL)和强光胁迫(HL)处理下转基因小麦的光合酶活性、叶绿素含量、气体交换参数、叶绿素荧光参数、活性氧物质含量和抗氧化酶活性。结果表明,2个转基因株系在转录水平上高效表达了PEPCPPDK基因。在不同时期NLHL处理下,转基因小麦的PEPCPPDKNADP-MERubisco的酶活均显著高于WT,且HL处理下高出WT的幅度更明显。与NL处理相比,转基因小麦和WT的叶绿素含量在HL处理下显著降低,但转基因株系的下降幅度更小,且HL处理下转基因株系的叶绿素含量显著高于WT。两种水平处理下,转基因小麦PCK30PCK60的净光合速率(Pn)均显著高于WT,且HL处理下高出幅度更明显,抽穗期增幅分别为15.26%17.57%,灌浆期为13.41%15.82%。气孔导度、Fv/Fmqp的变化趋势与Pn一致,胞间二氧化碳浓度的变化趋势与Pn相反。转基因株系在HL处理下产生的活性氧物质和丙二醛含量显著低于WT,而抗氧化酶变化趋势与之相反。连续两年田间小区产量试验,转基因小麦PCK30PCK60平均比WT8.37%10.16%PEPCPPDK在小麦中的过表达增强了小麦内源的光合酶、光化学效率和抗氧化酶活性,增强了强光下的叶片细胞膜的稳定性,保护了光合机构,维持了较高的光合效率,从而提高了转基因小麦的耐强光胁迫能力。

关键词: 小麦, 玉米C4光合基因, 强光胁迫, 光合, 生理特性

Abstract:

To study the photosynthetic and physiological response of maize C4-type PEPC (phosphoenolpyruvate carboxylase gene) and PPDK (pyruvate phosphate double kinase gene) dual-gene wheat to high light, the ZmPEPC + ZmPPDK wheat lines PCK30 and PCK60 and their wild type control material (WT) were used as experimental materials. The relative expression levels of exogenous genes in transgenic wheat were identified. The photosynthetic enzyme activity, chlorophyll content, gas exchange parameters, chlorophyll fluorescence parameters, active oxygen content, and antioxidant enzyme activity of transgenic wheat were measured under normal light intensity (NL) and high light stress (HL) at heading and grain-filling stages. The results showed that the two transgenic lines expressed the PEPC and PPDK genes efficiently at the transcriptional level. The enzyme activity of PEPC, PPDK, NADP-ME, and Rubisco of transgenic wheat was significantly higher than WT under NL or HL stress at different stage, and the increase of WT was more obvious under HL stress. Compared with NL stress, the chlorophyll content of transgenic wheat and WT decreased significantly under HL stress, but the decrease of transgenic lines was smaller, and the chlorophyll content of transgenic lines was significantly higher than WT under HL stress. Under two treatment stresses, the net photosynthetic rate (Pn) of PCK30 and PCK60 was significantly higher than WT, and the higher range was more obvious under HL stress. The increases were 15.26% and 17.57% at heading stage and 13.41% and 15.82% at grain-filling stage, respectively. The variation trend of stomatal conductance, Fv/Fm and qp was consistent with Pn, while the variation trend of intercellular carbon dioxide concentration was opposite to Pn. The content of reactive oxygen species and malondialdehyde produced by transgenic lines under HL stress was significantly lower than WT, while the trend of antioxidant enzymes was opposite. In two consecutive years of field plot yield experiments, PCK30 and PCK60 were 8.37% and 10.16% higher than WT on average. The overexpression of PEPC and PPDK in wheat enhanced the endogenous photosynthetic enzyme, photochemical efficiency, and antioxidant enzyme activities of wheat, enhanced the stability of leaf cell membrane under high light stress, protected the photosynthetic apparatus, and maintained a high photosynthetic efficiency, thus improving the tolerance of transgenic wheat to high light stress.

Key words: wheat, maize C4-type photosynthetic gene, high light stress, photosynthesis, physiological characteristics

[1] Aranjuelo I, Sanz-Sáez Á, Jauregui I, Irigoyen J, Araus J, Sánchez-Díaz M, Erice G. Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. J Exp Bot, 2013, 64: 1879–1892.

[2] Long S P, Zhu X G, Naidu S L, Ort D R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ, 2006, 29: 315–330.

[3] Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol, 2010, 61: 235–261.

[4] 李宏伟, 李滨, 郑琪, 李振声. 小麦幼苗从低光到强光适应过程中光合和抗氧化酶变化. 作物学报, 2010, 36: 449–456.

Li H W, Li B, Zheng Q, Li Z S. Variation in photosynthetic traits and antioxidant enzyme activities of wheat seedlings transferred from low to high light growth condition. Acta Agron Sin, 2010, 363: 449−456 (in Chinese with English abstract).

[5] Ögren E, Rosenqvist E. On the significance of photoinhibition of photosynthesis in the field and its generality among species. Photosyn Res, 1992, 33: 63–71.

[6] Chen Y E, Zhang C M, Su Y Q, Ma J, Zhang Z W, Yuan M, Zhang H Y, Yuan S. Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. Environ Exp Bot, 2017, 135: 45–55.

[7] Parry M A J, Reynolds M, Salvucci M E, Raines C, Andralojc P J, Zhu X G, Price G D, Condon A G, Furbank R T. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot, 2011, 62: 453–467.

[8] Gaponenko A K, Shulga O A, Mishutkina Y B. Tsarkova E A, Timoshenko A A, Spechenkova N A. Perspectives of use of transcription factors for improving resistance of wheat productive varieties to abiotic stresses by transgenic technologies. Russ J Genet, 2018, 54: 27–35.

[9] Wang J Y, Mao X G, Wang R T, Li A, Zhao G Y, Zhao J F, Jing R L. Identification of wheat stress-responding genes and TaPR-1-1 function by screening a cDNA yeast library prepared following abiotic stress. Sci Rep, 2019, 9:141.

[10] Zhu X G, Long S P, Ort D R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotech, 2008, 19: 153–159.

[11] Singh J, Garai S, Das S, Thakur J K, Tripathy B C. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. Photosynth Res, 2022, 154: 233–258

[12] Chen S, Peng W, Ansah E O, Xiong F, Wu Y. Encoded C4 homologue enzymes genes function under abiotic stresses in C3 plant. Plant Signal Behav, 2022, 17: 2115634

[13] Hudspeth R L, Grula J W, Dai Z, Edwards G E, Ku M S B. Expression of maize Phosphoenolpyruvate Carboxylase in transgenic tobacco: Effects on biochemistry and physiology. Plant Physiol, 1992, 98: 458–464.

[14] Sheriff A, Meyer H, Riedel E, Schmitt J M, Lapke C. The influence of plant pyruvate orthophosphate dikinase on a C3 plant with respect to the intracellular location of the enzyme. Plant Sci, 1998, 136: 43–57.

[15] Laporte M M, Shen B, Tarczynski M C. Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot, 2002, 53: 699–705.

[16] Wang Y M, Xu W G, Hu L, Zhang L, Li Y, Du X H. Expression of maize gene encoding C4-pyruvate orthophosphate dikinase (PPDK) and C4-phosphoenolpyruvate carboxylase (PEPC) in transgenic Arabidopsis. Plant Mol Biol Rep, 2012, 30: 1367–1374.

[17] Kandoi D, Mohanty S, Govindjee, Tripathy B C. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana. Photosynth Res, 2016, 130: 47–72.

[18] Zhang Q, Li Y, Xu W, Zhang Y, Qi X, Fang Y, Peng C. Joint expression of Zmpepc, Zmppdk, and Zmnadp-me is more efficient than expression of one or two of those genes in improving the photosynthesis of Arabidopsis. Plant Physiol Bioch, 2021, 158: 410–419.

[19] Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotech, 1999, 17: 76–80.

[20] Ku M S B, Ranade U, Hsu T-P, Cho D W, Li X, Jiao D, Ehleringer J, Miyao M, Matsuoka M. Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzyme. Stud Plant Sci, 2000, 7: 193–204.

[21] Takeuchi Y, Akagi H, Kamasawa N, Osumi M, Honda H. Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta, 2000, 211: 265–274.

[22] 李艳, 许为钢, 胡琳, 张磊, 齐学礼, 张庆琛, 王根松. 玉米磷酸烯醇式丙酮酸羧化酶基因高效表达载体构建及其导入小麦的研究. 麦类作物学报, 2009, 29: 741–746.

Li Y, Xu W G, Zhang L, Qi X L, Zhang Q C, Wang G S. Construction of a high-efficient expression vector for maize phosphoenolpyruvate carboxylase gene and its transformation in wheat. J Triticeae Crops, 2009, 29: 741–746 (in Chinese with English abstract).

[23] Hu L, Li Y, Xu W, Zhang Q, Zhang L, Qi X, Dong H. Improvement of the photosynthetic characteristics of transgenic wheat plants by transformation with the maize C4 phosphoenolpyruvate carboxylase gene. Plant Breed, 2012, 131: 385–391.

[24] Zhang H F, Xu W G, Wang H W, Hu L, Li Y, Qi X L, Hua X. Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat. Protoplasma, 2014, 251: 1163–1173.

[25] 王永霞, 杜新华, 许为钢, 齐学礼, 李艳, 王会伟, 胡琳. 导入外源玉米C4NADP-ME基因对小麦光合效能的影响. 作物学报, 2016, 42: 600–608.

Wang Y X, Du X H, Xu W G, Qi X L, Li Y, Wang H W, Hu L. Photosynthetic characteristics of transgenic wheat expressing maize C4-type NADP-ME gene. Acta Agron Sin, 2016, 42: 600–608 (in Chinese with English abstract).

[26] 雷明月, 许为钢, 李小博, 张庆琛, 王会伟, 张磊, 方宇辉, 李艳, 李春鑫. 玉米C4光合酶导入对拟南芥光合特性及抗旱性的影响. 麦类作物学报, 2017, 37: 108–115.

Lei M Y, Xu W G, Li X B, Zhang Q C, Wang H W, Zhang L, Fang Y H, Li Y, Li C X. Effect of maize C4-specific phtosynthesis genes on phtosynthesis and drought resistance of Arabidopsis thalianaJ Triticeae Crops, 2017, 37: 108–115 (in Chinese with English abstract).

[27] Zhang Q C, Qi X L, Xu W G, Li Y, Zhang Y, Peng C J, Fang Y H. Response of transgenic Arabidopsis expressing maize C4 photosynthetic enzyme genes to high light. Plant Signal Behav, 2021, 16: 1885894.

[28] 焦德茂, 李霞, 黄雪清, 迟伟, 匡廷云, 古森本. PEPC基因水稻的光合CO28/同化和叶绿素荧光特性. 科学通报, 2001, 46: 414–418.

Jiao D M, L X, Huang X Q, Chi W, Kuang T Y, Ku M S B. Characteristics of photosynthetic CO2 assimilation and chlorophyll fluorescence in transgenic rice with PEPC gene. Sci Bull, 2001, 46: 414–418 (in Chinese).

[29] Qi X L, Xu W G, Zhang J Z, Guo R, Zhao M Z, Hu L, Wang H W, Dong H B, Li Y. Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma, 2017, 254: 1017–1030.

[30] Qin N, Xu WG, Hu L, Li Y, Wang H W, Qi X L, Fang Y H, Hua X. Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene. Protoplasma, 2016, 253: 1503–1512.

[31] 柴建芳, 刘旭, 贾继增. 一种适于PCR扩增的小麦基因组DNA快速提取法. 植物遗传资源学报, 2006, 7: 246–248.

Chai J F, Liu X, Jia J Z. A rapid isolation method of wheat DNA suitable for PCR analysis. J Plant Genet Resour, 2006, 7: 246–248 (in Chinese with English abstract).

[32] Sayre R T, Kennedy R A, Pringnitz D J. Photosynthetic enzyme activities and localization in Mollugo verticillata populations differing in the levels of C3 and C4 cycle operation. Plant Physiol, 1979, 64: 293–299.

[33] Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15.

[34] Elstner E F, Heupel A. Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Anal Biochem, 1976, 70: 616–620.

[35] Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol, 1977, 59: 411–416.

[36] Hodges D M, Delong J M, Forney C F, Prange R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604–611.

[37] Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica, 2008, 46: 21–27.

[38] 王笑, 蔡剑, 周琴, 戴廷波, 姜东. 非生物逆境锻炼提高作物耐逆性的生理机制研究进展. 中国农业科学, 2021, 54: 2287–2301.

Wang X, CAI J, Zhou Q, Dai T B, Jiang D. Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: A review. Sci Agric Sin, 2021, 54: 2287–2301 (in Chinese with English abstract).

[39] 吴琼, 许为钢, 李艳, 齐学礼, 胡琳, 张磊, 韩琳琳. 田间条件下转玉米C4PEPC基因小麦的光合生理特性. 作物学报, 2011, 37: 2046–2052.

Wu Q, Xu W G, Li Y, Qi X L, Hu L, Zhang L, Han L L. Physiological characteristics of photosynthesis in transgenic wheat with maize C4-PEPC gene under field conditions. Acta Agron Sin, 2011, 37: 2046–2052 (in Chinese with English abstract).

[40] 齐学礼, 李艳, 王玉民, 韩留鹏, 张磊, 胡琳, 许为钢. ZmPPDK基因小麦新品系的光合特性及产量分析. 麦类作物学报, 2019, 39: 950–957.

Qi X L, Li Y, Wang Y M, Han L P, Zhang L, Hu L, Xu W G. Development of transgenic wheat lines with ZmPPDK gene and analysis on its photosynthetic and yield characteristics. J Triticeae Crops, 2019, 39: 950–957 (in Chinese with English abstract).

[41] Jiao D M, Li X, Ji B H. Photoprotective effects of high level expression of C4 phosphoenolpyruvate carboxylase in transgenic rice during photoinhibition. Photosynthetica, 2005, 43: 501–508.

[42] 丁在松, 周宝元, 孙雪芳, 赵明. 干旱胁迫下PEPC过表达增强水稻的耐强光能力. 作物学报, 2012, 38: 285–292.

Ding Z S, Zhou B Y, Sun X F, Zhao M. High light tolerance is enhanced by overexpressed PEPC in rice under drought stress. Acta Agron Sin, 2012, 38: 285–292 (in Chinese with English abstract).

[43] 李小博, 许为钢, 雷明月, 张庆琛, 王会伟, 李艳, 华夏, 高崇. 转玉米C4光合途径pepcppdknadp-me基因拟南芥光合特性对强光胁迫的反应. 分子植物育种, 2017, 15: 911–919.

Li X B, Xu W G, Lei M Y, Zhang Q C, Wang H W, Li Y, Hua X, Gao C. The response of photosynthetic characteristics of maize C4-type pepc, ppdk and nadp-me transgenetic Arabidopsis thaliana on high light stress. Mol Breed, 2017, 15: 911–919 (in Chinese with English abstract).

[44] Magnin N C, Cooley B A, Reiskind J B, Bowes G. Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticilata. Plant Physiol, 1997, 115: 1681–1689.

[45] Li Y T, Yang C, Zhang Z S, Zhao S J, Gao H Y. Photosynthetic acclimation strategies in response to intermittent exposure to high light intensity in wheat (Triticum aestivum L.). Environ Exp Bot, 2021, 181: 104275.

[46] 齐学礼, 胡琳, 董海滨, 张磊, 王根松, 高崇, 许为钢. 强光高温同时作用下不同小麦品种的光合特性. 作物学报, 2008, 34: 2196–2201.

Qi X L, Hu L, Dong H B, Zhang L, Wang G S, Gao C, Xu W G. Characteristics of photosynthesis in different wheat cultivars under high light intensity and high temperature stresses. Acta Agron Sin, 2008, 34: 2196–2201 (in Chinese with English abstract).

[47] Bao G Z, Tang W Y, An Q R, Liu Y X, Tian J Q, Zhao N, Zhu S N. Physiological effects of the combined stresses of freezing-thawing, acid precipitation and deicing salt on alfalfa seedlings. BMC Plant Biol, 2020, 20: 204–212.

[48] 齐学礼, 方宇辉, 赵明忠, 韩留鹏, 郭瑞, 王会伟, 胡琳, 许为钢. 小麦品种郑麦7698耐强光高温的生理机制. 麦类作物学报, 2017, 37: 1589–1595.

Qi X L, Fang Y H, Zhao M Z, Han L P, Guo R, Wang H W, Hu L, Xu W G. Physiological mechanism of high light intensity and high temperature co-stress tolerance of a wheat variety Zhengmai 7698. J Triticeae Crops, 2017, 37: 1589–1595 (in Chinese with English abstract).

[49] 董杰, 陈新新, 杨倩, 张怀渝, 陈洋尔. 高光、水分和盐胁迫下小麦光合特性和抗氧化酶系统的比较. 麦类作物学报, 2018, 38: 315–322.

Dong J, Chen X X, Yang Q, Zhang H Y, Chen Y E. Effects of high light, water and salt stress on photosynthetic characteristics and antioxidant enzyme system in wheat. J Triticeae Crops, 2018, 38: 315–322 (in Chinese with English abstract).

[1] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[2] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[3] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[4] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
[5] 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003.
[6] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[7] 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813.
[8] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[9] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[10] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[11] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[12] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[13] 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477.
[14] 谭丹, 陈家婷, 郜钰, 张晓军, 李欣, 闫贵云, 李锐, 陈芳, 常利芳, 张树伟, 郭慧娟, 畅志坚, 乔麟轶. 小麦穗型相关生长素通路基因发掘及TaARF23-A与小穗数关联分析[J]. 作物学报, 2024, 50(2): 506-513.
[15] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!