欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1406-1420.doi: 10.3724/SP.J.1006.2024.31056

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定

朱明昆1(), 包俊浩1, 庞菁璐1, 周诗绮1, 方忠艳1, 郑文1, 张亚洲1,2, 吴丹丹1,2,*()   

  1. 1四川农业大学小麦研究所, 四川成都 611130
    2西南作物基因资源发掘与利用国家重点实验室, 四川成都 611130
  • 收稿日期:2023-10-08 接受日期:2024-01-31 出版日期:2024-06-12 网络出版日期:2024-02-27
  • 通讯作者: * 吴丹丹, E-mail: 14646@sicau.edu.cn
  • 作者简介:E-mail: zhumk2125@163.com
  • 基金资助:
    国家自然科学基金青年项目(32200180);四川省中央引导地方科技发展专项(2023ZYD0088);四川省教育厅项目(2022YFSY0035)

Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat

ZHU Ming-Kun1(), BAO Jun-Hao1, PANG Jing-Lu1, ZHOU Shi-Qi1, FANG Zhong-Yan1, ZHENG Wen1, ZHANG Ya-Zhou1,2, WU Dan-Dan1,2,*()   

  1. 1Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Chengdu 611130, Sichuan, China
  • Received:2023-10-08 Accepted:2024-01-31 Published:2024-06-12 Published online:2024-02-27
  • Contact: * E-mail: 14646@sicau.edu.cn
  • Supported by:
    Youth Fund of the National Natural Science Foundation of China(32200180);Special Projects of the Central Government in Guidance of Local Science and Technology Development(2023ZYD0088);Department of Education Project of Sichuan Province(2022YFSY0035)

摘要:

本研究对鹅观草属(Roegneria C. Koch.) 13个物种29份材料进行条锈病田间鉴定和抗条锈病基因检测, 将筛选的抗病材料与小麦进行人工属间杂交, 并对属间杂种F1进行形态学、细胞遗传学及小麦条锈病抗性检测, 结果显示: 82.76%的材料在田间对条锈病表现中抗以上的抗性, 且均含有5个以上的已知抗条锈病基因的等位基因, 但仍可能存在条锈病抗性新基因; 筛选到的一份高抗条锈病的纤毛鹅观草(Roegneria ciliaris [Trin.] Nevski) ZY11004-R, 将其与5个普通小麦(Triticum aestivum L.)品种进行人工属间杂交, 通过胚拯救的方式成功获得了纤毛鹅观草-普通小麦CSph2a属间杂种F1; 杂种F1体细胞染色体条数为35条(基因组组成为StYABD), 花粉母细胞减数分裂I中期染色体多为单价体, 形态特征处于两亲本之间, 但在生活习性上获得多年生的性状, 并表现出高抗条锈病。

关键词: 鹅观草属, 条锈病, 属间杂种, 远缘杂交, 多年生小麦

Abstract:

In this study, we evaluated the stripe rust resistance type and estimated the published resistance genes in 13 Roegneria species including 29 materials. Afterward, we conducted artificial crosses and investigated the morphology characters, genome constitution, and stripe rust resistance of the intergeneric hybrid F1 between stripe rust resistance Roegneria material and common wheat. The results showed as follows: 82.76% of the 29 tested materials exhibited stripe rust resistance at adult stage, and they contained more than 5 alleles of stripe rust resistance genes, which might still carry new resistance genes to wheat stripe rust. An intergeneric hybrids R. ciliaris-CSph2a F1 was generated using the screened high stripe rust resistance Roegneria ciliaris [Trin.] Nevski (ZY11004-R) and common wheat mutant CSph2a, and raised based on the embryo rescue technology. F1 hybrid contained 35 chromosomes with StYABD genome constitution and an average of 26.84 monovalents during pollen mother cell metaphase I. Besides, F1 exhibited morphological intermediacy, except the perennial living was inherited form from maternal R. ciliaris with high resistance to wheat stripe rust.

Key words: Roegneria, stripe rust, intergeneric hybrid, distant hybridization, perennial wheat

表1

供试材料"

物种
Species
编号
Accession
倍性
Ploidy
基因组组成
Genome
constitution
生活型
Life form
分布/来源
Distribution/Origin
R. barbicalla (毛盘鹅观草) ZY11089 2n = 4x = 28 StStYY 多年生Perennial 宁夏银川 Yinchuan, Ningxia
R. ciliaris (纤毛鹅观草) ZY11004 2n = 4x = 28 StStYY 多年生Perennial 陕西临潼 Lintong, Shaanxi
R. ciliaris ZY1008 2n = 4x = 28 StStYY 多年生Perennial 浙江嵊州 Shengzhou, Zhejiang
R. ciliaris Z98050 2n = 4x = 28 StStYY 多年生Perennial 四川汶川 Wenchuan, Sichuan
R. ciliaris Z98058 2n = 4x = 28 StStYY 多年生Perennial 四川崇州 Chongzhou, Sichuan
R. ciliaris ZY276395 2n = 4x = 28 StStYY 多年生Perennial 四川红原 Hongyuan, Sichuan
R. ciliaris 88-89-228 2n = 4x = 28 StStYY 多年生Perennial 陕西杨凌 Yangling, Shaanxi
R. ciliaris 88-89-236 2n = 4x = 28 StStYY 多年生Perennial 四川雅安 Ya’an, Sichuan
R. ciliaris 88-89-238 2n = 4x = 28 StStYY 多年生Perennial 黑龙江哈尔滨 Harbin, Heilongjiang
R. ciliaris 88-89-294 2n = 4x = 28 StStYY 多年生Perennial 河南郑州 Zhengzhou, Henan
R. dolichathera (长芒鹅观草) ZY230025 2n = 4x = 28 StStYY 多年生Perennial 四川天全 Tianquan, Sichuan
R. hondai (本田鹅观草) ZY11020 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特Hohhot, Inner Mongolia
R. japonesis (竖立鹅观草) 88-89-252 2n = 4x = 28 StStYY 多年生Perennial 四川宜宾 Yibin, Sichuan
R. japonesis 88-89-263 2n = 4x = 28 StStYY 多年生Perennial 四川宜宾Yibin, Sichuan
R. japonesis 88-89-261 2n = 4x = 28 StStYY 多年生Perennial 四川宜宾Yibin, Sichuan
R. japonesis 88-89-253 2n = 4x = 28 StStYY 多年生Perennial 四川兴文 Xingwen, Sichuan
R. japonesis 88-89-242 2n = 4x = 28 StStYY 多年生Perennial 四川雅安 Ya’an, Sichuan
R. nakaii (吉林鹅观草) ZY11027 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特
Hohhot, Inner Mongolia
R. pendulina (缘毛鹅观草) ZY11006 2n = 4x = 28 StStYY 多年生Perennial 陕西临潼 Lintong, Shaanxi
R. pendulina ZY11046 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特
Hohhot, Inner Mongolia
R. sinica (中华鹅观草) ZY11021 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特
Hohhot, Inner Mongolia
R. sinica ZY11029 2n = 4x = 28 StStYY 多年生Perennial 内蒙古包头 Baotou, Inner Mongolia
R. scabridula (粗糙鹅观草) ZY11012 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特
Hohhot, Inner Mongolia
R. stricta (肃草) ZY11083 2n = 4x = 28 StStYY 多年生Perennial 内蒙古阿拉善
Alxa, Inner Mongolia
R. stricta ZY11030 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特
Hohhot, Inner Mongolia
R. tibetica (西藏鹅观草) ZY230027 2n = 4x = 28 StStYY 多年生Perennial 西藏 Xizang
R. turczaninovii (直穗鹅观草) ZY220095 2n = 4x = 28 StStYY 多年生Perennial 四川红原 Hongyuan, Sichuan
R. varia (多变鹅观草) ZY11092 2n = 4x = 28 StStYY 多年生Perennial 宁夏银川 Yinchuan, Ningxia
T. aestivum cv. Kaixianluohanmai (KL) 2n = 6x = 42 AABBDD 一年生Annual 四川农业大学
Sichuan Agricultural University
T. aestivum cv. Chinese Spring (CS) 2n = 6x = 42 AABBDD 一年生Annual 四川农业大学
Sichuan Agricultural University
T. aestivum (CSph1b) 2n = 6x = 42 AABBDD 一年生Annual 四川农业大学
Sichuan Agricultural University
T. aestivum (CSph2b) 2n = 6x = 42 AABBDD 一年生Annual 四川农业大学
Sichuan Agricultural University
T. aestivum (CSph2a) 2n = 6x = 42 AABBDD 一年生Annual 四川农业大学
Sichuan Agricultural University

表2

用于检测鹅观草属材料抗条锈病基因的分子标记"

Yr 基因
Yr gene
类型
Type
分子标记
Molecular marker
引物序列
Primer sequence (5′-3′)
参考文献
Reference
Yr5 DM Yr5_B GGGAACACTTCACGATCA
AATTCCTTCATGCCTTCC
[38]
Yr9 SSR P6M12-P GTACTAGTATCCAGAGGTCACAAG
CAGACAAACAGAGTACGGGC
[39]
Yr10 DM Yr10-5 GGAAATGTGGCGGAGTACCA
CGGAAGGGAGAACCACTGTC
[40]
Yr15 DM WJL3F, WJL3R AAAAGAGCTCGCCTCCTACG
GCCATGATGAGATCGGGAGG
[41]
Yr17 SCAR SC2372 AGGGGCTACTGACCAAGGCT
TGCAGCTACAGCAGTATGTACACAAAA
[42]
Yr18 STS csLV34 GTTGGTTAAGACTGGTGATGG
TGCTTGCTATTGCTGAATAGT
[43]
Yr24 SSR Xgwm273 ATTGGACGGACAGATGCTTT
AGCAGTGAGGAAGGGGATC
[44]
Yr26 STS Xwe173 GGGACAAGGGGAGTTGAAGC
GAGAGTTCCAAGCAGAACAC
[45]
Yr28 DM P175, P176 GCACCGTCCTTCATCTCAGT
TGCTTTTCCCCGTATCCCTT
[46]
Yr39 SSR Xgwm131 AATCCCCACCGATTCTTCTC
AGTTCGTGGGTCTCTGATGG
[47]
Yr41 SSR Xgwm410 GCTTGAGACCGGCACAGT
CGAGACCTTGAGGGTCTAGA
[48]
Yr48 SSR Xwmc727 CATAATCAGGACAGCCGCAC
TAGTGGCCTGATGTATCTAGTTGG
[49]
Yr65 SSR Xgwm18 GGTTGCTGAAGAACCTTATTTAGG
TGGCGCCATGATTGCATTATCTTC
[50]
Yr67 SSR Xbarc182 CCATGGCCAACAGCTCAAGGTCTC
CGCAAAACCGCATCAGGGAAGCACCAAT
[51]
Yr84 SSR P70 AATGGGAGGACTCTTGCGTG
CTGGGAATGAACCGACAGCT
[52]

表3

29份鹅观草属材料成株期条锈病抗病性鉴定和抗病基因检测情况"

序号
Ordinal number
物种
Species
编号
Accession
成株期感染型
Infection type in
adult-plant stage (ITs = 0~9)
Yr 基因
Yr gene
1 R. ciliaris ZY11004-R 0 Yr9+Yr17+Yr28+Yr39
2 R. pendulina ZY11006 0 Yr9+Yr10+Yr15+Yr17+Yr18+Yr28+Yr39+Yr48
3 R. pendulina ZY11046 0 Yr9+Yr10+Yr15+Yr17+Yr18+Yr39+Yr48
4 R. sinica ZY11029 0 Yr10+Yr15+Yr17+Yr24+Yr28+Yr48
5 R. sinica ZY11021 0 Yr10+Yr15+Yr17+Yr24+Yr28+Yr39
6 R. stricta ZY11030 0 Yr9+Yr10+Yr17+Yr18+Yr28+Yr39
7 R. tibetica ZY230027 0 Yr10+Yr17+Yr28+Yr39+Yr48
8 R. varia ZY11092 0 Yr9+Yr10+Yr17+Yr28+Yr39+Yr48+Yr84
9 R. stricta ZY11083 0 Yr9+Yr10+Yr17+Yr18+Yr28+Yr39
10 R. ciliaris ZY1008 1 Yr9+Yr10+Yr17+Yr28+Yr39
11 R. ciliaris Z98058 1 Yr9+Yr10+Yr17+Yr28+Yr39
12 R. dolichathera ZY230025 1 Yr10+Yr17+Yr24+Yr28
13 R. nakaii ZY11027 1 Yr10+Yr17+Yr24+Yr28
14 R. hondai ZY11020 1 Yr10+Yr17+Yr24+Yr28+Yr39
15 R. ciliaris ZY276395 2 Yr9+Yr10+Yr15+Yr17+Yr28+Yr39+Yr48
16 R. barbicalla ZY11089 2 Yr9+Yr10+Yr15+Yr17+Yr26+Yr39+Yr84
17 R. turczaninovii ZY220095 2 Yr10+Yr15+Yr17+Yr26+Yr28+Yr48
18 R. ciliaris Z98050 4 Yr5+Yr9+Yr10+Yr17+Yr28+Yr39+Yr84
19 R. japonesis 88-89-252 4 Yr9+Yr10+Yr17+Yr28+Yr39+Yr48+Yr84
20 R. scabridula. ZY11012 4 Yr9+Yr17+Yr28+Yr39
21 R. ciliaris 88-89-294 5 Yr5+Yr9+Yr10+Yr17+Yr24+Yr28+Yr39+Yr84
22 R. japonesis 88-89-263 5 Yr9+Yr10+Yr17+Yr28+Yr48+Yr84
23 R. japonesis 88-89-261 5 Yr9+Yr10+Yr17+Yr28+Yr39+Yr84
24 R. ciliaris 88-89-236 6 Yr9+Yr10+Yr17+Yr28+Yr39+Yr84
25 R. ciliaris 88-89-238 7 Yr9+Yr10+Yr17+Yr28
26 R. japonesis 88-89-253 7 Yr5+Yr9+Yr10+Yr17+Yr26+Yr28+Yr39+Yr48+Yr84
27 R. japonesis 88-89-242 7 Yr9+Yr10+Yr17+Yr28+Yr39+Yr48+Yr84
28 R. ciliaris 88-89-228 8 Yr9+Yr10+Yr17+Yr28+Yr39+Yr48+Yr84
29 R. ciliaris ZY11004-S 9 Yr9+Yr10+Yr17+Yr28+Yr39

图1

纤毛鹅观草(ZY11004)条锈病发病情况 A: 抗条锈病类型(ZY11004-R); B: 感条锈病类型(ZY11004-S)。"

表4

小麦与纤毛鹅观草(ZY11004-R)杂交统计"

母本
Female
父本
Male
杂交小花数
Number of
hybrid florets
子房膨大数
Ovary enlargement
number
子房膨大率
Ovary enlargement
rate (%)
出愈数
Number of callus generated
出愈率
Rate of callus generated (%)
ZY11004-R CS 792 32 4.04 2 6.25
ZY11004-R CSph1b 887 35 3.95 0
ZY11004-R CSph2a 1872 108 5.77 1 0.93
ZY11004-R CSph2b 2160 140 6.48 4 2.86
ZY11004-R KL 1104 58 5.25 0
CS ZY11004-R 280 0 0 0
CSph1b ZY11004-R 286 1 0.35 0
CSph2a ZY11004-R 242 3 1.24 0
CSph2b ZY11004-R 423 1 0.24 0
KL ZY11004-R 461 12 2.60 0
总计 Total 8507 390 4.55 7 1.79

图2

纤毛鹅观草做不同亲本时的杂交子房膨大率(t检验) X轴为纤毛鹅观草ZY11004-R做不同亲本, Y轴为子房膨大率。***: P < 0.001。"

图3

纤毛鹅观草-CSph2a杂种F1植株及基因组鉴定 A: 纤毛鹅观草; B: 普通小麦CSph2a; C: 纤毛鹅观草-CSph2a杂种F1的GISH鉴定; 纤毛鹅观草全基因组DNA标记为紫色, 小麦CSph2a全基因组DNA标记为绿色。"

图4

纤毛鹅观草-CSph2a杂种F1花粉母细胞减数I分裂观察 A: 细线期细胞; B: 中期细胞(箭头示二价体); C: 后期细胞(箭头示不均等分裂及落后染色体)。"

表5

纤毛鹅观草-CSph2a杂种F1和亲本花粉母细胞减数分裂I观察统计"

物种
Species
染色体数
Chromosome number
构型Configuration 交叉值a
Chiasmata/cell a
Cb
C-value b
统计数
Statistics
I II III IV
Total Ring Rod
CSph2a 42 0.18 20.82 17.88 2.94 0.06 38.88 0.93 32
R. ciliaris 28 0.13 13.93 13.77 0.17 27.70 0.99 30
(R. ciliaris×CSph2a) F1 35 26.84 3.97 0 3.97 0.03 0.03 4.13 0.12 32

图5

花粉活力测试(I2-KI) A: 纤毛鹅观草成熟花粉均有育性; B: 纤毛鹅观草-CSph2a杂种F1花粉完全无活力; C: 小麦CSph2a花粉均有活力。"

图6

纤毛鹅观草-CSph2a杂种F1和亲本穗部、小穗形态及成株期条锈病反应性 A: 穗; B: 小穗; C: 成株期抗条锈病鉴定; a: 纤毛鹅观草; b: 纤毛鹅观草-CSph2a杂种F1; c: 普通小麦CSph2a。"

图7

同一株纤毛鹅观草-CSph2a杂种F1不同时间段的生长情况 A: 2022年9月; B: 2022年11月; C: 2023年3月; D: 2023年9月。"

[1] Xiao J, Liu B, Yao Y Y, Guo Z F, Jia H Y, Kong L R, Zhang A M, Ma W J, Ni Z F, Xu S B, Lu F, Jiao Y N, Yang W Y, Lin X L, Sun S L, Lu Z F, Gao L F, Zhao G Y, Cao S H, Chen Q, Zhang K P, Wang M C, Wang M, Hu Z R, Guo W L, Li G Q, Ma X, Li J M, Han F P, Fu X D, Ma Z Q, Wang D W, Zhang X Y, Ling H Q, Xia G M, Tong Y P, Liu Z Y, He Z H, Jia J Z, Chong K. Wheat genomic study for genetic improvement of traits in China. Sci China Life Sci, 2022, 65: 1718-1775.
[2] 马占鸿. 中国小麦条锈病研究与防控. 植物保护学报, 2018, 45: 1-6.
Ma Z H. Researches and control of wheat stripe rust in China. J Plant Prot, 2018, 45: 1-6. (in Chinese with English abstract)
[3] Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis, 2004, 88: 896-904.
[4] Han D J, Wang Q L, Chen X M, Zeng Q D, Wu J H, Xue W, Zhan G M, Huang L, Kang Z S. Emerging Yr26-virulent races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin, China. Plant Dis, 2015, 99: 8-14.
[5] Li J, Dundas I, Dong C M, Li G R, Trethowan R, Yang Z J, Hoxha S, Zhang P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet, 2020, 133: 1095-1107.
[6] Zhu Z W, Cao Q, Han D J, Wu J H, Wu L, Tong J Y, Xu X W, Yan J, Zhang Y, Xu K J, Wang F J, Dong Y C, Gao C B, He Z H, Xia X C, Hao Y F. Molecular characterization and validation of adult-plant stripe rust resistance gene Yr86 in Chinese wheat cultivar Zhongmai 895. Theor Appl Genet, 2023, 136: 136-142.
[7] Li D Y, Zhang J W, Liu H J, Tan B W, Zhu W, Xu L L, Wang Y, Zeng J, Fan X, Sha L N, Zhang H Q, Ma J, Chen G Y, Zhou Y H, Kang H Y. Characterization of a wheat-tetraploid Thinopyrum elongatum 1E (1D) substitution line K17-841-1 by cytological and phenotypic analysis and developed molecular markers. BMC Genom, 2019, 20: 963-975.
[8] Klymiuk V, Chawla H S, Wiebe K, Ens J, Fatiukha A, Govta L, Fahima T, Pozniak C J. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun Biol, 2022, 5: 826-834.
[9] 颜济, 杨俊良. 小麦族生物系统学(第四卷), 北京: 中国农业出版社, 2011. pp 377-444.
Yan J, Yang J L. Triticeae Biosystematics, Volume 4. Beijing: China Agriculture Press, 2011. pp 377-444. (in Chinese with English abstract)
[10] Sharma H C, Gill B S. New hybrids between Agropyron and wheat. Theor Appl Genet, 1983, 66: 111-121.
doi: 10.1007/BF00265184 pmid: 24263763
[11] 翁益群, 刘大钧. 鹅观草(Roegneria C. Koch)与普通小麦(Triticum aestivum L.)属间杂种F1的形态、赤霉病抗性和细胞遗传学研究. 中国农业科学, 1989, 22(5): 1-8.
Weng Y Q, Liu D J. Morphology, scab resistance and cytogenetics of intergeneric hybrids of Triticum aestivum L. with Roegneria C. Koch (Agropyron) species. Sci Agric Sin, 1989, 22(5): 1-8. (in Chinese with English abstract)
[12] Wang Y F, Yen C, Yang J L, Liu F Q. Evaluation of Roegneria for resistance to head scab caused by Fusarium graminearum Schwabe. Genet Resour Crop Evol, 1997, 44: 211-215.
[13] 李万几, 李逸平, 秦家忠. 栽培大麦 × 纤毛鹅观草属间杂种后代系抗赤霉病研究. 植物病理学报, 1999, 29: 203-209.
Li W J, Li Y P, Qin J Z. Resistance to barley scab in progeny lines derived from the hybridization between cultivated barley and Roegneria ciliaris. Acta Phytopathol Sin, 1999, 29: 203-209. (in Chinese with English abstract)
[14] 杨欣明, 李立会, 李秀全, 董玉琛. 向普通小麦导入纤毛鹅观草抗黄矮病基因的研究: I. F1和BC1的产生及其细胞遗传学. 遗传学报, 1999, 26: 370-443.
Yang X M, Li L H, Li X Q, Dong Y C. Introduction of genes resistant to barley yellow dwarf virus from Roegneria ciliaris to common wheat: I. Production and cytogenetics of F1 and BC1 progenies. Acta Genet Sin, 1999, 26: 370-443. (in Chinese with English abstract)
[15] Kong L N, Song X Y, Xiao J, Sun H J, Dai K L, Lan C X, Singh P, Yuan C X, Zhang S Z, Singh R, Wang H, Wang X E. Development and characterization of a complete set of Triticum aestivum-Roegneria ciliaris disomic addition lines. Theor Appl Genet, 2018, 131: 1793-1806.
[16] Song R R, Cheng Y F, Wen M X, Song X Y, Wang T, Xia M S, Sun H J, Cheng M H, Cui H M, Yuan C X, Liu X X, Wang Z K, Sun L, Wang H Y, Xiao J, Wang X E. Transferring a new Fusarium head blight resistance locus FhbRc1 from Roegneria ciliaris into wheat by developing alien translocation lines. Theor Appl Genet, 2023, 136: 36-48.
[17] Wall A, Riley R, Chapman V. Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet Res, 1971, 18: 311-328.
[18] Sears E R. An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol, 1977, 19: 585-593.
[19] 刘登才, 魏育明, 郑有良. 用新隐性ph基因向小麦转移Aegilops variabilis Eig遗传物质. 四川农业大学学报, 1999, 17: 261-267.
Liu D C, Wei Y M, Zheng Y L. Genetic transfer from Aegilops variabilis Eig to wheat via a new recessive ph gene. J Sichuan Agric Univ, 1999, 17: 261-267. (in Chinese with English abstract)
[20] Rey M D, Martín A C, Smedley M, Hayta S, Harwood W, Shaw P, Moore G. Magnesium increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 gene) mutant wheat-wild relative hybrids. Front Plant Sci, 2018, 20: 509-520.
[21] Martín A C, Alabdullah A K, Moore G. A separation-of-function ZIP4 wheat mutant allows crossover between related chromosomes and is meiotically stable. Sci Rep, 2021, 11: 21811-21823.
[22] Lukaszewski A J. Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci, 2000, 40: 216-225.
[23] Zhang W, Zhu X, Zhang M, Chao S, Xu S, Cai X. Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum. Theor Appl Genet, 2018, 131: 2381-2395.
doi: 10.1007/s00122-018-3160-0 pmid: 30109393
[24] Dai K L, Zhao R H, Shi M M, Xiao J, Yu Z Y, Jia Q, Wang Z K, Yuan C X, Sun H J, Cao A Z, Zhang R Q, Chen P D, Li Y B, Wang H Y, Wang X E. Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library. Theor Appl Genet, 2020, 133: 217-226.
[25] Albani M C, Coupland G. Comparative analysis of flowering in annual and perennial plants. Curr Top Dev Biol, 2010, 91: 323-348.
doi: 10.1016/S0070-2153(10)91011-9 pmid: 20705187
[26] Cui L, Ren Y, Murray T D, Yan W, Qing G, Niu Y, Sun Y, Li H. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering, 2018, 4: 507-513.
[27] DeHaan L, Ismail B. Perennial cereals provide ecosystem benefits. Cereal Food World, 2017, 62: 278-281.
[28] Cox S, Nabukalu P, Paterson A H, Kong W, Nakasagga S. Development of perennial grain sorghum. Sustainability, 2018, 10: 172-180.
[29] Huang G, Qin S, Zhang S, Cai X, Wu S, Dao J, Zhang J, Huang L, Harnpichitvitaya D, Wade L J, Fengyi H. Performance, economics and potential impact of perennial rice PR23 relative to annual rice cultivars at multiple locations in Yunnan province of China. Sustainability, 2018, 10: 1086-1103.
[30] Cattani D J. Potential of perennial cereal rye for perennial grain production in Manitoba. Can J Plant Sci, 2019, 99: 958-960.
[31] Zhang S L, Huang G F, Zhang Y J, Lv X T, Wan K J, Liang J, Feng Y P, Dao J R, Wu S K, Zhang L, Yang X, Lian X P, Huang L Y, Shao L, Zhang J, Qin S W, Tao D Y, Crews T, Sacks E, Hu F Y. Sustained productivity and agronomic potential of perennial rice. Nat Sustain, 2023, 6: 28-38.
[32] Cox T, Bender M, Picone C, Van T D, Holland J, Brummer C, Zoeller B, Paterson A H, Jackson W. Breeding perennial grain crops. Crit Rev Plant Sci, 2002, 21: 59-91.
[33] Tsitsin N V. Remote hybridization as a method of creating new species and varieties of plants. Euphytica, 1965, 14: 326-330.
[34] Line R F, Abdul Q. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America 1968-87. Washington, D.C.: National Technical Information Service, 1992, 1788: 1-44.
[35] Han F, Liu B, Fedak G, Liu Z. Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 2004, 109: 1070-1076.
[36] Farco G E, Dematteis M. Meiotic behavior and pollen fertility in triploid and tetraploid natural populations of Campuloclinium macrocephalum (Eupatorieae, Asteraceae). Plant Syst Evol, 2014, 300: 1843-1852.
[37] Gunawardena T A, Shu F K, Pax F, Blamey C. Low temperature induced spikelet sterility in rice: I. Nitrogen fertilisation and sensitive reproductive period. Crop Past Sci, 2003, 54: 937-946.
[38] Marchal C, Zhang J P, Zhang P, Fenwick P, Steuernagel B, Adamski N, Boyd L, McIntosh R, Wulff B, Berry S, Lagudah E, Uauy C. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants, 2018, 4: 662-668.
doi: 10.1038/s41477-018-0236-4 pmid: 30150615
[39] Mago R, Miah H, Lawrence G J, Wellings C R, Spielmeyer W, Bariana H S, McIntosh R A, Pryor A J, Ellis J G. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor Appl Genet, 2005, 112: 41-50.
doi: 10.1007/s00122-005-0098-9 pmid: 16283230
[40] Liu W, Frick M, Huel R, Nykiforuk C L, Wang X M, Gaudet D A, Eudes F, Conner R L, Kuzyk A, Chen Q, Kang Z S, Laroche A. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant, 2014, 7: 1740-1755.
[41] Huang L, Feng L, He Y, Tang Z, He J, Sela H, Krugman T, Fahima T, Liu D, Wu B. Variation in stripe rust resistance and morphological traits in wild emmer wheat populations. Agronomy, 2019, 9: 44-53.
[42] 贾举庆, 雷孟平, 刘成, 李光蓉, 杨足君. 小麦抗条锈基因Yr17的新SCAR标记的建立与应用. 麦类作物学报, 2010, 30: 11-16.
Jia J Q, Lei M P, Liu C, Li G R, Yang Z J. Establishment and application of a new SCAR marker linked to stripe rust resistance gene Yr17 in wheat. J Triticeae Crops, 2010, 30: 11-16. (in Chinese with English abstract)
[43] Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009, 119: 889-898.
doi: 10.1007/s00122-009-1097-z pmid: 19578829
[44] Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112: 1434-1440.
doi: 10.1007/s00122-006-0245-y pmid: 16525837
[45] Wang C M, Zhang Y P, Han D J, Kang Z S, Li G P, Cao A Z, Chen P D. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica, 2007, 159: 359-366.
[46] Zhang C Z, Huang L, Zhang H F, Hao Q Q, Lyu B, Wang M N, Epstein L, Liu M, Kou C L, Qi J, Chen F J, Li M K, Gao G, Ni F, Zhang L Q, Hao M, Wang J R, Chen X M, Luo M C, Zheng Y L, Wu J J, Liu D C, Fu D L. An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. Nat Commun, 2019, 10: 4023-4034.
doi: 10.1038/s41467-019-11872-9 pmid: 31492844
[47] Lin F, Chen X M. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high- temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet, 2007, 114: 1277-1287.
doi: 10.1007/s00122-007-0518-0 pmid: 17318493
[48] Luo P G, Hu X Y, Ren Z L, Zhang H Y, Shu K, Yang Z J. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome, 2008, 51: 922-927.
doi: 10.1139/G08-079 pmid: 18956025
[49] Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet, 2011, 123: 143-157.
doi: 10.1007/s00122-011-1573-0 pmid: 21455722
[50] Cheng P, Xu L S, Wang M N, See D R, Chen X M. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet, 2014, 127: 2267-2277.
doi: 10.1007/s00122-014-2378-8 pmid: 25142874
[51] Xu H X, Zhang J, Zhang P, Qie Y M, Niu Y C, Li H J, Ma P T, Xu Y F, An D G. Development and validation of molecular markers closely linked to the wheat stripe rust resistance gene YrC591 for marker-assisted selection. Euphytica, 2014, 198: 317-323.
[52] Duan Y, Luo J, Yang Z, Li G, Tang Z, Fu S. The physical location of stripe rust resistance genes on chromosome 6 of rye (Secale cereale L.) AR106BONE. Front Plant Sci, 2022, 13: 928014-928022.
[53] 李振声, 容珊, 钟冠昌, 陈漱阳, 穆素梅. 小麦远缘杂交, 北京: 科学出版社, 1985. pp 25-142.
Li Z S, Rong S, Zhong G C, Chen S Y, Mu S M. Distant hybridization of wheat, Beijing: Science Press, 1985. pp 25-142. (in Chinese with English abstract)
[54] 李立会, 董玉琛. 普通小麦与沙生冰草属间杂种的产生及细胞遗传学研究. 中国科学: 化学生命科学地学, 1990, 1(5): 492-497.
Li L H, Dong Y C. Production and cytogenetic study of intergenus hybrids between Triticum aestivum and Agropyron desertorum. Sci China Chem. 1990, 1(5): 492-497 (in Chinese with English abtract).
[55] 陈佩度, 孙文献, 刘文轩, 袁建华, 刘朝晖, 冯以高, 王苏玲, 周波, 刘大钧. 将大赖草抗赤霉病基因导入普通小麦及抗赤霉病基因的染色体定位. 遗传, 1998, 20(增刊1): 126.
Chen P D, Sun W X, Liu W X, Yuan J H, Liu Z H, Feng Y G, Wang S L, Zhou B, Liu D J. Introduce the gene of scab resistance from Leymus racemosus into Triticum aestivum and study the chromosomal localization of scab resistance gene. Hereditas (Beijing), 1998, 20(S1): 126. (in Chinese with English abstract)
[56] 董玉琛, 刘旭. 中国作物及其野生近缘植物. 北京: 中国农业出版社, 2006. pp 125-216.
Dong Y C, Liu X. Chinese crops and their wild relatives, Beijing: China Agriculture Press, 2006. pp 125-216. (in Chinese with English abstract)
[57] McIntosh R, Mu J M, Han D J, Kang Z S. Wheat stripe rust resistance gene Yr24/Yr26: a retrospective review. Crop J, 2018, 6: 321-329.
doi: 10.1016/j.cj.2018.02.001
[58] Jin H L, Zhang H P, Zhao X Y, Long L, Guan F N, Wang Y P, Huang L Y, Zhang X Y, Wang Y Q, Li H, Li W, Pu Z E, Zhang Y Z, Xu Q, Jiang Q T, Wei Y M, Ma J, Qi P F, Deng M, Kang H Y, Chen G Y, Jiang Y F. Identification of a suppressor for the wheat stripe rust resistance gene Yr81 in Chinese wheat landrace Dahongpao. Theor Appl Genet, 2023, 136: 67-79.
[59] Fan C L, Hao M, Jia Z Y, Neri C, Chen X, Chen W S, Liu D C, Lukaszewski A J. Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye. Plant J, 2021, 105: 1665-1676.
[60] Fan C L, Luo J T, Sun J J, Chen H, Li L Q, Zhang L Y, Chen X, Li Y Z, Ning S Z, Yuan Z W, Jiang B, Zhang L Q, Chen X J, Lukaszewski A, Liu D C, Hao M. The KL system in wheat permits homoeologous crossing over between closely related chromosomes. Crop J, 2023, 11: 808-816.
doi: 10.1016/j.cj.2023.01.003
[61] He H, Yokoi S, Tezuka T. A high maternal genome excess causes severe seed abortion leading to ovary abscission in Nicotiana interploidy-interspecific crosses. Plant Direct, 2020, 4: e00257.
[62] 张海泉, 杨虹, 郎杰. 普通小麦与粗山羊草正反杂交研究. 西北农林科技大学学报(自然科学版), 2016, 44(4): 33-38.
Zhang H Q, Yang H, Lang J.Reciprocal crosses of Triticum aestivum and Aegilops tauschii. J Northwest A&F Univ (Nat Sci Edn), 2016, 44(4): 33-38. (in Chinese with English abstract)
[63] Wang Q, Xiang J, Gao A, Yang X, Liu W, Li X, Li L. Analysis of chromosomal structural polymorphisms in the St, P, and Y genomes of Triticeae (Poaceae). Genome, 2010, 53: 241-249.
doi: 10.1139/g09-098 pmid: 20237601
[64] Zeng J, Fan X, Zhang H Q, Sha L N, Kang H Y, Zhang L, Yang R W, Ding C B, Zhou Y H. Molecular and cytological evidences for the natural wheatgrass hybrids occurrence and origin in west China. Genes Genom, 2012, 34: 499-507.
[65] Chen C, Zheng Z L, Wu D D, Tan L, Yang C R, Liu S Q, Lu J L, Cheng Y R, Sha L N, Wang Y, Kang H Y, Fan X, Zhou Y H, Zhang C B, Zhang H Q. Morphological, cytological, and molecular evidences for natural hybridization between Roegneria stricta and Roegneria turczaninovii (Triticeae: Poaceae). Ecol Evol, 2022, 12: e8517.
doi: 10.1002/ece3.8517 pmid: 35136562
[66] Wu D D, Liu X Y, Yu Z H, Tan T, Lu J L, Cheng Y R, Sha L N, Fan X, Kang H Y, Wang Y, Zhou Y H, Zhang C B, Zhang H Q. Recent natural hybridization in Elymus and Campeiostachys of Triticeae: evidence from morphological, cytological and molecular analyses. Bot J Linn Soc, 2023, 201: 428-442.
[67] Chen N, Chen W J, Yan H, Wang Y, Kang H Y, Zhang H Q, Zhou Y H, Sun G L, Sha L N, Fan X. Evolutionary patterns of plastome uncover diploid-polyploid maternal relationships in Triticeae. Mol Phylogenet Evol, 2020, 149: 106838-106847.
[68] Wu D D, Yang N M, Xiang Q, Zhu M K, Fang Z Y, Zheng W, Lu J L, Sha L N, Fan X, Cheng Y R, Wang Y, Kang H Y, Zhang H Q, Zhou Y H. Pseudorogneria libanotica intraspecific genetic polymorphism revealed by fluorescence in situ hybridization with newly identified tandem repeats and wheat single-copy gene probes. Int J Mol Sci, 2022, 23: 14818-14834.
[69] Abbasi J, Dvorak J, Mcguire P, Dehghani H. Perennial growth and salinity tolerance in wheat × wheatgrass amphiploids varying in the ratio of wheat to wheatgrass genomes. Plant Breed, 2020, 139: 1281-1289.
[70] Wagoner P. Perennial grain development: past efforts and potential for the future. Crit Rev Plant Sci, 1990, 9: 381-408.
[71] Lammer D, Cai X W, Arterburn M, Chatelain J, Murray T, Jones S. A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J Exp Bot, 2004, 55: 1715-1720.
doi: 10.1093/jxb/erh209 pmid: 15234999
[72] Bell L, Wade L, Ewing M. Perennial wheat: a review of environmental and agronomic prospects for development in Australia. Crop Pasture Sci, 2010, 61: 679-690.
[73] Kantar M B, Tyl C E, Dorn K M, Zhang X F, Jungers J M, Kaser J M, Schendel R R, Eckberg J O, Runck B C, Bunzel M, Jordan N R, Stupar R M, Marks M D, Anderson J A, Johnson G A, Sheaffer C C, Schoenfuss T C, Ismail B, Heimpel G E, Wyse D L. Perennial grain and oilseed crops. Annu Rev Plant Biol, 2016, 67: 703-729.
doi: 10.1146/annurev-arplant-043015-112311 pmid: 26789233
[74] 赵海滨, 张延明, 史春龙, 闫小丹, 田超, 厉永鹏, 李集临. 寒地多年生小麦的选育与细胞遗传学分析. 作物学报, 2012, 38: 1378-1386.
doi: 10.3724/SP.J.1006.2012.01378
Zhao H B, Zhang Y M, Shi C L, Yan X D, Tian C, Li Y P, Li J L. Development and cytogenetic analysis of perennial wheat in cold region. Acta Agron Sin, 2012, 38: 1378-1386. (in Chinese with English abstract)
[75] Crews T E, Cattani D J. Strategies, advances, and challenges in breeding perennial grain crops. Sustainability, 2018, 10: 2192-2198.
[76] Hayes R C, Wang S, Newell M T, Turner K, Larsen J, Gazza L, Anderson J A, Bell L W, Cattani D J, Frels K, Galassi E, Morgounov A I, Revell C K, Thapa D B, Sacks E J, Sameri M, Wade L J, Westerbergh A, Shamanin V, Amanov A, Li G D. The performance of early-generation perennial winter cereals at 21 sites across four continents. Sustainability, 2018, 10: 1124-1151.
[1] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[2] 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31.
[3] 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196.
[4] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[5] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[6] 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063.
[7] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[8] 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749.
[9] 申状状,李昱樱,荣二花,吴玉香. 陆地棉和野生斯特提棉种间异源六倍体的合成与性状鉴定[J]. 作物学报, 2019, 45(4): 628-634.
[10] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[11] 张怀志,谢菁忠,陈永兴,刘旭,王勇,闫素红,杨兆生,赵虹,王西成,贾联合,曹廷杰,刘志勇. 利用BSR-Seq定位小麦品种郑麦103抗条锈病基因YrZM103[J]. 作物学报, 2017, 43(11): 1643-1649.
[12] 刘金栋,杨恩年,肖永贵,陈新民,伍玲,白斌,李在峰,Garry M. ROSEWARNE,夏先春,何中虎. 兼抗型成株抗性小麦品系的培育、鉴定与分子检测[J]. 作物学报, 2015, 41(10): 1472-1480.
[13] 陈国跃, 刘伟, 何员江, 苟璐璐, 余马, 陈时盛, 魏育明, 郑有良. 小麦骨干亲本繁6条锈病成株抗性特异位点及其在衍生品种中的遗传解析[J]. 作物学报, 2013, 39(05): 827-836.
[14] 赵海滨,张延明,史春龙,闫小丹,田超,厉永鹏,李集临. 寒地多年生小麦的选育与细胞遗传学分析[J]. 作物学报, 2012, 38(08): 1378-1386.
[15] 马东方, 王海鸽, 唐明双, 袁喜丽, 白耀博, 周新力, 宋建荣, 井金学. 小麦品种中梁21抗条锈病基因遗传分析与SSR标记定位[J]. 作物学报, 2011, 37(12): 2145-2151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .