欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1877-1884.doi: 10.3724/SP.J.1006.2024.31072

• 研究简报 • 上一篇    

拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响

陈娟(), 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳*()   

  1. 安徽科技学院农学院, 安徽凤阳 233100
  • 收稿日期:2023-11-26 接受日期:2024-04-02 出版日期:2024-07-12 网络出版日期:2024-04-16
  • 通讯作者: *李文阳, E-mail: liwy@ahstu.edu.cn
  • 作者简介:E-mail: 1160465149@qq.com
  • 基金资助:
    安徽省高校协同创新项目(GXXT-2021-089);安徽省现代农业产业技术体系建设专项(小麦);安徽自然科学基金项目(1408085MC48);安徽省科技特派员项目(2023tpt035)

Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat

CHEN Juan(), YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang*()   

  1. College of Agronomy, Anhui Science and Technology University, Fengyang 233100, Anhui, China
  • Received:2023-11-26 Accepted:2024-04-02 Published:2024-07-12 Published online:2024-04-16
  • Contact: *E-mail: liwy@ahstu.edu.cn
  • Supported by:
    Collaborative Innovation Project of Universities in Anhui province(GXXT-2021-089);Special Funds for the Construction of Agricultural Research System in Anhui Province (Wheat);Anhui Natural Science Foundation Project(1408085MC48);Sci-tech Commissioner Project in Anhui Province(2023tpt035)

摘要:

为明确拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响。在大田条件下, 于2021—2023年, 选用软质小麦品种华成麦1688和荃麦725为试验材料, 设对照(CK)和渍水(WL) 2种处理, 在小麦拔节期进行连续10 d的渍水处理, 研究拔节期渍水对软质小麦淀粉粒度分布及黏度参数的影响及其相互关系。结果表明, 与对照相比, 拔节期渍水胁迫通过降低小麦穗数、穗粒数及千粒重, 从而降低小麦产量, 籽粒湿面筋含量、蛋白质含量显著降低, 淀粉含量显著增加。拔节期渍水胁迫抑制了小麦胚乳B淀粉的产生和生长, 使小麦B型淀粉粒体积、表面积及数目百分比显著降低, 其中主要影响2.8~10.0 μm的淀粉粒; A型淀粉粒体积、表面积百分比显著增加, 以影响其中10.0~22.0 μm的淀粉粒为主, 渍水胁迫对A型淀粉粒数目百分比无显著性影响。渍水胁迫后, 面粉峰值黏度、低谷黏度、最终黏度、稀懈值及回升值显著增加。可见, 拔节期渍水胁迫改变了小麦淀粉粒度分布, 通过降低B型淀粉粒占比, 增加A型淀粉粒占比, 进而增加峰值黏度等黏度参数, 最终影响小麦籽粒品质。

关键词: 小麦, 淀粉粒, 淀粉粒度分布, 糊化特性, 渍水

Abstract:

The objective of this study is to clarify the effect of waterlogging at jointing stage on starch particle size distribution and pasting properties in soft wheat. Under field conditions, from 2021 to 2023, the soft wheat varieties Huachengmai 1688 and Quanmai 725 were selected as the test materials, and two treatments of control (CK) and waterlogging (WL) were conducted. The waterlogging treatment was carried out for 10 consecutive days at jointing stage of wheat to study the effect of waterlogging at jointing stage on the starch particle size distribution and viscosity parameters of soft wheat and their relationship. The results showed that, compared with the control, waterlogging stress at jointing stage reduced wheat yield by reducing spike number, grain number per spike, and 1000-grain weight. The wet gluten content and protein content of grains were significantly reduced, and the starch content was significantly increased. Waterlogging stress at jointing stage inhibited the production and growth of B-type starch in wheat endosperm, and significantly reduced the volume, surface area, and the number percentage of B-type starch granules, mainly affecting 2.8-10.0 μm starch granules. The volume and surface area percentage of A-type starch granules increased significantly, mainly affecting 10.0-22.0 μm starch granules. Waterlogging stress had no significant effect on the percentage of A-type starch granules. After waterlogging stress, the peak viscosity, trough viscosity, final viscosity, breakdown, and setback of wheat increased significantly. In conclusion, waterlogging stress at jointing stage changed the starch particle size distribution of wheat. By reducing the proportion of B-type starch granules, increasing the proportion of A-type starch granules and the viscosity parameters such as peak viscosity were increased, and finally the yield and quality of wheat were affected.

Key words: wheat, starch granules, granule size distribution of starch, pasting properties, waterlogging

图1

实验点2021-2023小麦生长季温度与降水量"

表1

渍水对小麦产量及其构成因素的影响"

年份
Year
处理
Treatment
品种
Cultivar
穗数
Spike (×104 hm-2)
穗粒数
Kernels per spike
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
2021-2022 CK 华成麦1688 HC1688 370.67±14.05 48.80±2.29 47.19±3.08 5994.62±179.24
荃麦725 QM725 548.00±6.93 49.53±0.25 41.74±0.81 8375.29±346.09
WL 华成麦1688 HC1688 329.33±14.05 41.77±1.35 39.38±0.80 4966.44±63.66
荃麦725 QM725 521.33±33.31 40.75±3.55 37.50±0.65 7584.62±587.13
2022-2023 CK 华成麦1688 HC1688 568.00±12.00 47.53±1.86 46.85±0.85 8730.40±135.33
荃麦725 QM725 662.00±42.00 51.70±1.10 47.15±0.45 8850.07±148.87
WL 华成麦1688 HC1688 480.00±12.00 41.57±1.95 39.65±1.35 7157.44±138.28
荃麦725 QM725 590.00±46.00 42.90±0.90 40.77±1.72 6656.53±313.47
F 年份Y 142.01** 2.15 13.37** 84.85**
F-value 渍水W 26.22** 125.09** 118.96** 132.28**
品种C 165.77** 5.27* 6.31* 90.41**
Y×W 4.27 0.70 0.42 16.08**
Y×C 13.78** 2.43 13.82** 122.73**
W×C 0.47 1.30 3.49 0.62
Y×W×C 0.34 0.72 1.38 3.12**

表2

渍水对小麦籽粒品质性状的影响"

年份
Year
处理
Treatment
品种
Cultivar
湿面筋含量
Wet gluten (%)
蛋白质含量
Protein content (%)
淀粉含量
Starch content (%)
2021-2022 CK 华成麦1688 HC1688 29.50±1.47 14.33±0.78 68.03±0.78
荃麦725 QM725 28.40±0.20 13.55±0.05 69.40±0.05
WL 华成麦1688 HC1688 25.70±1.70 12.47±0.30 68.57±0.30
荃麦725 QM725 27.53±1.21 12.45±0.35 69.47±0.35
2022-2023 CK 华成麦1688 HC1688 41.47±0.40 18.45±1.04 65.80±0.20
荃麦725 QM725 41.67±0.57 18.38±0.21 66.50±0.17
WL 华成麦1688 HC1688 39.43±0.23 17.08±0.49 66.73±0.50
荃麦725 QM725 40.07±1.00 16.95±1.24 66.87±0.35
F 年份Y 936.40** 204.43** 216.68**
F-value 渍水W 24.32** 16.57** 8.55*
品种C 0.87 0.01 22.75**
Y×W 0.38 0.74 1.16
Y×C 0.01 1.48 4.86*
W×C 4.00 0.02 2.53
Y×W×C 2.21 1.99 0.02

表3

渍水对小麦淀粉粒体积分布的影响"

年份
Year
处理
Treatment
品种
Cultivar
淀粉粒粒径Diameter of starch granule (µm)
0.1-2.8 2.8-10.0 ≤10.0 >10.0 10.0-22.0 >22.0
2021-2022 CK HC1688 11.69±0.01 29.67±1.10 41.16±0.72 58.84±0.72 30.50±0.44 28.70±0.70
QM725 11.59±0.01 27.50±0.99 39.09±1.28 60.91±1.28 32.65±0.34 29.40±0.99
WL HC1688 11.62±0.02 27.39±2.45 40.34±0.74 59.66±0.74 31.76±0.49 28.21±0.75
QM725 11.52±0.01 24.80±1.67 36.33±1.80 63.67±1.80 34.31±1.34 29.77±0.49
2022-2023 CK HC1688 11.33±0.01 27.32±0.05 38.66±0.07 61.34±0.07 32.36±0.06 29.04±0.09
QM725 9.64±0.01 23.40±0.54 32.70±0.07 67.30±0.07 35.05±0.03 32.30±0.09
WL HC1688 9.38±0.01 24.27±0.05 33.65±0.08 66.35±0.08 36.19±0.16 29.94±0.19
QM725 9.33±0.01 20.91±0.86 30.24±1.33 67.76±1.45 36.76±0.30 32.99±1.55
F 年份Y 153.65** 159.72** 254.21** 248.31** 138.78** 113.15**
F-value 渍水W 19.56** 53.61** 66.16** 64.64** 80.10** 6.83*
品种C 12.61** 130.91** 129.2** 126.11** 70.92** 57.09**
Y×W 15.36** 2.23 8.21* 7.97* 7.66* 1.63
Y×C 8.13* 2.13 5.80* 5.65* 2.31 22.69**
W×C 9.22** 0.78 0.20 0.20 3.30 1.26
Y×W×C 9.14** 5.79* 10.90** 10.66** 7.16* 3.92

表4

渍水对小麦淀粉粒表面积分布的影响"

年份
Year
处理
Treatment
品种
Cultivar
淀粉粒粒径Diameter of starch granule (µm)
0.1-2.8 2.8-10.0 ≤10.0 >10.0 10.0-22.0 >22.0
2021-2022 CK HC1688 51.53±1.19 31.86±0.44 83.39±1.26 16.61±0.91 10.99±0.82 5.66±5.84
QM725 52.99±1.01 29.23±0.69 82.22±0.71 17.78±0.71 11.91±0.53 6.15±5.93
WL HC1688 51.28±0.95 28.36±2.75 79.64±3.06 20.36±1.60 14.80±1.74 5.52±5.83
QM725 52.68±0.45 27.18±1.67 79.86±1.66 20.14±1.46 14.26±1.54 5.78±5.94
2022-2023 CK HC1688 52.15±0.12 29.97±0.06 82.12±0.06 17.88±0.06 12.04±0.05 5.84±5.87
QM725 51.56±0.97 27.58±0.04 79.15±1.01 20.85±0.96 14.60±0.02 5.27±6.27
WL HC1688 48.78±0.19 28.03±1.67 76.81±1.83 23.19±1.64 16.23±1.75 6.84±7.04
QM725 50.78±0.07 23.86±0.64 74.64±0.64 25.36±1.42 18.40±1.48 6.94±6.91
F 年份Y 16.49** 11.58** 24.13** 36.08** 21.45** 22.68**
F-value 渍水W 13.55** 28.18** 39.87** 59.62** 49.66** 7.50**
品种C 11.01** 23.99** 5.84* 8.73* 6.48* 2.30
Y×W 7.88* 0.06 2.15 3.22 0.83 8.36*
Y×C 1.26 1.69 2.75 4.11 4.69* 0.07
W×C 3.88 0.02 0.76 1.13 0.84 0.29
Y×W×C 4.26 2.34 0.05 0.08 0.28 0.54

表5

渍水对小麦淀粉粒数目分布的影响"

年份
Year
处理
Treatment
品种
Cultivar
淀粉粒粒径Diameter of starch granule (µm)
0.1-2.8 2.8-10.0 ≤10.0 >10.0
2021-2022 CK HC1688 97.37±0.04 2.52±0.04 99.90±0.01 0.10±0.01
QM725 97.62±0.06 2.28±0.06 99.90±0.01 0.10±0.01
WL HC1688 97.29±0.07 2.60±0.07 99.89±0.00 0.11±0.00
QM725 97.53±0.10 2.36±0.10 99.89±0.01 0.11±0.01
2022-2023 CK HC1688 97.59±0.01 2.29±0.03 99.88±0.03 0.13±0.01
QM725 97.82±0.02 2.05±0.02 99.87±0.00 0.13±0.00
WL HC1688 97.58±0.06 2.28±0.05 99.86±0.01 0.13±0.01
QM725 97.78±0.09 2.09±0.06 99.87±0.12 0.13±0.01
F 年份Y 96.88** 134.03** 1.70 87.11**
F-value 渍水W 5.09* 4.83* 0.08 1.78
品种C 88.98** 100.77** 0.01 0.44
Y×W 1.87 2.15 0.00 0.44
Y×C 0.38 0.43 0.00 0.00
W×C 0.17 0.43 0.08 1.78
Y×W×C 0.12 0.26 0.03 0.44

表6

渍水对糊化特性的影响"

年份
Year
处理
Treatment
品种
Cultivar
峰值黏度
Peak viscosity
低谷黏度
Trough viscosity
最终黏度
Final viscosity
稀懈值
Breakdown
回升值
Setback
2021-2022 CK HC1688 1089.67±25.74 929.83±24.61 1956.00±31.22 142.25±7.25 1006.25±31.75
QM725 1567.50±18.50 1043.83±35.97 2044.67±92.38 495.00±22.00 1057.50±35.50
WL HC1688 1166.00±19.00 985.17±36.38 2041.67±72.06 180.83±19.33 1056.50±46.77
QM725 1614.50±7.50 1103.33±57.95 2107.00±118.42 548.25±8.75 1084.00±91.00
2022-2023 CK HC1688 819.00±14.00 685.50±6.50 1292.50±5.50 133.50±20.50 607.00±12.00
QM725 1241.33±48.34 848.00±37.00 1475.67±77.31 380.00±29.00 627.67±55.59
WL HC1688 858.67±23.18 712.00±27.84 1327.67±33.98 200.00±70.49 626.00±23.00
QM725 1332.67±20.40 898.50±25.50 1611.33±40.82 443.00±12.00 723.25±20.25
F 年份Y 794.95** 244.62** 422.84** 17.07** 422.82**
F-value 渍水W 36.56** 10.68** 7.21* 19.00** 5.90*
品种C 1877.53** 98.01** 27.33** 567.40** 6.23*
Y×W 0.03 0.42 0.04 0.55 0.23
Y×C 0.51 3.96 6.94* 20.63** 0.25
W×C 0.28 0.23 0.42 0.05 0.45
Y×W×C 3.71 0.11 1.09 0.13 1.62
[1] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究. 作物学报, 2022, 48: 151-164.
doi: 10.3724/SP.J.1006.2022.11005
Ma B W, Li Q, Cai J, Zhou Q, Huang M, Dai T B, Wang X, Jiang D. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat. Acta Agron Sin, 2022, 48: 151-164 (in Chinese with English abstract).
[2] Wang X, Huang M, Zhou Q, Cai J, Dai T B. Physiological and proteomic mechanisms of waterlogging priming improve tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environ Exp Bot, 2016, 132: 175-182.
[3] Singh S P, Setter T L. Effect of waterlogging on element concentrations, growth and yield of wheat varieties under farmer’s sodic field conditions. Natl Acad Sci India Proc: Biol Sci, 2017, 87: 513-520.
[4] 王美玲, 蒋文月, 葛雨洋, 朱新开, 李春燕, 朱敏, 郭文善, 丁锦峰. 拔节期不同程度渍水对小麦根系生长和籽粒产量的影响. 华北农学报, 2023, 38(4): 83-90.
doi: 10.7668/hbnxb.20193847
Wang M L, Jiang W Y, Ge Y Y, Zhu X K, Li C Y, Zhu M, Guo W S, Ding J F. Effects of different degrees of waterlogging at stem-elongation stage on root growth and grain yield in wheat. Acta Agric Boreali-Sin, 2023, 38(4): 83-90 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20193847
[5] 吴元奇, 李朝苏, 樊高琼, 吴晓丽, 汤永禄. 渍水对四川小麦生理性状及产量的影响. 应用生态学报, 2015, 26: 1162-1170.
Wu Y Q, Li Z S, Fan G Q, Wu X L, Tang Y L. Effect of waterlogging on physical traits and yield of wheat in Sichuan, China. Chin J App Ecol, 2015, 26: 1162-1170 (in Chinese with English abstract).
[6] 丁锦峰, 苏盛楠, 梁鹏, 江孟孟, 郑丽洁, 汪先鹏, 李春燕, 朱新开, 郭文善. 拔节期和花后渍水对小麦产量、干物质及氮素积累和转运的影响. 麦类作物学报, 2017, 37: 1473-1479.
Ding J F, Su S N, Liang P, Jiang M M, Zheng L J, Wang X P, Li C Y, Zhu X K, Guo W S. Effects of waterlogging at jointing or after antheis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat. J Triticeae Crops, 2017, 37: 1473-1479 (in Chinese with English abstract).
[7] 向永玲, 方正武, 赵记伍, 高德荣, 张晓, 王晓玲. 灌浆期涝渍害对弱筋小麦籽粒产量及品质的影响. 麦类作物学报, 2020, 40: 730-736.
Xiang Y L, Fang Z W, Zhao J W, Gao D R, Zhang X, Wang X L. Effect of waterlogging at grain filling stage on grain yield and quality of weak gluten wheat. J Triticeae Crops, 2020, 40: 730-736 (in Chinese with English abstract).
[8] 张艳菲, 王晨阳, 马冬云, 卢红芳, 朱云集, 谢迎新, 郭天财. 花后渍水、高温及其复合胁迫对小麦籽粒蛋白质含量和面粉白度的影响. 作物学报, 2014, 40: 1102-1108.
doi: 10.3724/SP.J.1006.2014.01102
Zhang Y F, Wang C Y, Ma D Y, Lu H F, Zhu Y J, Xie Y X, Guo T C. Effects of waterlogging, high temperature and their interaction after anthesis on grain protein components and flour color in wheat. Acta Agron Sin, 2014, 40: 1102-1108 (in Chinese with English abstract).
[9] 刘丰, 蒋佳丽, 周琴, 蔡剑, 王笑, 黄梅, 仲迎鑫, 戴廷波, 曹卫星, 姜东. 美国软麦籽粒品质变化趋势及对我国弱筋小麦标准达标度分析. 中国农业科学, 2022, 55: 3723-3737.
Liu F, Jiang J L, Zhou Q, Cai J, Wang X, Huang M, Zhong Y X, Dai T B, Cao W X, Jiang D. The variation trend of grain quality of soft wheat in the United States and the analysis of the standard of weak gluten wheat in China. Sci Agric Sin, 2022, 55: 3723-3737 (in Chinese with English abstract).
[10] 付立冬, 贺江, 闫素辉, 许峰, 邵庆勤, 张从宇, 李文阳. 灌浆期淹水对小麦籽粒胚乳淀粉粒度分布的影响. 聊城大学学报(自然科学版), 2019, 32: 67-71.
Fu L D, He J, Yan S H, Xu F, Shao Q Q, Zhang C Y, Li W Y. Effects of water-logging on starch granule size distribution in wheat grain during grain filling. J Liaocheng Univ (Nat Sci), 2019, 32: 67-71 (in Chinese with English abstract).
[11] Liu P, Guo W, Jiang Z, Little C R. Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). J Agric Sci, 2011, 149: 159-169.
[12] 李文阳, 尹燕枰, 闫素辉, 戴忠民, 李勇, 梁太波, 耿庆辉, 王振林. 小麦花后弱光对籽粒淀粉积累和相关酶活性的影响. 作物学报, 2008, 34: 632-640.
doi: 10.3724/SP.J.1006.2008.00632
Li W Y, Yin Y P, Yan S H, Dai Z M, Li Y, Liang T B, Geng Q H, Wang Z L. Effect of shading after anthesis on starch accumulation and activities of the related enzymes in wheat grain. Acta Agron Sin, 2008, 34: 632-640 (in Chinese with English abstract).
[13] 蔡瑞国, 张敏, 朱桓, 武宝悦, 李彦生, 王振林. 糯小麦籽粒淀粉粒度分布特征. 麦类作物学报, 2010, 30: 254-258.
Cai R G, Zhang M, Zhu H, Wu B Y, Li Y S, Wang Z L. Starch granule size distribution in grains of waxy wheat. J Triticeae Crops, 2010, 30: 254-258 (in Chinese with English abstract).
[14] 张敏, 赵城, 刘希伟, 宋霄君, 张玉春, 杨敏, 周齐齐, 蔡瑞国. 施氮量对糯小麦和非糯小麦籽粒淀粉组分与理化特性的影响. 麦类作物学报, 2017, 37: 786-793.
Zhang M, Zhao C, Liu X W, Song X J, Zhang Y C, Yang M, Zhou Q Q, Cai R G. Effect of nitrogen rate on starch composition and physicochemical properties of waxy and non-waxy wheat. J Triticeae Crops, 2017, 37: 786-793 (in Chinese with English abstract).
[15] 赵佳蓉, 马宏亮, 吴东明, 刘琼, 樊高琼. 遮阴时期对不同小麦品种淀粉组成结构及淀粉品质的影响. 核农学报, 2023, 37: 1056-1066.
doi: 10.11869/j.issn.1000-8551.2023.05.1056
Zhao J R, Ma H L, Wu D M, Liu Q, Fan G Q. Effects of Shading stage on the starch component and starch quality of different wheat cultivar. Acta Agric Nucl Sin, 2023, 37: 1056-1066 (in Chinese with English abstract).
[16] 袁建新, 李文阳, 李瑞, 谭植, 魏鹏, 袁雅妮, 闫素辉. 灌浆期遮阴对小麦胚乳淀粉粒度分布及糊化特性的影响. 麦类作物学报, 2020, 40: 220-226.
Yuan J X, Li W Y, Li R, Tan Z, Wei P, Yuan Y N, Yan S H. Effect of shading at grain filling stage on particle size distribution and pasting properties of wheat endosperm starch. J Triticeae Crops, 2020, 40: 220-226 (in Chinese with English abstract).
[17] Zhou Q, Huang M, Huang X, Liu J, Wang X, Cai J, Dai T B, Cao W X, Jiang D. Effect of post-anthesis waterlogging on biosynthesis and granule size distribution of starch in wheat grains. Plant Physiol Biochem, 2018, 35: 222-228.
[18] 谭植, 李瑞, 吴培金, 杨兵兵, 袁建新, 李文阳. 钾肥对弱筋小麦淀粉粒度分布与黏度参数的影响. 湖南农业大学学报(自然科学版), 2020, 46: 507-512.
Tan Z, Li R, Wu P J, Yang B B, Yuan J X, Li W Y. Effect of potassium on starch granules size distribution and viscosity parameters or weak gluten wheat. J Hunan Agric Univ (Nat Sci), 2020, 46: 507-512 (in Chinese with English abstract).
[19] Araki H, Hamada A, Hossain M A, Takahashi T. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Res, 2012, 137: 27-36.
[20] Arguello M N, Mason R E, Roberts T L, Subramanian N, AcuNA A, Addison C K, Lozada D N, MillerG R, Lazada D N, Miller R G, Gbur E. Performance of soft red winter wheat subjected to field soil waterlogging: grain yield and yield components. Field Crops Res, 2016, 194: 57-64.
[21] 王孟昌, 侯君佑, 盖盼盼, 耿兵婕, 黄正来, 张文静, 樊永惠, 马尚宇. 花后渍水对小麦根系抗氧化酶活性、旗叶光合特性及产量的影响. 安徽农业大学学报, 2023, 50: 8-11.
Wang M C, Hou J Y, Gai P P, Geng B J, Huang Z L, Zhang W J, Fan Y H, Ma S Y. Effects of post-anthesis waterlogging on root antioxidant enzyme activities, flag leaf photosynthetic characteristics and yield of wheat. J Anhui Agric Univ, 2023, 50: 8-11 (in Chinese with English abstract).
[22] 吴进东, 李金才, 陈云波, 陈存武, 朱旺生. 花后短暂高温渍水逆境对冬小麦籽粒品质的影响. 核农学报, 2015, 23: 2006-2012.
Wu J D, Li J C, Chen Y B, Chen C W, Zhu W S. Effects of transient high temperature and waterlogging after anthesis on grain quality of winter wheat. Acta Agric Nucl Sin, 2015, 23: 2006-2012 (in Chinese with English abstract).
[23] 姜东, 谢祝捷, 曹卫星, 戴廷波, 荆奇. 花后干旱和渍水对冬小麦光合特性和物质运转的影响. 作物学报, 2004, 30: 175-82.
Jiang D, Xie Z J, Cao W X, Dai T B, Jing Q. Effects of post-anthesis drought and waterlogging on photosynthetic characteristics, assimilates transportation in winter wheat. Acta Agron Sin, 2004, 30: 175-182 (in Chinese with English abstract).
[24] Zhang W J, Wang B B, Zhang A M, Zhou Q R, Li Y, Li L Y, Ma S Y, Fan Y H, Huang Z L. Exogenous 6-benzylaminopurine enhances waterlogging and shading-tolerance after anthesis by improving grain starch accumulation and grain filling. Plant Sci, 2022, 27: 1-10.
[25] Li W Y, Yan S H, Yin Y P, Wang Z L. Starch granule size distribution in wheat grain in relation to shading after anthesis. J Agric Sci, 2010, 148: 183-189.
[26] 谭植, 闫素辉, 刘良柏, 王平信, 刘飞, 邵庆勤, 许峰, 张从宇, 李文阳. 拔节期低温对小麦穗花发育与籽粒淀粉粒分布的影响. 西北农业学报, 2021, 30: 637-644.
Tan Z, Yan S H, Liu L B, Wang P X, Liu F, Shao Q Q, Xu F, Zhang C Y, Li W Y. Effect of low temperature at jointing stage on spikelet and floret development and starch granule size distribution of wheat, Acta Agric Boreali-occident Sin, 2021, 30: 637-644 (in Chinese with English abstract).
[27] 戴忠民, 尹燕枰, 郑世英, 蔡瑞国, 顾锋, 闫素辉, 李文阳, 王振林. 不同供水条件对小麦强、弱势籽粒中淀粉粒度分布的影响. 生态学报, 2009, 29: 6534-6543.
Dai Z M, Yin Y P, Zheng S Y, Cai R G, Gu F, Yan S H, Li W Y, Wang Z L. Effect of water regime on starch granule size distribution in superior and inferior grains of wheat. Acta Ecol Sin, 2009, 29: 6534-6543 (in Chinese with English abstract).
[28] 张美微, 王晨阳, 贺德先, 马冬云. 环境和氮磷肥对强筋小麦品种郑麦9023淀粉糊化特性的影响. 麦类作物学报, 2010, 30: 905-909.
Zhang M W, Wang C Y, He D X, Ma D Y. Effects of location and different ratios of nitrogen and phosphorus fertilizers on starch pasting properties of strong-gluten wheat cultivar Zhengmai 9023. J Triticeae Crops, 2010, 30: 905-909 (in Chinese with English abstract).
[29] 王晨阳, 苗建利, 张美微, 马冬云, 冯伟, 谢迎新, 郭天财. 高温、干旱及其互作对两个筋力小麦品种淀粉糊化特性的影响. 生态学报, 2014, 34: 4882-4890.
Wang C Y, Miao J L, Zhang M W, Ma D Y, Feng W, Xie Y X, Guo T C. Effects of post-anthesis high temperature, drought stress and their interaction on the starch pasting properties of two wheat cultivars with different gluten strength. Acta Ecol Sin, 2014, 34: 4882-4890 (in Chinese with English abstract).
[30] 韩文芳, 熊善柏, 李江涛, 赵思明, 莫紫梅. 糯米淀粉的晶体性质和糊化特性. 中国粮油学报, 2015, 30(8): 48-53.
Han W F, Xiong S B, Li J T, Zhao S M, Mo Z M. Crystallinity and pasting properties of glutinous rice starches. J Chin Cereals Oils Assoc, 2015, 30(8): 48-53 (in Chinese with English abstract).
[1] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[2] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[3] 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090.
[4] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[5] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[6] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[7] 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1420.
[8] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[9] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[10] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206.
[11] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
[12] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
[13] 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003.
[14] 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813.
[15] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[3] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[4] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[5] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[6] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[7] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[10] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .