欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1568-1583.doi: 10.3724/SP.J.1006.2024.31037

• 耕作栽培·生理生化 • 上一篇    下一篇

干旱胁迫下冬小麦不同品种萌发特性差异的研究

乔志新1(), 张杰道2, 王雨1, 郭启芳1, 刘燕静1, 陈蕊1, 胡文浩1, 孙爱清1,*()   

  1. 1山东农业大学农学院 / 小麦育种全国重点实验室, 山东泰安 271018
    2山东农业大学生命科学学院, 山东泰安 271018
  • 收稿日期:2023-06-05 接受日期:2024-01-12 出版日期:2024-06-12 网络出版日期:2024-02-21
  • 通讯作者: * 孙爱清, E-mail: saqsshh@sdau.edu.cn
  • 作者简介:E-mail: 1197406941@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0100904)

Difference in germination characteristics of different winter wheat cultivars under drought stress

QIAO Zhi-Xin1(), ZHANG Jie-Dao2, WANG Yu1, GUO Qi-Fang1, LIU Yan-Jing1, CHEN Rui1, HU Wen-Hao1, SUN Ai-Qing1,*()   

  1. 1National Key Laboratory of Wheat Improvement / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2023-06-05 Accepted:2024-01-12 Published:2024-06-12 Published online:2024-02-21
  • Contact: * E-mail: saqsshh@sdau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0100904)

摘要:

干旱是影响小麦生产的重要逆境, 可以造成萌发成苗质量下降。为了解当前小麦品种在干旱胁迫下的种子萌发特性, 采用沙培控水法研究了生产上应用广泛的128个小麦品种的干旱萌发特性; 筛选出干旱萌发特性差异显著的6个小麦品种(山农28号(SN28)、长6878 (C6878)、烟农19 (YN19)、山农23号(SN23)、鑫麦296 (XM296)和新麦38 (XM38))进行干旱胁迫下种子萌发过程中的生理生化分析。结果表明, 根据活力指数的耐旱系数进行聚类分析, 将128个小麦品种的干旱萌发特性分为好、较好、中等、较差、差5类。山农28号和长6878等18个干旱萌发特性好的小麦品种种子萌发快, 幼苗整齐健壮; 新麦38、乐麦185等26个干旱萌发特性差的小麦品种种子萌发慢、萌发时间分散、发芽率低且幼苗整齐度差。进一步对不同干旱萌发特性的小麦品种进行生理生化指标测定表明, 干旱萌发特性好的山农28号和长6878干旱萌发前期大分子修复基因TDP1表达水平显著高于对照; 干旱萌发前期POD活性也显著高于对照; α-淀粉酶和半胱氨酸蛋白酶活性受干旱影响较小, 萌发后期的可溶性蛋白含量显著高于对照。而干旱萌发特性差的鑫麦296和新麦38在干旱胁迫下种胚DNA和蛋白质修复基因表达水平上升相对滞后; 在干旱胁迫下的半胱氨酸蛋白酶活性显著降低。上述结果表明, 干旱萌发特性好的小麦品种在干旱胁迫下萌发成苗过程中种胚大分子修复能力和种子抗氧化能力强, 贮藏物质动员早, 最终种子萌发速度快, 出苗质量高。

关键词: 小麦, 干旱胁迫, 种子萌发特性, 贮藏物质分解转化, 大分子修复能力, 抗氧化能力

Abstract:

Drought is an important stress affecting wheat production, which can reduce the quality of germination and seedling establishment. In order to understand the seed germination characteristics of wheat cultivars under drought stress, the germination characteristics under drought stress of 128 wheat cultivars widely used in production were identified by sand cultivation and water control method. Six wheat cultivars with significant differences in germination characteristics under drought stress ((Shannong 28 (SN28), Chang 6878 (C6878), Yannong 19 (YN19), Shannong 23 (SN23), Xinmai 296 (XM296), and Xinmai 38 (XM38)) were selected for physiological and biochemical analysis during seed germination under drought stress. The results showed that the germination characteristics under drought stress of 128 wheat cultivars were divided into 5 categories according to the drought tolerance coefficient of vigor index: good, the better, medium, the worse, and the worst. Eighteen wheat cultivars with good germination characteristics under drought stress, including SN28 and C6878, had fast seed germination and healthy seedlings. Twenty-six wheat cultivars with poor germination characteristics under drought stress, such as XM38 and Lemai 185, had slow seed germination, dispersed germination time, low germination percentage (GP), and poor seedling uniformity. The physiological and biochemical indices of wheat cultivars with different germination characteristics under drought stress were further determined. The results showed that the relative expression level of TDP1 gene at the early stage of germination under drought in SN28 and C6878 with good germination characteristics under drought stress was significantly higher than the control. POD activity at the early stage of germination under drought was significantly higher than the control. The activities of α-amylase and cysteine protease were less affected by drought, and the soluble protein content at the late stage of germination was significantly higher than the control. However, the relative expression levels of DNA and protein repair genes in seed embryos of XM296 and XM38 with poor germination characteristics under drought stress were relatively delayed under drought stress. The activity of cysteine protease decreased significantly under drought stress. The above results indicated that wheat cultivars with good germination characteristics under drought stress showed strong macromolecular repair ability in seed embryos and antioxidant capacity in seed, early mobilization of storage substances during seed germination and seedling establishment under drought stress, and finally had fast germination speed and high seedling quality.

Key words: wheat (Triticum aestivum L.), drought stress, seed germination characteristics, decomposition and transformation of storage substances, macromolecular repair ability, antioxidant capacity

表1

qRT-PCR引物序列"

基因号
Gene ID
基因名称
Gene name
上游引物序列
Primer sequences (5'−3')
下游引物序列
Primer sequences (5'−3')
LOC542814 Actin CCGGCATTGTCCACATGAA CCAAAAGGAAAAGCTGAACCG
TraesCS2A02G289700 TDP1 GGAGGGTTGCTACTCAGACGG GGAGAAGCTGTGGTAGGGTCAC
TraesCS2D02G338700 PIMT GGGCTTTACCCCTTACACCG AACCACTGCCTGATCCAACGT

表2

品种、干旱处理对小麦发芽生长指标的方差分析"

指标
Index
变异来源
Source of variation
品种
Cultivar
处理
Treatment
品种×处理
Cultivar × treatment
发芽势
GE (%)
方差SS 11,927.286 2523.000 3543.667
自由度DF 127 1 127
均方差MS 93.916 2523.000 27.903
FF-value 14.041** 377.198** 4.172**
发芽率
GP (%)
方差SS 935.967 86.001 469.499
自由度DF 127 1 127
均方差MS 7.370 86.001 3.697
FF-value 2.758** 32.188** 1.384**
发芽指数
GI
方差SS 2054.155 2502.913 513.813
自由度DF 127 1 127
均方差MS 16.174 2502.913 4.046
FF-value 25.364** 3924.998** 6.344**
活力指数
VI
方差SS 2.862 3.315 0.612
自由度DF 127 1 127
均方差MS 0.023 3.315 0.005
FF-value 18.525** 2724.480** 3.963**
单株干重
SSDW (mg)
方差SS 0.002 0.001 0.000
自由度DF 127 1 127
均方差MS 1.91E-05 0.001 3.08E-06
FF-value 15.116** 876.879** 2.436**
根长
RL (cm)
方差SS 16,633.052 16,985.516 13,768.896
自由度DF 127 1 127
均方差MS 128.938 16,985.516 108.417
FF-value 43.832** 5774.159** 36.856**
苗长
SL (cm)
方差SS 8147.920 11,212.904 1414.555
自由度DF 127 1 127
均方差MS 63.162 11,212.904 11.138
FF-value 38.678** 6866.278** 6.821**
根冠比
R/S
方差SS 16.194 25.806 4.746
自由度DF 127 1 127
均方差MS 0.128 25.806 0.037
FF-value 10.548** 2134.674** 3.091**

附表1

正常条件下不同小麦品种发芽生长指标的差异比较"

指标
Index
类别
Category
品种数量
Number of cultivars
品种名称
Cultivar name
指标范围
Index range
发芽势
GE (%)
显著高 SH 8 Sunstate, 运旱2129 Yunhan 2129, 济南8号 Jinan 8, 烟农19 YN19, 新麦26 Xinmai 26, 京冬8号 Jingdong 8, 济麦44 Jimai 44, 新麦21 Xinmai 21 >99%
显著低 SL 4 沧麦119 Cangmai 119, 鑫麦296 XM296, 洛旱13 Luohan 13, 邯9204 Han 9204 <90%
发芽率
GP (%)
显著高 SH 4 淮麦608 Huaimai 608, 潍麦8号 Weimai 8, 鑫289 Xin 289, 衡H165171 Heng H165171 100%
显著低 SL 1 洛旱13 Luohan 13 <95%
发芽指数
GI
显著高 SH 6 济南8号 Jinan 8, 烟农19 Yannong 19, 藁城8901 Gaocheng 8901, 晋麦30 Jinmai 30, 淮麦608 Huaimai 608, 中麦175 Zhongmai 175 >32
显著低 SL 3 鲁麦21 Lumai 21, 鲁麦1号 Lumai 1, 鑫麦296 XM296 <25
活力指数
VI
显著高 SH 4 淮麦608 Huaimai 608, Karl92, 豫麦35 Yumai 35, 京冬6号 Jingdong 6 >0.7
显著低 SL 3 鑫麦296 XM296, 中麦578 Zhongmai 578, 鲁麦1号 Lumai 1 <0.4
单株干重
SSDW (g)
显著高 SH 10 淮麦608 Huaimai 608, 豫麦35 Yumai 35, Karl92, 矮抗58 Aikang 58, 百农4199 Bainong 4199, 冀麦825 Jimai 825, 鲁麦14号 Lumai 14, 豫农949 Yunong 949, 瑞华1568 Ruihua 1568, 京冬6号 Jingdong 6 >22
显著低 SL 6 济宁16 Jining 16, 鑫麦296 XM296, 师栾02-1 Shiluan 02-1, TAM107, 鲁麦1号 Lumai 1, 青麦6号 Qingmai 6 <16
根长
RL (cm)
显著高 SH 11 矮抗58 Aikang 58, 冀中麦6号 Jizhongmai 6, 藁城8901 Gaocheng 8901, TKM6007, Y4188, 唐麦8号 Tangmai 8, 山农22 Shannong 22, 良星77 Liangxing 77, 冠麦9号 Guanmai 9, 藁优5218 Gaoyou 5218, 衡H165171 Heng H165171 >16
显著低 SL 4 沧麦119 Cangmai 119, 长6359 Chang 6359, 鲁麦23号 Lumai 23, 山农18 Shannong 18 <5
苗长
SL (cm)
显著高 SH 7 核生2号Hesheng 2, 济南8号Jinan 8, 晋麦30 Jinmai 30, 运旱2129 Yunhan 2129, 京冬6号Jingdong 6, 潍麦8号 Weimai 8, 跃进5号Yuejin 5 >15
显著低 SL 11 石家庄8号Shijiazhuang 8, 新麦26 Xinmai 26, 众信8412 Zhongxin 8412, 河农6133 Henong 6133, 鲁麦21 Lumai 21, 兰德50856 Lande 50856, 洛麦23 Luomai 23, 师栾08-2 Shiluan 08-2, 潍9903 Wei 9903, 汶农17 Wennong 17, 石新828 Shixin 828 <11
根冠比
R/S
显著高 SH 5 冀5265 Ji 5265, 中植麦13 Zhongzhimai 13, 藁城8901 Gaocheng 8901, 豫麦35 Yumai 35, 烟农19 Yannong 19 >1.1
显著低 SL 9 晋麦30 Jinmai 30, 优麦3号 Youmai 3, 山农28 SN28, 沧麦119 Cangmai 119, 烟农15 Yannong 15, 长6359 Chang 6359, 运旱2129 Yunhan 2129, 山农18 Shannong 18, 鲁麦23号Lumai 23 <0.6

附表2

干旱胁迫下不同小麦品种发芽生长指标的差异比较"

指标
Index
类别
Category
品种数量
Number of cultivars
品种名称
Cultivar name
指标范围
Index range
发芽势
GE (%)
显著高 SH 5 烟农836 Yannong 836, 晋麦30 Jinmai 30, Sunstate, 济南8号 Jinan 8, 石麦21 Shimai 21 >99
显著低 SL 7 鑫麦296 XM296, 山农20 Shannong 20, 邯9204 Han 9204, 15P410, 洛旱13 Luohan 13, 新麦38 XM38, 兰德50856 Lande 50856 <80
发芽率
GP (%)
显著高 SH 5 京9428 Jing 9428, 豫麦49-198 Yumai 49-198, TAM107, 淄麦12 Zimai 12, 衡15-4229 Heng 15-4229 100
显著低 SL 4 洛旱13 Luohan 13, 鑫麦296 XM296, 沧麦119 Cangmai 119, 新麦38 XM38 <95
发芽指数
GI
显著高 SH 6 济南8号 Jinan 8, 山农26 Shannong 26, 青麦6号 Qingmai 6, 核生2号 Hesheng 2, 藁城8901 Gaocheng 8901, 晋麦30 Jinmai 30 >28
显著低 SL 3 鑫麦296 XM296, 洛旱13 Luohan 13, 新麦38 XM38 <23
活力指数
VI
显著高 SH 8 百农4199 Bainong 4199, 核生2号 Hesheng 2, 淮麦608 Huaimai 608, 烟农19 YN19, 运旱2129 Yunhan 2129, 长6359 Chang 6359, 京冬6号 Jingdong 6, Karl92 >0.5
显著低 SL 2 鑫麦296 XM296, 乐麦185 Lemai 185 <0.3
单株干重
SSDW (g)
显著高 SH 6 百农4199 Bainong 4199, 核生2号 Hesheng 2, 烟农19 YN19, 运旱2129 Yunhan 2129, 长6359 Chang 6359, 淮麦608 Huaimai 608 >20
显著低 SL 3 鑫麦296 XM296, 青麦6号 Qingmai 6, 乐麦185 Lemai 185 <13
根长
RL (cm)
显著高 SH 3 洛麦23 Luomai 23, 烟农836 Yannong 836, 矮抗58 Aikang 58 >12
显著低 SL 6 豫麦35 Yumai 35, 核生2号 Hesheng 2, 潍9903 Wei 9903, 冀麦u87 Jimai u87, 青麦6号 Qingmai 6, 京冬8号 Jingdong 8 <9
苗长
SL (cm)
显著高 SH 7 核生2号 Hesheng 2, 运旱2129 Yunhan 2129, 鲁麦23号Lumai 23, 济南8号 Jinan 8, 沧麦119 Cangmai 119, 跃进5号 Yuejin 5, 长6878 C6878 >12.0
显著低 SL 17 中麦175 Zhongmai 175, 冠麦9号 Guanmai 9, 豫教5号 Yujiao 5, 河农6133 Henong 6133, 藁优5218 Gaoyou 5218, 鑫麦296 XM296, 汶农17 Wennong 17, 潍9903 Wei 9903, 印度圆粒 Yinduyuanli, 邯9587 Han 9587, 师栾08-2 Shiluan 08-2, 兰德50856 Lande 50856, 冀麦u87 Jimai u87, 郑麦16 Zhengmai 16, 百农4199 Bainong 4199, 众信5199 Zhongxin 5199, 瑞华1568 Ruihua 1568 <8.8
根冠比
R/S
显著高 SH 6 烟农19 YN19, 农大981 Nongda 981, 中植麦13 Zhongzhimai 13, 郑麦20 Zhengmai 20, 冀5265 Ji 5265, 藁城8901 Gaocheng 8901 >1.5
显著低 SL 6 青麦6号 Qingmai 6, 晋麦30 Jinmai 30, 百农4199 Bainong 4199, 中麦578 Zhongmai 578, 乐麦185 Lemai 185, 烟农15 Yannong 15 <1.0

附表3

干旱胁迫下发芽生长指标降幅小的小麦品种"

指标
Index
降幅
Decrease amplitude
品种数量
Number of cultivars
品种名称
Cultivar name
发芽势
GE (%)
无影响
No effect
21 衡15-422 Heng 15-422, Y4188, 晋麦30 Jinmai 30, 核生2号 Hesheng 2, 中麦175 Zhongmai 175, 鲁原502 Luyuan 502, 淄麦12 Zimai 12, 冀5265 Ji 5265, 沧麦119 Cangmai 119, 博单30 Bodan 30, 青麦6号 Qingmai 6, 豫麦8679 Yumai 8679, 汶航1号 Wenhang 1, 鲁麦21 Lumai 21, 长6878 C6878, 石麦21 Shimai 21, 烟农836 Yannong 836, 跃进5号 Yuejin 5, 唐麦8号 Tangmai 8, 淮麦608 Huaimai 608, 瑞泉麦32 Ruiquanmai 32
发芽指数
GI
<5% 10 山农26 Shannong 26, 鲁麦21 Lumai 21, 鲁麦1号 Lumai 1, 郑育麦9987 Zhengyumai 9987, 烟农15 Yannong 15, 石家庄8号 Shijiazhuang 8, 泰山24 Taishan 24, 济南8号 Jinan 8, 济麦23 Jimai 23, 豫麦49-198 Yumai 49-198
活力指数
VI
<10% 10 中麦578 Zhongmai 578, 山农28 Shannong 28, 长6359 Chang 6359, 百农4199 Bainong 4199, 长6878 C6878, 烟农15 Yannong 15, 山农18 Shannong 18, 鲁麦23号Lumai 23, 鲁麦21 Lumai 21, 石家庄8号 Shijiazhuang 8
单株干重
SSDW (g)
<5% 14 山农28 SN28, 长6878 C6878, 山农18 Shannong 18, 百农4199 Bainong 4199, 鲁麦23号Lumai 23, 济麦19 Jimai 19, 沧麦119 Cangmai 119, 济宁16 Jining 16, 衡4399 Heng 4399, 烟农19 YN19, 金禾991 Jinhe 991, 烟农15 Yannong 15, 运旱2129 Yunhan 2129, 石新828 Shixin 828
根长
RL (cm)
无影响
No effect
13 山农18 Shannong 18, 长6359 Chang 6359, 鲁麦23号Lumai 23, 运旱2129 Yunhan 2129, 沧麦119 Cangmai 119, 山农28SN28, 优麦3号 Youmai 3, 济宁16 Jining 16, 中优9507 Zhongyou 9507, 鲁麦1号 Lumai 1, 长6878 C6878, 石家庄8号 Shijiazhuang 8, 鲁麦21 Lumai 21
苗长
SL (cm)
<10% 9 青麦6号 Qingmai 6, 长6359 Chang 6359, 长6878 Chang 6878, 山农18 Shannong 18, 鲁麦23号Lumai 23, 济宁16 Jining 16, 济麦19 Jimai 19, 沧麦119 Cangmai 119, 山农16 Shannong 16

附表4

干旱胁迫下发芽生长指标降幅大的小麦品种"

指标
Index
降幅
Decrease amplitude
品种数量
Number of cultivars
品种名称
Cultivar name
发芽势
GE (%)
20%-26% 3 15P410, 新麦38 Xinmai 38, 兰德50856 Lande 50856
发芽率
GP (%)
5%-10% 2 沧麦119 Cangmai 119, 新麦38 XM38
发芽指数
GI
20%-25% 9 瑞华1568 Ruihua 1568, 济南17号 Jinan 17, 泰山27 Taishan 27, 西农115 Xinong 15, 华育198 Huayu 198, 临麦2号 Linmai 2, 鲁麦14号 Lumai 14, 济麦44 Jimai 44, 新麦38 XM38
活力指数
VI
40%-51% 3 豫麦35 Yumai 35, 新麦38 XM38, 乐麦185 Lemai 185
单株干重
SSDW (g)
20%-45% 12 Karl92, 郑麦16 Zhengmai 16, 冀麦26 Jimai 26, 藁优5218 Gaoyou 5218, 淮麦608 Huaimai 608, 中麦175 Zhongmai 175, 临麦2号 Linmai 2, 藁城8901 Gaocheng 8901, 京9428 Jing 9428, 新麦38 XM38, 豫麦35 Yumai 35, 乐麦185 Lemai 185
根长
RL (cm)
35%-41% 17 徐麦14017 Xumai 14017, 山农22 Shannong 22, 金禾991 Jinhe 991, 百农4199 Bainong 4199, 豫麦35 Yumai 35, 淄麦12 Zimai 12, TKM6007, 济南17号 Jinan 17, 鑫麦296 XM296, Y4188, 冀麦u87 Jimai u87, 济麦19 Jimai 19, 赵农1632 Zhaonong 1632, 冠麦9号 Guanmai 9, 冀中麦6号 Jizhongmai 6, 潍9903 Wei 9903, 鲁原502 Luyuan 502
苗长
SL (cm)
30%-34% 7 山农26 Shannong 26, 冀5265 Ji 5265, 瑞华1568 Ruihua 1568, 百农4199 Bainong 4199, 中优9507 Zhongyou 9507, 晋麦30 Jinmai 30, 京冬8号 Jingdong 8

图1

基于不同小麦品种活力指数耐旱系数的聚类图 I~V分别表示干旱萌发特性好、较好、中等、较差、差的小麦品种。"

图2

不同小麦品种发芽生长指标差异 SN28: 山农28号; C6878: 长6878; YN19: 烟农19; SN23: 山农23号; XM296: 鑫麦296; XM38: 新麦38。CK: 对照; DT: 干旱胁迫处理。*表示在0.05概率水平差异显著; **表示在0.01概率水平差异显著。"

图3

不同小麦品种萌发早期种子和幼苗形态比较 缩写同图2。"

图4

干旱胁迫下不同小麦品种种胚TDP1和PIMT基因相对表达量差异 缩写同图2。*表示在0.05概率水平差异显著; **表示在0.01概率水平差异显著。"

图5

干旱胁迫下不同小麦品种种胚大分子修复基因表达的耐旱系数 缩写同图2。"

图6

干旱胁迫对小麦种子萌发过程中SOD和POD活性的影响 缩写同图2。*表示在0.05概率水平差异显著。"

图7

小麦种子SOD、POD活性与发芽指标耐旱系数的相关 GE: 发芽势; GP: 发芽率; GI: 发芽指数; VI: 活力指数; SSDW: 单株干重。*表示在0.05概率水平差异显著; **表示在0.01概率水平差异显著。"

图8

干旱胁迫对小麦种子萌发过程中α-淀粉酶和半胱氨酸蛋白酶活性的影响 缩写同图2。*表示在0.05概率水平差异显著。"

图9

干旱胁迫对小麦种子萌发过程中种子可溶性糖和可溶性蛋白含量的影响 缩写同图2。*表示在0.05概率水平差异显著。"

[1] Li J, Xuan J, Cai R. Wheat, a popular cereal crop. Field Crop, 2020, 3: 13-21.
[2] Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D, Huang J. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci, 2017, 8: e01147.
[3] Yan M, Xue C, Xiong Y, Meng X, Li B, Shen R, Lan P. Proteomic dissection of the similar and different responses of wheat to drought, salinity and submergence during seed germination. J Proteom, 2020, 220: e103756.
[4] 施成晓, 陈婷, 王昌江, 秦晓梁, 廖允成. 干旱胁迫对不同抗旱性小麦种子萌发及幼苗根芽生物量分配的影响. 麦类作物学报, 2016, 36: 483-490.
Shi C X, Chen T, Wang C J, Qin X L, Liao Y C. Effect of drought stress on seed germination and biomass allocation of root and shoot of different drought resistant wheat cultivars. J Triticeae Crops, 2016, 36: 483-490. (in Chinese with English abstract)
[5] Ahmad Z, Waraich E A, Akhtar S, Anjum S, Ahmad T, Mahboob W, Hafeez O B A, Tapera T, Labuschagne M, Rizwan M. Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiol Plant, 2018, 80: 1007-1017.
[6] 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012, 23: 724-730.
Ma F J, Li D D, Cai J, Jiang D, Cao W X, Dai T B. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. J Appl Ecol, 2012, 23: 724-730. (in Chinese with English abstract)
[7] Ma Z, Bykova N V, Igamberdiev A U. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. Crop J, 2017, 5: 459-477.
doi: 10.1016/j.cj.2017.08.007
[8] Waterworth W M, Bray C M, West C E. The importance of safeguarding genome integrity in germination and seed longevity. J Exp Bot, 2015, 66: 3549-3558.
doi: 10.1093/jxb/erv080 pmid: 25750428
[9] Han C, Yang P. Studies on the molecular mechanisms of seed germination. Proteomics, 2015, 15: 1671-1679.
doi: 10.1002/pmic.201400375 pmid: 25597791
[10] Poetsch A R. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. J Comput Struct Biotechnol, 2020, 18: 207-219.
[11] Juan C A, Pérez de la Lastra J M, Plou F J, Pérez-Lebeña E,. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci, 2021, 22: 4642-4654.
[12] Stinson B M, Loparo J J. Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev Biochem, 2021, 90: 137-164.
doi: 10.1146/annurev-biochem-080320-110356 pmid: 33556282
[13] Mei C, Lei L, Tan L M, Xu X J, He B M, Luo C, Yin J Y, Li X, Zhang W, Zhou H H, Liu Z Q. The role of single strand break repair pathways in cellular responses to camptothecin induced DNA damage. Biomed Pharmac, 2020, 125: e109875.
[14] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40: 1141-1156.
doi: 10.3724/SP.J.1006.2014.01141
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agron Sin, 2014, 40: 1141-1156. (in Chinese with English abstract)
[15] Kamble N U, Majee M. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT) in plants: regulations and functions. Biochem J, 2020, 477: 4453-4471.
doi: 10.1042/BCJ20200794 pmid: 33245750
[16] Ghosh S, Kamble N U, Verma P, Salvi P, Petla B P, Roy S, Majee M. Arabidopsis protein l-isoaspartyl methyltransferase repairs isoaspartyl damage to antioxidant enzymes and increases heat and oxidative stress tolerance. J Biol Chem, 2020, 295: 783-799.
[17] Wei Y, Xu H, Diao L, Zhu Y, Xie H, Cai Q, Wu F, Wang Z, Zhang J, Xie H. Protein repair l-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability. Plant Mol Biol, 2015, 89: 475-492.
doi: 10.1007/s11103-015-0383-1 pmid: 26438231
[18] Petla B P, Kamble N U, Kumar M, Verma P, Ghosh S, Singh A, Rao V, Salvi P, Kaur H, Saxena S C, Majee M. Rice protein repair l-isoaspartyl methyltransferase isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity. New Phytol, 2016, 211: 627-645.
[19] Verma P, Kaur H, Petla B P, Rao V, Saxena S C, Majee M. Protein l-isoaspartyl methyltransferase 2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins. Plant Physiol, 2013, 161: 1141-1157.
[20] Li B B, Zhang S B, Lyu Y Y, Wei S, Hu Y S. Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological activity of wheat seeds. PLoS One, 2022, 17: e0263553.
[21] Penfield S, Rylott E L, Gilday A D, Graham S, Larson T R, Graham I A. Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell, 2004, 16: 2705-2718.
doi: 10.1105/tpc.104.024711 pmid: 15367715
[22] Yu Y, Guo G, Lü D, Hu Y, Li J, Li X, Yan Y. Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20. BMC Plant Biol, 2014, 14: 20.
doi: 10.1186/1471-2229-14-20 pmid: 24410729
[23] 陈蕾太. 逆境条件下小麦种子活力与主要相关酶活性及其基因表达的关系. 山东农业大学硕士学位论文,山东泰安, 2016. pp 3-13, 28-32.
Chen L T. Relation of Wheat Seed Vigor and Main Related Enzyme Activities and Gene Expression under Stress Conditions. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016. 3-13, 28-32. (in Chinese with English abstract)
[24] Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, Großkinsky D K, Albacete A A, Stabentheiner E, Franzaring J, Fangmeier A, van der Graaff E, Roitsch T. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J Exp Bot, 2015, 66: 5531-5542.
doi: 10.1093/jxb/erv228 pmid: 26002973
[25] Chu C, Wang S, Paetzold L, Wang Z, Hui K, Rudd J C, Xue Q, Ibrahim A M H, Metz R, Johnson C D, Rush C M, Liu S. RNA-seq analysis reveals different drought tolerance mechanisms in two broadly adapted wheat cultivars ‘TAM 111’ and ‘TAM 112’. Sci Rep, 2021, 11: 4301.
[26] 马雪丽. 不同区域生产的小麦种子活力差异及生理基础研究. 山东农业大学硕士学位论文,山东泰安, 2016. pp 1-12.
Ma X L. Research of Difference in Vigor and Physiological of Wheat Seed Produced in Different Region. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016. pp 1-12. (in Chinese with English abstract)
[27] 曲思泛. 玉米正反交组合种子活力差异机理解析. 山东农业大学硕士学位论文,山东泰安, 2021. pp 13-15.
Qu S F. Seed Vigour Comparison of Reciprocal Crosses Hybrid on Maize Inbred Lines. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2021. pp 13-15. (in Chinese with English abstract)
[28] 刘娟. 小麦种子的萌发与出苗及其影响因素研究. 农业灾害研究, 2023, 13(4): 58-60
Liu J. Study on germination and emergence of wheat seeds and its influencing factors. J Agric Catastroph, 2023, 13(4): 58-60. (in Chinese with English abstract)
[29] 李如雪. 小麦种子活力状况分析与种子活力评价技术研究. 山东农业大学硕士学位论文,山东泰安, 2020. pp 32-46.
Li R X. Analysis of Seed Vigor Status and Study on the Evaluation Technology of Seed Vigor in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2020. pp 32-46. (in Chinese with English abstract)
[30] 张自阳, 王智煜, 刘明久, 黄玲. 干旱胁迫对不同年代小麦品种种子萌发特征的影响. 河南农业科学, 2018, 47(3): 23-28.
doi: 10.15933/j.cnki.1004-3268.2018.03.005
Zhang Z Y, Wang Z Y, Li M J, Huang L. Effect of drought stress on seed germination characteristics of different generations of winter wheat varieties. J Henan Agric Sci, 2018, 47(3): 23-28. (in Chinese with English abstract)
[31] Wasaya A, Zhang X, Fang Q, Yan Z. Root phenotyping for drought tolerance: a review. Agronomy, 2018, 8: 241-262.
[32] Agbicodo E M, Fatokun C A, Muranaka S, Visser R G F, van der Linden C G. Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica, 2009, 167: 353-370.
[33] Waterworth W M, Drury G E, Bray C M, West C E. Repairing breaks in the plant genome: the importance of keeping it together. New Phytol, 2011, 192: 805-822.
doi: 10.1111/j.1469-8137.2011.03926.x pmid: 21988671
[34] Nitiss K C, Malik M, He X, White S W, Nitiss J L. Tyrosyl-DNA phosphodiesterase (tdp1) participates in the repair of top2-mediated DNA damage. Proc Natl Acad Sci USA, 2006, 103: 8953-8958.
pmid: 16751265
[35] Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A. Understanding the molecular pathways associated with seed vigor. Plant Physiol Biochem, 2012, 60: 196-206.
[36] Oge L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin J P, Job D, Jullien M, Grappin P.Protein repair L-isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell, 2008, 20: 3022-3037.
[37] Chen X, Börner A, Xin X, Nagel M, He J, Li J, Yin G. Comparative proteomics at the critical node of vigor loss in wheat seeds differing in storability. Front Plant Sci, 2021, 12: 707184.
[38] Rey P, Tarrago L. Physiological roles of plant methionine sulfoxide reductases in redox homeostasis and signaling. Antioxidants (Basel), 2018, 7: 114.
[39] Châtelain E, Satour P, Laugier E, Ly Vu B, Payet N, Rey P, Montrichard F. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proc Natl Acad Sci USA, 2013, 110: 3633-3638.
doi: 10.1073/pnas.1220589110 pmid: 23401556
[40] Singh S, Gupta A, Kaur N. Differential responses of anti-oxidative defence system to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. Agron Crop Sci, 2012, 198: 185-195.
[41] Kirova E, Pecheva D, Simova-Stoilova L. Drought response in winter wheat: protection from oxidative stress and mutagenesis effect. Acta Physiol Plant, 2021, 43: 8.
[42] Zhao M, Zhang H, Yan H, Qiu L, Baskin C C. Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. Front Plant Sci, 2018, 9: 234-251.
doi: 10.3389/fpls.2018.00234 pmid: 29535748
[43] 李振华, 王建华. 种子活力与萌发的生理与分子机制研究进展. 中国农业科学, 2015, 48: 646-660.
doi: 10.3864/j.issn.0578-1752.2015.04.03
Li Z H, Wang J H. Advances in research of physiological and molecular mechanism in seed vigor and germination. Sci Agric Sin, 2015, 48: 646-660. (in Chinese with English abstract)
[44] Shi C, Xu L L. Characters of cysteine endopeptidases in wheat endosperm during seed germination and subsequent seedling growth. J Integr Plant Biol, 2009, 51: 52-57.
[1] 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761.
[2] 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884.
[3] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[4] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[5] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[6] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[7] 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1420.
[8] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206.
[9] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
[10] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
[11] 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003.
[12] 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813.
[13] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[14] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[15] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .