作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1406-1420.doi: 10.3724/SP.J.1006.2024.31056
朱明昆1(), 包俊浩1, 庞菁璐1, 周诗绮1, 方忠艳1, 郑文1, 张亚洲1,2, 吴丹丹1,2,*()
ZHU Ming-Kun1(), BAO Jun-Hao1, PANG Jing-Lu1, ZHOU Shi-Qi1, FANG Zhong-Yan1, ZHENG Wen1, ZHANG Ya-Zhou1,2, WU Dan-Dan1,2,*()
摘要:
本研究对鹅观草属(Roegneria C. Koch.) 13个物种29份材料进行条锈病田间鉴定和抗条锈病基因检测, 将筛选的抗病材料与小麦进行人工属间杂交, 并对属间杂种F1进行形态学、细胞遗传学及小麦条锈病抗性检测, 结果显示: 82.76%的材料在田间对条锈病表现中抗以上的抗性, 且均含有5个以上的已知抗条锈病基因的等位基因, 但仍可能存在条锈病抗性新基因; 筛选到的一份高抗条锈病的纤毛鹅观草(Roegneria ciliaris [Trin.] Nevski) ZY11004-R, 将其与5个普通小麦(Triticum aestivum L.)品种进行人工属间杂交, 通过胚拯救的方式成功获得了纤毛鹅观草-普通小麦CSph2a属间杂种F1; 杂种F1体细胞染色体条数为35条(基因组组成为StYABD), 花粉母细胞减数分裂I中期染色体多为单价体, 形态特征处于两亲本之间, 但在生活习性上获得多年生的性状, 并表现出高抗条锈病。
[1] | Xiao J, Liu B, Yao Y Y, Guo Z F, Jia H Y, Kong L R, Zhang A M, Ma W J, Ni Z F, Xu S B, Lu F, Jiao Y N, Yang W Y, Lin X L, Sun S L, Lu Z F, Gao L F, Zhao G Y, Cao S H, Chen Q, Zhang K P, Wang M C, Wang M, Hu Z R, Guo W L, Li G Q, Ma X, Li J M, Han F P, Fu X D, Ma Z Q, Wang D W, Zhang X Y, Ling H Q, Xia G M, Tong Y P, Liu Z Y, He Z H, Jia J Z, Chong K. Wheat genomic study for genetic improvement of traits in China. Sci China Life Sci, 2022, 65: 1718-1775. |
[2] | 马占鸿. 中国小麦条锈病研究与防控. 植物保护学报, 2018, 45: 1-6. |
Ma Z H. Researches and control of wheat stripe rust in China. J Plant Prot, 2018, 45: 1-6. (in Chinese with English abstract) | |
[3] | Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis, 2004, 88: 896-904. |
[4] | Han D J, Wang Q L, Chen X M, Zeng Q D, Wu J H, Xue W, Zhan G M, Huang L, Kang Z S. Emerging Yr26-virulent races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin, China. Plant Dis, 2015, 99: 8-14. |
[5] | Li J, Dundas I, Dong C M, Li G R, Trethowan R, Yang Z J, Hoxha S, Zhang P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet, 2020, 133: 1095-1107. |
[6] | Zhu Z W, Cao Q, Han D J, Wu J H, Wu L, Tong J Y, Xu X W, Yan J, Zhang Y, Xu K J, Wang F J, Dong Y C, Gao C B, He Z H, Xia X C, Hao Y F. Molecular characterization and validation of adult-plant stripe rust resistance gene Yr86 in Chinese wheat cultivar Zhongmai 895. Theor Appl Genet, 2023, 136: 136-142. |
[7] | Li D Y, Zhang J W, Liu H J, Tan B W, Zhu W, Xu L L, Wang Y, Zeng J, Fan X, Sha L N, Zhang H Q, Ma J, Chen G Y, Zhou Y H, Kang H Y. Characterization of a wheat-tetraploid Thinopyrum elongatum 1E (1D) substitution line K17-841-1 by cytological and phenotypic analysis and developed molecular markers. BMC Genom, 2019, 20: 963-975. |
[8] | Klymiuk V, Chawla H S, Wiebe K, Ens J, Fatiukha A, Govta L, Fahima T, Pozniak C J. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun Biol, 2022, 5: 826-834. |
[9] | 颜济, 杨俊良. 小麦族生物系统学(第四卷), 北京: 中国农业出版社, 2011. pp 377-444. |
Yan J, Yang J L. Triticeae Biosystematics, Volume 4. Beijing: China Agriculture Press, 2011. pp 377-444. (in Chinese with English abstract) | |
[10] |
Sharma H C, Gill B S. New hybrids between Agropyron and wheat. Theor Appl Genet, 1983, 66: 111-121.
doi: 10.1007/BF00265184 pmid: 24263763 |
[11] | 翁益群, 刘大钧. 鹅观草(Roegneria C. Koch)与普通小麦(Triticum aestivum L.)属间杂种F1的形态、赤霉病抗性和细胞遗传学研究. 中国农业科学, 1989, 22(5): 1-8. |
Weng Y Q, Liu D J. Morphology, scab resistance and cytogenetics of intergeneric hybrids of Triticum aestivum L. with Roegneria C. Koch (Agropyron) species. Sci Agric Sin, 1989, 22(5): 1-8. (in Chinese with English abstract) | |
[12] | Wang Y F, Yen C, Yang J L, Liu F Q. Evaluation of Roegneria for resistance to head scab caused by Fusarium graminearum Schwabe. Genet Resour Crop Evol, 1997, 44: 211-215. |
[13] | 李万几, 李逸平, 秦家忠. 栽培大麦 × 纤毛鹅观草属间杂种后代系抗赤霉病研究. 植物病理学报, 1999, 29: 203-209. |
Li W J, Li Y P, Qin J Z. Resistance to barley scab in progeny lines derived from the hybridization between cultivated barley and Roegneria ciliaris. Acta Phytopathol Sin, 1999, 29: 203-209. (in Chinese with English abstract) | |
[14] | 杨欣明, 李立会, 李秀全, 董玉琛. 向普通小麦导入纤毛鹅观草抗黄矮病基因的研究: I. F1和BC1的产生及其细胞遗传学. 遗传学报, 1999, 26: 370-443. |
Yang X M, Li L H, Li X Q, Dong Y C. Introduction of genes resistant to barley yellow dwarf virus from Roegneria ciliaris to common wheat: I. Production and cytogenetics of F1 and BC1 progenies. Acta Genet Sin, 1999, 26: 370-443. (in Chinese with English abstract) | |
[15] | Kong L N, Song X Y, Xiao J, Sun H J, Dai K L, Lan C X, Singh P, Yuan C X, Zhang S Z, Singh R, Wang H, Wang X E. Development and characterization of a complete set of Triticum aestivum-Roegneria ciliaris disomic addition lines. Theor Appl Genet, 2018, 131: 1793-1806. |
[16] | Song R R, Cheng Y F, Wen M X, Song X Y, Wang T, Xia M S, Sun H J, Cheng M H, Cui H M, Yuan C X, Liu X X, Wang Z K, Sun L, Wang H Y, Xiao J, Wang X E. Transferring a new Fusarium head blight resistance locus FhbRc1 from Roegneria ciliaris into wheat by developing alien translocation lines. Theor Appl Genet, 2023, 136: 36-48. |
[17] | Wall A, Riley R, Chapman V. Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet Res, 1971, 18: 311-328. |
[18] | Sears E R. An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol, 1977, 19: 585-593. |
[19] | 刘登才, 魏育明, 郑有良. 用新隐性ph基因向小麦转移Aegilops variabilis Eig遗传物质. 四川农业大学学报, 1999, 17: 261-267. |
Liu D C, Wei Y M, Zheng Y L. Genetic transfer from Aegilops variabilis Eig to wheat via a new recessive ph gene. J Sichuan Agric Univ, 1999, 17: 261-267. (in Chinese with English abstract) | |
[20] | Rey M D, Martín A C, Smedley M, Hayta S, Harwood W, Shaw P, Moore G. Magnesium increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 gene) mutant wheat-wild relative hybrids. Front Plant Sci, 2018, 20: 509-520. |
[21] | Martín A C, Alabdullah A K, Moore G. A separation-of-function ZIP4 wheat mutant allows crossover between related chromosomes and is meiotically stable. Sci Rep, 2021, 11: 21811-21823. |
[22] | Lukaszewski A J. Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci, 2000, 40: 216-225. |
[23] |
Zhang W, Zhu X, Zhang M, Chao S, Xu S, Cai X. Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum. Theor Appl Genet, 2018, 131: 2381-2395.
doi: 10.1007/s00122-018-3160-0 pmid: 30109393 |
[24] | Dai K L, Zhao R H, Shi M M, Xiao J, Yu Z Y, Jia Q, Wang Z K, Yuan C X, Sun H J, Cao A Z, Zhang R Q, Chen P D, Li Y B, Wang H Y, Wang X E. Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library. Theor Appl Genet, 2020, 133: 217-226. |
[25] |
Albani M C, Coupland G. Comparative analysis of flowering in annual and perennial plants. Curr Top Dev Biol, 2010, 91: 323-348.
doi: 10.1016/S0070-2153(10)91011-9 pmid: 20705187 |
[26] | Cui L, Ren Y, Murray T D, Yan W, Qing G, Niu Y, Sun Y, Li H. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering, 2018, 4: 507-513. |
[27] | DeHaan L, Ismail B. Perennial cereals provide ecosystem benefits. Cereal Food World, 2017, 62: 278-281. |
[28] | Cox S, Nabukalu P, Paterson A H, Kong W, Nakasagga S. Development of perennial grain sorghum. Sustainability, 2018, 10: 172-180. |
[29] | Huang G, Qin S, Zhang S, Cai X, Wu S, Dao J, Zhang J, Huang L, Harnpichitvitaya D, Wade L J, Fengyi H. Performance, economics and potential impact of perennial rice PR23 relative to annual rice cultivars at multiple locations in Yunnan province of China. Sustainability, 2018, 10: 1086-1103. |
[30] | Cattani D J. Potential of perennial cereal rye for perennial grain production in Manitoba. Can J Plant Sci, 2019, 99: 958-960. |
[31] | Zhang S L, Huang G F, Zhang Y J, Lv X T, Wan K J, Liang J, Feng Y P, Dao J R, Wu S K, Zhang L, Yang X, Lian X P, Huang L Y, Shao L, Zhang J, Qin S W, Tao D Y, Crews T, Sacks E, Hu F Y. Sustained productivity and agronomic potential of perennial rice. Nat Sustain, 2023, 6: 28-38. |
[32] | Cox T, Bender M, Picone C, Van T D, Holland J, Brummer C, Zoeller B, Paterson A H, Jackson W. Breeding perennial grain crops. Crit Rev Plant Sci, 2002, 21: 59-91. |
[33] | Tsitsin N V. Remote hybridization as a method of creating new species and varieties of plants. Euphytica, 1965, 14: 326-330. |
[34] | Line R F, Abdul Q. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America 1968-87. Washington, D.C.: National Technical Information Service, 1992, 1788: 1-44. |
[35] | Han F, Liu B, Fedak G, Liu Z. Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 2004, 109: 1070-1076. |
[36] | Farco G E, Dematteis M. Meiotic behavior and pollen fertility in triploid and tetraploid natural populations of Campuloclinium macrocephalum (Eupatorieae, Asteraceae). Plant Syst Evol, 2014, 300: 1843-1852. |
[37] | Gunawardena T A, Shu F K, Pax F, Blamey C. Low temperature induced spikelet sterility in rice: I. Nitrogen fertilisation and sensitive reproductive period. Crop Past Sci, 2003, 54: 937-946. |
[38] |
Marchal C, Zhang J P, Zhang P, Fenwick P, Steuernagel B, Adamski N, Boyd L, McIntosh R, Wulff B, Berry S, Lagudah E, Uauy C. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants, 2018, 4: 662-668.
doi: 10.1038/s41477-018-0236-4 pmid: 30150615 |
[39] |
Mago R, Miah H, Lawrence G J, Wellings C R, Spielmeyer W, Bariana H S, McIntosh R A, Pryor A J, Ellis J G. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor Appl Genet, 2005, 112: 41-50.
doi: 10.1007/s00122-005-0098-9 pmid: 16283230 |
[40] | Liu W, Frick M, Huel R, Nykiforuk C L, Wang X M, Gaudet D A, Eudes F, Conner R L, Kuzyk A, Chen Q, Kang Z S, Laroche A. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant, 2014, 7: 1740-1755. |
[41] | Huang L, Feng L, He Y, Tang Z, He J, Sela H, Krugman T, Fahima T, Liu D, Wu B. Variation in stripe rust resistance and morphological traits in wild emmer wheat populations. Agronomy, 2019, 9: 44-53. |
[42] | 贾举庆, 雷孟平, 刘成, 李光蓉, 杨足君. 小麦抗条锈基因Yr17的新SCAR标记的建立与应用. 麦类作物学报, 2010, 30: 11-16. |
Jia J Q, Lei M P, Liu C, Li G R, Yang Z J. Establishment and application of a new SCAR marker linked to stripe rust resistance gene Yr17 in wheat. J Triticeae Crops, 2010, 30: 11-16. (in Chinese with English abstract) | |
[43] |
Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009, 119: 889-898.
doi: 10.1007/s00122-009-1097-z pmid: 19578829 |
[44] |
Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112: 1434-1440.
doi: 10.1007/s00122-006-0245-y pmid: 16525837 |
[45] | Wang C M, Zhang Y P, Han D J, Kang Z S, Li G P, Cao A Z, Chen P D. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica, 2007, 159: 359-366. |
[46] |
Zhang C Z, Huang L, Zhang H F, Hao Q Q, Lyu B, Wang M N, Epstein L, Liu M, Kou C L, Qi J, Chen F J, Li M K, Gao G, Ni F, Zhang L Q, Hao M, Wang J R, Chen X M, Luo M C, Zheng Y L, Wu J J, Liu D C, Fu D L. An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. Nat Commun, 2019, 10: 4023-4034.
doi: 10.1038/s41467-019-11872-9 pmid: 31492844 |
[47] |
Lin F, Chen X M. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high- temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet, 2007, 114: 1277-1287.
doi: 10.1007/s00122-007-0518-0 pmid: 17318493 |
[48] |
Luo P G, Hu X Y, Ren Z L, Zhang H Y, Shu K, Yang Z J. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome, 2008, 51: 922-927.
doi: 10.1139/G08-079 pmid: 18956025 |
[49] |
Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet, 2011, 123: 143-157.
doi: 10.1007/s00122-011-1573-0 pmid: 21455722 |
[50] |
Cheng P, Xu L S, Wang M N, See D R, Chen X M. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet, 2014, 127: 2267-2277.
doi: 10.1007/s00122-014-2378-8 pmid: 25142874 |
[51] | Xu H X, Zhang J, Zhang P, Qie Y M, Niu Y C, Li H J, Ma P T, Xu Y F, An D G. Development and validation of molecular markers closely linked to the wheat stripe rust resistance gene YrC591 for marker-assisted selection. Euphytica, 2014, 198: 317-323. |
[52] | Duan Y, Luo J, Yang Z, Li G, Tang Z, Fu S. The physical location of stripe rust resistance genes on chromosome 6 of rye (Secale cereale L.) AR106BONE. Front Plant Sci, 2022, 13: 928014-928022. |
[53] | 李振声, 容珊, 钟冠昌, 陈漱阳, 穆素梅. 小麦远缘杂交, 北京: 科学出版社, 1985. pp 25-142. |
Li Z S, Rong S, Zhong G C, Chen S Y, Mu S M. Distant hybridization of wheat, Beijing: Science Press, 1985. pp 25-142. (in Chinese with English abstract) | |
[54] | 李立会, 董玉琛. 普通小麦与沙生冰草属间杂种的产生及细胞遗传学研究. 中国科学: 化学生命科学地学, 1990, 1(5): 492-497. |
Li L H, Dong Y C. Production and cytogenetic study of intergenus hybrids between Triticum aestivum and Agropyron desertorum. Sci China Chem. 1990, 1(5): 492-497 (in Chinese with English abtract). | |
[55] | 陈佩度, 孙文献, 刘文轩, 袁建华, 刘朝晖, 冯以高, 王苏玲, 周波, 刘大钧. 将大赖草抗赤霉病基因导入普通小麦及抗赤霉病基因的染色体定位. 遗传, 1998, 20(增刊1): 126. |
Chen P D, Sun W X, Liu W X, Yuan J H, Liu Z H, Feng Y G, Wang S L, Zhou B, Liu D J. Introduce the gene of scab resistance from Leymus racemosus into Triticum aestivum and study the chromosomal localization of scab resistance gene. Hereditas (Beijing), 1998, 20(S1): 126. (in Chinese with English abstract) | |
[56] | 董玉琛, 刘旭. 中国作物及其野生近缘植物. 北京: 中国农业出版社, 2006. pp 125-216. |
Dong Y C, Liu X. Chinese crops and their wild relatives, Beijing: China Agriculture Press, 2006. pp 125-216. (in Chinese with English abstract) | |
[57] |
McIntosh R, Mu J M, Han D J, Kang Z S. Wheat stripe rust resistance gene Yr24/Yr26: a retrospective review. Crop J, 2018, 6: 321-329.
doi: 10.1016/j.cj.2018.02.001 |
[58] | Jin H L, Zhang H P, Zhao X Y, Long L, Guan F N, Wang Y P, Huang L Y, Zhang X Y, Wang Y Q, Li H, Li W, Pu Z E, Zhang Y Z, Xu Q, Jiang Q T, Wei Y M, Ma J, Qi P F, Deng M, Kang H Y, Chen G Y, Jiang Y F. Identification of a suppressor for the wheat stripe rust resistance gene Yr81 in Chinese wheat landrace Dahongpao. Theor Appl Genet, 2023, 136: 67-79. |
[59] | Fan C L, Hao M, Jia Z Y, Neri C, Chen X, Chen W S, Liu D C, Lukaszewski A J. Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye. Plant J, 2021, 105: 1665-1676. |
[60] |
Fan C L, Luo J T, Sun J J, Chen H, Li L Q, Zhang L Y, Chen X, Li Y Z, Ning S Z, Yuan Z W, Jiang B, Zhang L Q, Chen X J, Lukaszewski A, Liu D C, Hao M. The KL system in wheat permits homoeologous crossing over between closely related chromosomes. Crop J, 2023, 11: 808-816.
doi: 10.1016/j.cj.2023.01.003 |
[61] | He H, Yokoi S, Tezuka T. A high maternal genome excess causes severe seed abortion leading to ovary abscission in Nicotiana interploidy-interspecific crosses. Plant Direct, 2020, 4: e00257. |
[62] | 张海泉, 杨虹, 郎杰. 普通小麦与粗山羊草正反杂交研究. 西北农林科技大学学报(自然科学版), 2016, 44(4): 33-38. |
Zhang H Q, Yang H, Lang J.Reciprocal crosses of Triticum aestivum and Aegilops tauschii. J Northwest A&F Univ (Nat Sci Edn), 2016, 44(4): 33-38. (in Chinese with English abstract) | |
[63] |
Wang Q, Xiang J, Gao A, Yang X, Liu W, Li X, Li L. Analysis of chromosomal structural polymorphisms in the St, P, and Y genomes of Triticeae (Poaceae). Genome, 2010, 53: 241-249.
doi: 10.1139/g09-098 pmid: 20237601 |
[64] | Zeng J, Fan X, Zhang H Q, Sha L N, Kang H Y, Zhang L, Yang R W, Ding C B, Zhou Y H. Molecular and cytological evidences for the natural wheatgrass hybrids occurrence and origin in west China. Genes Genom, 2012, 34: 499-507. |
[65] |
Chen C, Zheng Z L, Wu D D, Tan L, Yang C R, Liu S Q, Lu J L, Cheng Y R, Sha L N, Wang Y, Kang H Y, Fan X, Zhou Y H, Zhang C B, Zhang H Q. Morphological, cytological, and molecular evidences for natural hybridization between Roegneria stricta and Roegneria turczaninovii (Triticeae: Poaceae). Ecol Evol, 2022, 12: e8517.
doi: 10.1002/ece3.8517 pmid: 35136562 |
[66] | Wu D D, Liu X Y, Yu Z H, Tan T, Lu J L, Cheng Y R, Sha L N, Fan X, Kang H Y, Wang Y, Zhou Y H, Zhang C B, Zhang H Q. Recent natural hybridization in Elymus and Campeiostachys of Triticeae: evidence from morphological, cytological and molecular analyses. Bot J Linn Soc, 2023, 201: 428-442. |
[67] | Chen N, Chen W J, Yan H, Wang Y, Kang H Y, Zhang H Q, Zhou Y H, Sun G L, Sha L N, Fan X. Evolutionary patterns of plastome uncover diploid-polyploid maternal relationships in Triticeae. Mol Phylogenet Evol, 2020, 149: 106838-106847. |
[68] | Wu D D, Yang N M, Xiang Q, Zhu M K, Fang Z Y, Zheng W, Lu J L, Sha L N, Fan X, Cheng Y R, Wang Y, Kang H Y, Zhang H Q, Zhou Y H. Pseudorogneria libanotica intraspecific genetic polymorphism revealed by fluorescence in situ hybridization with newly identified tandem repeats and wheat single-copy gene probes. Int J Mol Sci, 2022, 23: 14818-14834. |
[69] | Abbasi J, Dvorak J, Mcguire P, Dehghani H. Perennial growth and salinity tolerance in wheat × wheatgrass amphiploids varying in the ratio of wheat to wheatgrass genomes. Plant Breed, 2020, 139: 1281-1289. |
[70] | Wagoner P. Perennial grain development: past efforts and potential for the future. Crit Rev Plant Sci, 1990, 9: 381-408. |
[71] |
Lammer D, Cai X W, Arterburn M, Chatelain J, Murray T, Jones S. A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J Exp Bot, 2004, 55: 1715-1720.
doi: 10.1093/jxb/erh209 pmid: 15234999 |
[72] | Bell L, Wade L, Ewing M. Perennial wheat: a review of environmental and agronomic prospects for development in Australia. Crop Pasture Sci, 2010, 61: 679-690. |
[73] |
Kantar M B, Tyl C E, Dorn K M, Zhang X F, Jungers J M, Kaser J M, Schendel R R, Eckberg J O, Runck B C, Bunzel M, Jordan N R, Stupar R M, Marks M D, Anderson J A, Johnson G A, Sheaffer C C, Schoenfuss T C, Ismail B, Heimpel G E, Wyse D L. Perennial grain and oilseed crops. Annu Rev Plant Biol, 2016, 67: 703-729.
doi: 10.1146/annurev-arplant-043015-112311 pmid: 26789233 |
[74] |
赵海滨, 张延明, 史春龙, 闫小丹, 田超, 厉永鹏, 李集临. 寒地多年生小麦的选育与细胞遗传学分析. 作物学报, 2012, 38: 1378-1386.
doi: 10.3724/SP.J.1006.2012.01378 |
Zhao H B, Zhang Y M, Shi C L, Yan X D, Tian C, Li Y P, Li J L. Development and cytogenetic analysis of perennial wheat in cold region. Acta Agron Sin, 2012, 38: 1378-1386. (in Chinese with English abstract) | |
[75] | Crews T E, Cattani D J. Strategies, advances, and challenges in breeding perennial grain crops. Sustainability, 2018, 10: 2192-2198. |
[76] | Hayes R C, Wang S, Newell M T, Turner K, Larsen J, Gazza L, Anderson J A, Bell L W, Cattani D J, Frels K, Galassi E, Morgounov A I, Revell C K, Thapa D B, Sacks E J, Sameri M, Wade L J, Westerbergh A, Shamanin V, Amanov A, Li G D. The performance of early-generation perennial winter cereals at 21 sites across four continents. Sustainability, 2018, 10: 1124-1151. |
[1] | 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090. |
[2] | 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31. |
[3] | 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196. |
[4] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[5] | 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323. |
[6] | 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063. |
[7] | 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257. |
[8] | 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749. |
[9] | 申状状,李昱樱,荣二花,吴玉香. 陆地棉和野生斯特提棉种间异源六倍体的合成与性状鉴定[J]. 作物学报, 2019, 45(4): 628-634. |
[10] | 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840. |
[11] | 张怀志,谢菁忠,陈永兴,刘旭,王勇,闫素红,杨兆生,赵虹,王西成,贾联合,曹廷杰,刘志勇. 利用BSR-Seq定位小麦品种郑麦103抗条锈病基因YrZM103[J]. 作物学报, 2017, 43(11): 1643-1649. |
[12] | 刘金栋,杨恩年,肖永贵,陈新民,伍玲,白斌,李在峰,Garry M. ROSEWARNE,夏先春,何中虎. 兼抗型成株抗性小麦品系的培育、鉴定与分子检测[J]. 作物学报, 2015, 41(10): 1472-1480. |
[13] | 陈国跃, 刘伟, 何员江, 苟璐璐, 余马, 陈时盛, 魏育明, 郑有良. 小麦骨干亲本繁6条锈病成株抗性特异位点及其在衍生品种中的遗传解析[J]. 作物学报, 2013, 39(05): 827-836. |
[14] | 赵海滨,张延明,史春龙,闫小丹,田超,厉永鹏,李集临. 寒地多年生小麦的选育与细胞遗传学分析[J]. 作物学报, 2012, 38(08): 1378-1386. |
[15] | 马东方, 王海鸽, 唐明双, 袁喜丽, 白耀博, 周新力, 宋建荣, 井金学. 小麦品种中梁21抗条锈病基因遗传分析与SSR标记定位[J]. 作物学报, 2011, 37(12): 2145-2151. |
|