作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1568-1583.doi: 10.3724/SP.J.1006.2024.31037
乔志新1(), 张杰道2, 王雨1, 郭启芳1, 刘燕静1, 陈蕊1, 胡文浩1, 孙爱清1,*()
QIAO Zhi-Xin1(), ZHANG Jie-Dao2, WANG Yu1, GUO Qi-Fang1, LIU Yan-Jing1, CHEN Rui1, HU Wen-Hao1, SUN Ai-Qing1,*()
摘要:
干旱是影响小麦生产的重要逆境, 可以造成萌发成苗质量下降。为了解当前小麦品种在干旱胁迫下的种子萌发特性, 采用沙培控水法研究了生产上应用广泛的128个小麦品种的干旱萌发特性; 筛选出干旱萌发特性差异显著的6个小麦品种(山农28号(SN28)、长6878 (C6878)、烟农19 (YN19)、山农23号(SN23)、鑫麦296 (XM296)和新麦38 (XM38))进行干旱胁迫下种子萌发过程中的生理生化分析。结果表明, 根据活力指数的耐旱系数进行聚类分析, 将128个小麦品种的干旱萌发特性分为好、较好、中等、较差、差5类。山农28号和长6878等18个干旱萌发特性好的小麦品种种子萌发快, 幼苗整齐健壮; 新麦38、乐麦185等26个干旱萌发特性差的小麦品种种子萌发慢、萌发时间分散、发芽率低且幼苗整齐度差。进一步对不同干旱萌发特性的小麦品种进行生理生化指标测定表明, 干旱萌发特性好的山农28号和长6878干旱萌发前期大分子修复基因TDP1表达水平显著高于对照; 干旱萌发前期POD活性也显著高于对照; α-淀粉酶和半胱氨酸蛋白酶活性受干旱影响较小, 萌发后期的可溶性蛋白含量显著高于对照。而干旱萌发特性差的鑫麦296和新麦38在干旱胁迫下种胚DNA和蛋白质修复基因表达水平上升相对滞后; 在干旱胁迫下的半胱氨酸蛋白酶活性显著降低。上述结果表明, 干旱萌发特性好的小麦品种在干旱胁迫下萌发成苗过程中种胚大分子修复能力和种子抗氧化能力强, 贮藏物质动员早, 最终种子萌发速度快, 出苗质量高。
[1] | Li J, Xuan J, Cai R. Wheat, a popular cereal crop. Field Crop, 2020, 3: 13-21. |
[2] | Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D, Huang J. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci, 2017, 8: e01147. |
[3] | Yan M, Xue C, Xiong Y, Meng X, Li B, Shen R, Lan P. Proteomic dissection of the similar and different responses of wheat to drought, salinity and submergence during seed germination. J Proteom, 2020, 220: e103756. |
[4] | 施成晓, 陈婷, 王昌江, 秦晓梁, 廖允成. 干旱胁迫对不同抗旱性小麦种子萌发及幼苗根芽生物量分配的影响. 麦类作物学报, 2016, 36: 483-490. |
Shi C X, Chen T, Wang C J, Qin X L, Liao Y C. Effect of drought stress on seed germination and biomass allocation of root and shoot of different drought resistant wheat cultivars. J Triticeae Crops, 2016, 36: 483-490. (in Chinese with English abstract) | |
[5] | Ahmad Z, Waraich E A, Akhtar S, Anjum S, Ahmad T, Mahboob W, Hafeez O B A, Tapera T, Labuschagne M, Rizwan M. Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiol Plant, 2018, 80: 1007-1017. |
[6] | 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012, 23: 724-730. |
Ma F J, Li D D, Cai J, Jiang D, Cao W X, Dai T B. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. J Appl Ecol, 2012, 23: 724-730. (in Chinese with English abstract) | |
[7] |
Ma Z, Bykova N V, Igamberdiev A U. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. Crop J, 2017, 5: 459-477.
doi: 10.1016/j.cj.2017.08.007 |
[8] |
Waterworth W M, Bray C M, West C E. The importance of safeguarding genome integrity in germination and seed longevity. J Exp Bot, 2015, 66: 3549-3558.
doi: 10.1093/jxb/erv080 pmid: 25750428 |
[9] |
Han C, Yang P. Studies on the molecular mechanisms of seed germination. Proteomics, 2015, 15: 1671-1679.
doi: 10.1002/pmic.201400375 pmid: 25597791 |
[10] | Poetsch A R. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. J Comput Struct Biotechnol, 2020, 18: 207-219. |
[11] | Juan C A, Pérez de la Lastra J M, Plou F J, Pérez-Lebeña E,. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci, 2021, 22: 4642-4654. |
[12] |
Stinson B M, Loparo J J. Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev Biochem, 2021, 90: 137-164.
doi: 10.1146/annurev-biochem-080320-110356 pmid: 33556282 |
[13] | Mei C, Lei L, Tan L M, Xu X J, He B M, Luo C, Yin J Y, Li X, Zhang W, Zhou H H, Liu Z Q. The role of single strand break repair pathways in cellular responses to camptothecin induced DNA damage. Biomed Pharmac, 2020, 125: e109875. |
[14] |
徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40: 1141-1156.
doi: 10.3724/SP.J.1006.2014.01141 |
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agron Sin, 2014, 40: 1141-1156. (in Chinese with English abstract) | |
[15] |
Kamble N U, Majee M. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT) in plants: regulations and functions. Biochem J, 2020, 477: 4453-4471.
doi: 10.1042/BCJ20200794 pmid: 33245750 |
[16] | Ghosh S, Kamble N U, Verma P, Salvi P, Petla B P, Roy S, Majee M. Arabidopsis protein l-isoaspartyl methyltransferase repairs isoaspartyl damage to antioxidant enzymes and increases heat and oxidative stress tolerance. J Biol Chem, 2020, 295: 783-799. |
[17] |
Wei Y, Xu H, Diao L, Zhu Y, Xie H, Cai Q, Wu F, Wang Z, Zhang J, Xie H. Protein repair l-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability. Plant Mol Biol, 2015, 89: 475-492.
doi: 10.1007/s11103-015-0383-1 pmid: 26438231 |
[18] | Petla B P, Kamble N U, Kumar M, Verma P, Ghosh S, Singh A, Rao V, Salvi P, Kaur H, Saxena S C, Majee M. Rice protein repair l-isoaspartyl methyltransferase isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity. New Phytol, 2016, 211: 627-645. |
[19] | Verma P, Kaur H, Petla B P, Rao V, Saxena S C, Majee M. Protein l-isoaspartyl methyltransferase 2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins. Plant Physiol, 2013, 161: 1141-1157. |
[20] | Li B B, Zhang S B, Lyu Y Y, Wei S, Hu Y S. Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological activity of wheat seeds. PLoS One, 2022, 17: e0263553. |
[21] |
Penfield S, Rylott E L, Gilday A D, Graham S, Larson T R, Graham I A. Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell, 2004, 16: 2705-2718.
doi: 10.1105/tpc.104.024711 pmid: 15367715 |
[22] |
Yu Y, Guo G, Lü D, Hu Y, Li J, Li X, Yan Y. Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20. BMC Plant Biol, 2014, 14: 20.
doi: 10.1186/1471-2229-14-20 pmid: 24410729 |
[23] | 陈蕾太. 逆境条件下小麦种子活力与主要相关酶活性及其基因表达的关系. 山东农业大学硕士学位论文,山东泰安, 2016. pp 3-13, 28-32. |
Chen L T. Relation of Wheat Seed Vigor and Main Related Enzyme Activities and Gene Expression under Stress Conditions. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016. 3-13, 28-32. (in Chinese with English abstract) | |
[24] |
Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, Großkinsky D K, Albacete A A, Stabentheiner E, Franzaring J, Fangmeier A, van der Graaff E, Roitsch T. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J Exp Bot, 2015, 66: 5531-5542.
doi: 10.1093/jxb/erv228 pmid: 26002973 |
[25] | Chu C, Wang S, Paetzold L, Wang Z, Hui K, Rudd J C, Xue Q, Ibrahim A M H, Metz R, Johnson C D, Rush C M, Liu S. RNA-seq analysis reveals different drought tolerance mechanisms in two broadly adapted wheat cultivars ‘TAM 111’ and ‘TAM 112’. Sci Rep, 2021, 11: 4301. |
[26] | 马雪丽. 不同区域生产的小麦种子活力差异及生理基础研究. 山东农业大学硕士学位论文,山东泰安, 2016. pp 1-12. |
Ma X L. Research of Difference in Vigor and Physiological of Wheat Seed Produced in Different Region. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016. pp 1-12. (in Chinese with English abstract) | |
[27] | 曲思泛. 玉米正反交组合种子活力差异机理解析. 山东农业大学硕士学位论文,山东泰安, 2021. pp 13-15. |
Qu S F. Seed Vigour Comparison of Reciprocal Crosses Hybrid on Maize Inbred Lines. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2021. pp 13-15. (in Chinese with English abstract) | |
[28] | 刘娟. 小麦种子的萌发与出苗及其影响因素研究. 农业灾害研究, 2023, 13(4): 58-60 |
Liu J. Study on germination and emergence of wheat seeds and its influencing factors. J Agric Catastroph, 2023, 13(4): 58-60. (in Chinese with English abstract) | |
[29] | 李如雪. 小麦种子活力状况分析与种子活力评价技术研究. 山东农业大学硕士学位论文,山东泰安, 2020. pp 32-46. |
Li R X. Analysis of Seed Vigor Status and Study on the Evaluation Technology of Seed Vigor in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2020. pp 32-46. (in Chinese with English abstract) | |
[30] |
张自阳, 王智煜, 刘明久, 黄玲. 干旱胁迫对不同年代小麦品种种子萌发特征的影响. 河南农业科学, 2018, 47(3): 23-28.
doi: 10.15933/j.cnki.1004-3268.2018.03.005 |
Zhang Z Y, Wang Z Y, Li M J, Huang L. Effect of drought stress on seed germination characteristics of different generations of winter wheat varieties. J Henan Agric Sci, 2018, 47(3): 23-28. (in Chinese with English abstract) | |
[31] | Wasaya A, Zhang X, Fang Q, Yan Z. Root phenotyping for drought tolerance: a review. Agronomy, 2018, 8: 241-262. |
[32] | Agbicodo E M, Fatokun C A, Muranaka S, Visser R G F, van der Linden C G. Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica, 2009, 167: 353-370. |
[33] |
Waterworth W M, Drury G E, Bray C M, West C E. Repairing breaks in the plant genome: the importance of keeping it together. New Phytol, 2011, 192: 805-822.
doi: 10.1111/j.1469-8137.2011.03926.x pmid: 21988671 |
[34] |
Nitiss K C, Malik M, He X, White S W, Nitiss J L. Tyrosyl-DNA phosphodiesterase (tdp1) participates in the repair of top2-mediated DNA damage. Proc Natl Acad Sci USA, 2006, 103: 8953-8958.
pmid: 16751265 |
[35] | Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A. Understanding the molecular pathways associated with seed vigor. Plant Physiol Biochem, 2012, 60: 196-206. |
[36] | Oge L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin J P, Job D, Jullien M, Grappin P.Protein repair L-isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell, 2008, 20: 3022-3037. |
[37] | Chen X, Börner A, Xin X, Nagel M, He J, Li J, Yin G. Comparative proteomics at the critical node of vigor loss in wheat seeds differing in storability. Front Plant Sci, 2021, 12: 707184. |
[38] | Rey P, Tarrago L. Physiological roles of plant methionine sulfoxide reductases in redox homeostasis and signaling. Antioxidants (Basel), 2018, 7: 114. |
[39] |
Châtelain E, Satour P, Laugier E, Ly Vu B, Payet N, Rey P, Montrichard F. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proc Natl Acad Sci USA, 2013, 110: 3633-3638.
doi: 10.1073/pnas.1220589110 pmid: 23401556 |
[40] | Singh S, Gupta A, Kaur N. Differential responses of anti-oxidative defence system to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. Agron Crop Sci, 2012, 198: 185-195. |
[41] | Kirova E, Pecheva D, Simova-Stoilova L. Drought response in winter wheat: protection from oxidative stress and mutagenesis effect. Acta Physiol Plant, 2021, 43: 8. |
[42] |
Zhao M, Zhang H, Yan H, Qiu L, Baskin C C. Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. Front Plant Sci, 2018, 9: 234-251.
doi: 10.3389/fpls.2018.00234 pmid: 29535748 |
[43] |
李振华, 王建华. 种子活力与萌发的生理与分子机制研究进展. 中国农业科学, 2015, 48: 646-660.
doi: 10.3864/j.issn.0578-1752.2015.04.03 |
Li Z H, Wang J H. Advances in research of physiological and molecular mechanism in seed vigor and germination. Sci Agric Sin, 2015, 48: 646-660. (in Chinese with English abstract) | |
[44] | Shi C, Xu L L. Characters of cysteine endopeptidases in wheat endosperm during seed germination and subsequent seedling growth. J Integr Plant Biol, 2009, 51: 52-57. |
[1] | 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761. |
[2] | 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884. |
[3] | 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4型ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657. |
[4] | 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683. |
[5] | 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405. |
[6] | 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383. |
[7] | 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1420. |
[8] | 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206. |
[9] | 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311. |
[10] | 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896. |
[11] | 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003. |
[12] | 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813. |
[13] | 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990. |
[14] | 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090. |
[15] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
|