欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1554-1567.doi: 10.3724/SP.J.1006.2024.34135

• 耕作栽培·生理生化 • 上一篇    下一篇

关键栽培措施对菜籽油综合品质的影响

宁宁1(), 余新颖1, 秦梦倩1, 娄洪祥1, 王宗铠1, 王春云1, 贾才华2, 徐正华1, 王晶1, 蒯婕1, 汪波1, 赵杰1, 周广生1,*()   

  1. 1华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
    2华中农业大学食品科学技术学院 / 教育部环境食品学重点实验室, 湖北武汉 430070
  • 收稿日期:2023-08-06 接受日期:2024-01-30 出版日期:2024-06-12 网络出版日期:2024-02-20
  • 通讯作者: * 周广生, E-mail: zhougs@mail.hzau.edu.cn
  • 作者简介:E-mail: 1208299842@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFD1600502)

Effect of key cultivated measures on rapeseed oil comprehensive quality

NING Ning1(), YU Xin-Ying1, QIN Meng-Qian1, LOU Hong-Xiang1, WANG Zong-Kai1, WANG Chun-Yun1, JIA Cai-Hua2, XU Zheng-Hua1, WANG Jing1, KUAI Jie1, WANG Bo1, ZHAO Jie1, ZHOU Guang-Sheng1,*()   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environmental Food Science, Ministry of Education, Wuhan 430070, Hubei, China
  • Received:2023-08-06 Accepted:2024-01-30 Published:2024-06-12 Published online:2024-02-20
  • Contact: * E-mail: zhougs@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1600502)

摘要:

为明确关键栽培措施对菜籽油品质的影响, 本研究以“湘杂油518”和“大地199”为材料, 分别在武汉和兰州进行播期、密度及氮肥处理单因素试验, 籽粒成熟后收获冷榨, 测定菜籽油色泽、过氧化值、极性总酚及甾醇含量等关键品质指标, 综合评价各处理下菜籽油品质。结果表明: 本试验条件下, 播期、密度、氮肥均显著影响菜籽油关键品质指标, 但各指标在两品种、两试验点间的变化规律不尽相同。两试点、两品种均在早播条件下菜籽油的油酸含量较高, 且均随播期推迟, 色泽加深, 叶绿素含量升高, 综合品质下降。两试点的湘杂油518品种在D2密度(4.5×105 hm-2)下的菜籽油的酸价较低, 极性总酚、总植物甾醇和总生育酚含量较高, 综合品质较好。两试点的大地199品种则随密度增加菜籽油叶绿素含量增加, 色泽加深, 亚油酸含量降低, 综合品质下降。两试点、两品种均在低氮下(120 kg hm-2)有较高的籽粒含油量和出油效率, 且均随施氮量的增加菜籽油色泽加深, 综合品质下降。主成分分析表明, 播期对菜籽油综合品质的影响大于种植密度和施氮量处理, 酸价、叶绿素、极性总酚、抗氧化能力和总植物甾醇是影响菜籽油的关键品质指标; 相关性分析表明, 籽粒含油量与出油效率显著正相关, 叶绿素、类胡萝卜素与菜籽油色泽均呈显著正相关, 极性总酚与抗氧化性显著正相关。综上所述, 生产中适期早播、减少氮肥用量、降低种植密度, 可提高压榨菜籽油品质。本试验结果可为高品质菜籽油优质原料的生产提供技术支撑。

关键词: 油菜, 播期, 密度, 氮肥, 菜籽油, 品质

Abstract:

In order to clarify the influence of key cultivation measures on rapeseed oil quality, a single factor field experiments of sowing date, planting density, and nitrogen rate were carried out in Wuhan and Lanzhou with “Xiangzayou 518 (XZY518)” and “Dadi 199 (DD199)” as the experimental materials. The rapeseed was harvested at maturity stage, followed by cold pressing and oil content, oil extraction efficiency, color of rapeseed oil, peroxide value, total polar phenols, and phytosterol content were assessed, and rapeseed oil quality was evaluated comprehensively under each treatment. The results showed that sowing date, density, and nitrogen rate all significantly affected the key quality indexes of rapeseed oil, and the pattern of change of each index was not the same between the two varieties from two sites. Two varieties from two sites had higher oleic acid content in rapeseed oil under early sowing conditions, and as the sowing date was delayed, rapeseed oil color deepened, chlorophyll content increased, and the comprehensive quality decreased. The XZY518 from two sites at D2 density (4.5×105 hm-2) had a lower acid value, higher total polar phenol, total phytosterol, and total tocopherol contents, and better comprehensive quality. The DD 199 from two sites with increasing density, the chlorophyll content of rapeseed oil increased, the color deepened, the linoleic acid content decreased, and the comprehensive quality also decreased. Two varieties from two sites had higher oil content and oil extraction efficiency under low nitrogen (120 kg hm-2). With the increase of nitrogen rate, rapeseed oil color deepened, comprehensive quality declined. Principal component analysis showed that the effect of sowing date on the comprehensive quality of rapeseed oil was greater than that of planting density and nitrogen rate treatments, and that acid value, chlorophyll, total polar phenols, antioxidant power and total phytosterols were key quality indicators affecting rapeseed oils. Correlation analysis showed that seed oil content was significantly positively correlated with oil extraction efficiency, chlorophyll, carotenoids, and rapeseed oil color were all significantly positively correlated, and total polar phenols were significantly positively correlated with antioxidant power. In summary, early sowing at an appropriate date, reducing nitrogen fertilizer rate, and lowering planting density in production can improve the quality of pressed rapeseed oil. The findings of this study offer technical assistance to produce high-quality rapeseed oil raw materials.

Key words: rapeseed, sowing date, density, nitrogenous fertilizer, rapeseed oil, quality

图1

油菜角果期主要气候因子"

表1

各单因素处理水平及其他关键栽培参数设置"

处理
Treatment
试验点
Experiment test
参数及代号
Parameters and codes
其他栽培参数
Other cultivation parameters
播期S 武汉Wuhan 9-20 (S1) 10-5 (S2) 10-20 (S3) N: 240 D: 45
兰州Lanzhou 4-6 (S1) 4-13 (S2) 4-20 (S3) N: 240 D: 45
密度D 武汉, 兰州Wuhan, Lanzhou 15 (D1) 45 (D2) 75 (D3) S: 10/5、4/13 N: 240
氮肥N 武汉, 兰州Wuhan, Lanzhou 120 (N1) 240 (N2) 360 (N3) S: 10/5、4/13 D: 45

表2

关键栽培措施与菜籽油品质的方差分析"

处理
Treatment
OC OEE MC R CHL AV POV OA DPPH FRAP TPP CAR TP TT
武汉Wuhan (2020-2021)
品种V NS NS ** ** ** ** ** ** ** ** ** ** ** **
播期S * * ** ** ** ** NS ** ** ** ** ** ** **
V×S NS NS NS NS ** ** ** ** ** ** ** NS ** **
品种V ** ** ** ** * ** NS ** ** ** ** * ** **
密度D ** ** * * * ** NS ** NS ** ** NS ** **
V×D * * NS NS ** ** ** ** NS ** ** NS ** **
品种V ** ** NS NS ** ** ** ** ** ** ** ** ** **
氮肥N ** ** * * ** ** ** ** * * ** ** ** **
V×N ** ** NS NS ** ** ** ** ** ** ** NS ** **
兰州Lanzhou (2021)
品种V ** ** ** ** ** ** * ** NS * NS NS ** **
播期S * ** ** ** ** ** ** ** NS * ** ** ** **
V×S ** ** ** ** ** ** * ** ** ** * ** ** **
品种V ** ** NS NS ** ** ** ** ** ** ** NS ** **
密度D ** ** ** ** ** ** ** ** NS ** ** NS ** **
V×D ** ** NS NS ** ** ** ** * NS ** * ** **
品种V ** ** NS NS ** ** * ** ** ** NS ** ** **
氮肥N ** ** ** ** ** ** ** ** ** ** ** ** ** **
V×N ** ** NS NS ** ** ** ** * ** NS * ** **

表3

关键栽培措施对籽粒含油量、出油效率及菜籽油脂肪酸组成的影响"

栽培措施 Cultivation measure 品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
OC OEE OA LA LNA OC OEE OA LA LNA
播期
Sowing date
XZY518 S1 47.39 b 71.30 b 60.70 d 22.90 c 9.14 c 50.60 b 76.30 b 64.07 c 20.47 b 8.36 c
S2 48.93 a 73.04 a 60.42 e 23.30 b 9.21 b 49.76 bc 75.50 bc 62.35 d 21.91 a 8.67 b
S3 46.84 b 70.68 b 58.89 f 24.29 a 9.35 a 50.51 bc 76.22 bc 61.76 e 21.92 a 9.27 a
CV1 2.27 1.71 1.63 3.06 1.19 0.91 0.58 1.91 3.89 5.30
DD199 S1 47.37 b 71.29 b 67.20 a 17.32 e 8.07 f 52.18 a 77.76 a 67.67 a 16.71 e 7.96 e
S2 47.30 b 71.22 b 67.02 b 17.24 f 8.45 d 51.90 a 77.50 a 67.34 b 17.00 c 8.24 d
S3 46.46 b 70.23 b 66.62 c 17.70 d 8.39 e 49.53 c 75.27 c 67.54 a 16.88 d 8.19 d
CV2 1.08 0.84 0.44 1.42 2.42 2.84 1.78 0.24 0.86 1.80
密度
Density
XZY518 D1 50.49 a 74.67 a 61.74 d 22.23 c 9.10 a 50.42 b 76.14 b 63.16 c 21.15 a 8.63 a
D2 48.97 c 73.08 c 60.22 f 23.20 a 9.11 a 49.06 c 74.79 c 62.20 d 21.26 a 8.52 ab
D3 49.65 b 73.80 b 60.88 e 22.78 b 9.24 a 50.19 b 75.91 b 63.03 c 21.26 a 8.59 a
CV1 1.53 1.08 1.25 2.13 0.85 1.46 0.95 0.84 0.31 0.66
DD199 D1 49.45 bc 73.59 bc 66.48 c 17.68 d 8.63 b 50.06 b 75.78 b 66.30 b 17.24 b 8.14 bc
D2 47.23 d 71.14 d 66.89 b 17.19 e 8.35 c 51.92 a 77.53 a 67.34 a 17.00 b 8.24 abc
D3 47.27 d 71.18 d 67.37 a 17.08 e 8.52 bc 52.16 a 77.74 a 67.44 a 16.84 b 8.08 c
CV2 2.65 1.95 0.67 1.84 1.68 2.24 1.39 0.94 1.19 0.99
氮肥Nitrogen XZY518 N1 50.87 a 75.05 a 61.97 d 22.07 d 9.05 c 51.53 a 77.17 a 62.78 d 21.07 c 8.81 b
N2 48.25 e 72.30 e 59.74 f 23.48 e 9.79 a 47.75 e 73.44 e 62.27 e 21.77 b 8.74 c
N3 47.98 f 71.99 f 59.42 e 23.79 f 9.65 b 45.35 f 70.75 f 61.69 f 22.22 a 8.88 a
CV1 3.25 2.31 2.30 3.95 4.15 6.47 4.37 0.88 2.66 0.81
DD199 N1 50.34 b 74.51 b 66.54 c 17.75 c 8.58 e 50.21 b 75.93 b 66.82 c 17.32 d 8.05 d
N2 49.13 c 73.25 c 67.45 a 17.07 a 8.48 f 48.28 d 74.00 d 67.89 b 16.70 e 7.77 e
N3 48.61 d 72.68 d 66.78 b 17.60 b 8.64 d 49.51 c 75.24 c 68.20 a 16.20 f 7.70 f
CV2 1.80 1.27 0.70 2.04 0.95 1.98 1.30 1.07 3.35 2.40

表4

关键栽培措施对菜籽油理化品质的影响"

栽培措施
Cultivation measure
品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
MC
(‰)
R CHL
(mg kg-1)
AV
(mg g-1)
POV
(g kg-1)
MC
(‰)
R CHL
(mg kg-1)
AV
(mg g-1)
POV
(g kg-1)
播期
Sowing date
XZY518 S1 0.654 ab 2.78 d 2.42 d 1.01 c 0.76 a 0.615 bc 3.00 d 1.55 f 0.20 d 0.53 bcd
S2 0.627 cd 2.90 cd 2.58 d 0.90 d 0.73 a 0.608 ab 3.34 c 1.92 e 0.12 e 0.50 cd
S3 0.662 a 3.14 bc 3.52 c 1.38 b 0.60 c 0.625 a 3.68 a 6.63 b 0.36 b 0.55 b
CV1 (%) 2.87 6.27 20.83 22.86 11.70 1.40 10.11 84.06 54.35 5.51
DD199 S1 0.619 de 2.97 cd 2.24 d 0.47 e 0.55 d 0.566 c 2.55 e 2.85 d 0.19 d 0.54 bc
S2 0.632 bcd 3.33 b 5.00 b 1.40 b 0.66 b 0.596 ab 3.45 b 4.90 c 0.27 c 0.48 d
S3 0.649 abc 3.78 a 9.24 a 2.08 a 0.72 a 0.621 bc 3.50 b 7.49 a 0.40 a 0.67 a
CV2 (%) 2.38 11.97 64.19 61.09 13.63 4.62 16.88 45.72 36.92 17.69
密度
Density
XZY518 D1 0.630 a 2.99 d 3.11 c 1.43 b 0.60 c 0.622 a 3.01 b 1.57 e 0.26 b 0.54 ab
D2 0.627 ab 3.06 cd 2.59 d 0.91 d 0.71 a 0.608 ab 3.15 ab 1.92 d 0.11 e 0.48 e
D3 0.627 ab 3.19 abc 3.59 b 1.68 a 0.70 a 0.593 bc 3.31 a 3.78 a 0.22 d 0.56 a
CV1 (%) 0.31 3.28 16.24 29.47 9.03 2.39 4.75 49.03 38.14 7.85
DD199 D1 0.609 b 3.16 bc 2.68 d 0.91 d 0.72 a 0.603 abc 3.00 b 3.02 c 0.58 a 0.49 de
D2 0.632 a 3.24 ab 2.91 c 1.40 b 0.65 b 0.596 bc 3.15 ab 3.16 c 0.27 b 0.51 cd
D3 0.616 ab 3.34 a 3.19 b 1.01 c 0.64 bc 0.585 c 3.30 a 3.46 b 0.23 c 0.53 bc
CV2 (%) 1.90 2.74 8.88 23.22 6.98 1.55 4.72 7.00 53.59 4.12
氮肥Nitrogen XZY518 N1 0.598 c 3.15 b 1.75 d 1.46 a 0.72 a 0.604 ab 3.29 d 2.71 e 0.21 e 0.44 d
N2 0.625 ab 3.34 b 2.67 b 0.78 b 0.63 c 0.618 ab 3.41 bc 3.24 c 0.21 e 0.63 ab
N3 0.648 a 3.45 ab 2.53 c 0.63 c 0.56 d 0.636 ab 3.54 a 3.35 b 0.26 d 0.64 a
CV1 (%) 4.04 4.57 21.44 46.00 12.58 2.58 3.66 11.14 10.69 20.14
DD199 N1 0.590 c 3.27 b 2.62 bc 0.57 d 0.68 b 0.599 b 3.34 cd 2.47 f 0.41 b 0.50 c
N2 0.626 ab 3.45 ab 2.61 bc 0.66 c 0.55 d 0.606 ab 3.37 cd 3.15 d 0.35 c 0.50 c
N3 0.614 bc 3.65 a 2.79 a 0.37 e 0.55 d 0.644 a 3.50 ab 5.50 a 0.55 a 0.58 b
CV2 (%) 2.99 5.57 3.67 28.10 12.55 3.89 2.43 42.93 23.95 8.09

表5

关键栽培措施对菜籽油营养成分含量的的影响"

栽培措施 Cultivation measure 品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
TPP
(mg kg-1)
CAR
(mg 100 g-1)
TP
(mg kg-1)
TT
(mg kg-1)
TPP
(mg kg-1)
CAR
(mg 100 g-1)
TP
(mg kg-1)
TT
(mg kg-1)
播期
Sowing date
XZY518 S1 22.83 c 2.75 c 10342.36 a 523.07 c 1.94 cd 2.15 d 8056.73 c 600.06 b
S2 19.15 d 2.45 c 9579.91 c 534.17 b 2.24 bc 2.41 cd 8291.83 b 614.26 a
S3 19.44 d 3.36 b 9642.13 b 540.77 a 3.85 a 4.43 a 8400.56 a 537.68 e
CV1 (%) 9.99 16.17 4.30 1.68 38.37 41.72 2.13 6.98
DD199 S1 21.50 c 3.28 b 7301.32 f 518.96 d 3.41 ab 2.66 c 7322.46 e 542.96 c
S2 46.36 b 3.56 b 7622.69 d 477.76 e 0.62 d 3.50 b 6679.71 f 542.30 d
S3 59.59 a 4.26 a 7350.13 e 467.76 f 2.98 abc 3.42 b 7376.21 d 512.04 f
CV2 (%) 45.52 13.67 2.33 5.56 64.29 14.59 5.44 3.32
密度
Density
XZY518 D1 17.68 de 2.61 b 8560.91 b 524.20 c 0.47 c 3.60 a 8054.04 b 574.99 c
D2 19.45 d 2.56 b 9582.25 a 534.83 a 2.09 b 2.29 c 8289.09 a 614.67 a
D3 15.47 e 2.58 b 8485.58 c 530.55 b 0.91 c 2.72 c 7940.13 c 597.80 b
CV1 (%) 11.36 0.87 6.90 1.01 72.42 23.60 2.20 3.34
DD199 D1 31.06 c 2.77 b 7255.26 f 469.58 f 1.94 b 2.86 bc 6946.73 e 547.14 e
D2 46.65 a 3.61 a 7621.79 d 477.76 e 0.77 c 3.57 a 6679.12 f 542.46 f
D3 33.41 b 2.91 b 7289.21 e 487.09 d 5.62 a 2.80 c 7090.67 d 550.06 d
CV2 (%) 22.69 14.49 2.74 1.83 91.15 13.98 3.02 0.70
氮肥Nitrogen XZY518 N1 15.62 e 2.30 e 8423.95 c 523.35 c 2.24 b 2.92 e 8054.87 b 577.19 c
N2 17.24 d 2.76 d 8710.62 a 527.84 b 1.21 c 3.06 de 8349.79 a 582.72 b
N3 20.18 c 2.94 c 8592.32 b 543.07 a 4.15 a 3.40 c 7735.01 c 598.87 a
CV1 (%) 13.08 12.49 1.68 1.95 58.89 7.99 3.82 1.92
DD199 N1 33.21 b 2.85 cd 7474.87 d 492.36 d 2.09 bc 3.21 cd 6913.12 e 556.90 d
N2 34.00 b 3.13 b 7440.80 f 487.85 f 1.50 bc 3.68 b 7048.20 f 542.43 e
N3 35.33 a 3.47 a 7471.53 e 489.10 e 4.59 a 4.13 a 6549.51 d 509.78 f
CV2 (%) 3.16 9.86 0.25 0.48 60.16 12.54 3.77 4.50

表6

关键栽培措施对菜籽油抗氧化能力的影响"

栽培措施
Cultivation measure
品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
DPPH FRAP DPPH FRAP
播期
Sowing date
XZY518 S1 22.92 c 60.68 c 11.07 a 28.91 a
S2 17.15 d 48.46 e 9.04 b 24.20 c
S3 19.94 cd 56.18 d 9.52 b 23.91 c
CV1 (%) 14.43 11.22 10.72 10.94
DD199 S1 17.79 d 48.12 e 9.46 b 24.77 c
S2 30.62 b 76.92 b 11.14 a 26.75 b
S3 43.86 a 119.48 a 10.44 a 29.19 a
CV2 (%) 42.39 44.05 8.18 8.24
密度
Density
XZY518 D1 18.76 b 55.56 c 8.02 d 25.73 b
D2 19.60 b 47.32 d 9.04 cd 24.65 c
D3 17.98 b 48.17 d 9.66 bc 23.80 d
CV1 (%) 4.31 9.00 9.27 3.92
DD199 D1 26.71 a 74.76 a 10.63 ab 27.66 a
D2 28.51 a 76.30 a 11.14 a 25.90 b
D3 26.89 a 72.10 b 9.66 bc 25.96 b
CV2 (%) 3.61 2.86 7.18 3.78
氮肥Nitrogen XZY518 N1 16.84 c 43.91 d 9.73 b 23.51 c
N2 16.62 c 47.95 c 10.59 a 24.71 b
N3 18.25 c 53.74 b 10.29 ab 21.98 d
CV1 (%) 5.12 10.18 4.28 5.84
DD199 N1 31.84 a 75.11 a 7.96 c 24.99 b
N2 27.87 b 73.46 a 10.13 ab 28.29 a
N3 26.88 b 72.49 a 9.69 b 28.40 a
CV2 (%) 9.09 1.79 12.42 7.11

图2

关键栽培措施与菜籽油品质的相关性分析 S、D和N分别表示播期、密度和氮肥。OC: 含油量; OEE: 出油效率; MC: 水分含量; R: 色泽; CHL: 叶绿素; AV: 酸价; POV: 过氧化值; OA: 油酸; LA: 亚油酸; LNA: 亚麻酸; DPPH: DPPH自由基清除能力; FRAP: 铁离子抗氧化能力; TPP: 极性总酚; CAR: 类胡萝卜素; TP: 总植物甾醇; TT: 总生育酚。*表示P < 0.05, **表示P < 0.01。"

图3

关键栽培措施与菜籽油品质的主成分分析 S、D和N分别表示品种、播期、密度和氮肥。MC: 水分含量; R: 色泽; CHL: 叶绿素; AV: 酸价; POV: 过氧化值; OA: 油酸; LA: 亚油酸; LNA: 亚麻酸; DPPH: DPPH自由基清除能力; FRAP: 铁离子抗氧化能力; TPP: 极性总酚; CAR: 类胡萝卜素; TP: 总植物甾醇; TT: 总生育酚。"

表7

各栽培措施下菜籽油品质的综合评价值"

处理
Treatment
武汉Wuhan 兰州Lanzhou
XZY518 DD199 XZY518 DD199
S1 0.564 0.528 0.412 0.287
S2 0.523 0.522 0.206 0.117
S3 0.430 0.450 0.038 0.055
D1 0.470 0.607 0.193 0.192
D2 0.510 0.563 0.226 0.174
D3 0.384 0.561 0.154 0.191
N1 0.488 0.661 0.200 0.151
N2 0.482 0.601 0.150 0.140
N3 0.461 0.596 0.089 0.042
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
doi: 10.7505/j.issn.1007-9084.2018.05.001
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[2] 王晓玲. 食用油的品质评价及其快速检测方法的研究. 辽宁师范大学硕士学位论文,辽宁大连, 2015.
Wang X L. The Quality Assessment and Rapid Analytical Method Development of Edible Oil. MS Thesis of Liaoning Normal University, Dalian, Liaoning, China, 2015. (in Chinese with English abstract)
[3] 尹奇峰. 面向食用油品质鉴别的低场核磁共振检测平台的研制. 东南大学硕士学位论文,江苏南京, 2017.
Yin Q F. A Low-field Nuclear Magnetic Resonance Devide for Quality Identification of Edible Oil. MS Thesis of Southeast University, Nanjing, Jiangsu, China, 2017. (in Chinese with English abstract)
[4] 丛玲美, 姚小华, 费学谦, 王开良, 王亚萍, 王年金. 长期贮藏对茶油酸值和过氧化值的影响. 林业科学研究, 2007, 20: 246-250.
Cong L M, Yao X H, Fei X Q, Wang K L, Wang Y P, Wang N J. Effect of long-term storage on acid value and peroxide value of oil-tea camellia seed oil. Forest Res, 2007, 20: 246-250. (in Chinese with English abstract)
[5] 孙凤霞, 杜红霞, 周展明. 油脂色泽测定方法研究进展. 中国油脂, 2002, 27(2): 7-9.
Sun F X, Du H X, Zhou Z M. Progress of research on the determination of oil colour. China Oils Fats, 2002, 27(2): 7-9. (in Chinese with English abstract)
[6] Hannoufa A, Pillai B V, Chellamma S. Genetic enhancement of Brassica napus seed quality. Transgenic Res, 2014, 23: 39-52.
[7] 汪雪芳. 油菜籽叶绿素测定方法研究及应用. 华中农业大学硕士学位论文,湖北武汉, 2008.
Wang X F. Study on Chlorophyll Content Determination and ApplicationIn Rapeseed. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2008 (in Chinese with English abstract).
[8] 杨瑞楠, 张良晓, 毛劲, 喻理, 姜俊, 张奇, 李培武. 双低菜籽油营养功能研究进展. 中国食物与营养, 2018, 24(11): 58-63.
Yang R N, Zhang L X, Mao J, Yu L, Jiang J, Zhang Q, Li P W. Research progress on nutritional functions of double-low rapeseed oil. Food Nutr China, 2018, 24(11): 58-63. (in Chinese with English abstract)
[9] 宁宁, 莫娇, 胡冰, 李大双, 娄洪祥, 王春云, 白晨阳, 蒯婕, 汪波, 王晶, 徐正华, 李晓华, 贾才华, 周广生. 长江流域不同生态区油菜籽关键品质比较研究. 作物学报, 2023, 49: 3315-3327.
doi: 10.3724/SP.J.1006.2023.34017
Ning N, Mo J, Hu B, Li D S, Lou H X, Wang C Y, Bai C Y, Kuai J, Wang B, Wang J, Xu Z H, Li X H, Jia C H, Zhou G S. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley. Acta Agron Sin, 2023, 49: 3315-3327. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2023.34017
[10] Chew S C. Cold-pressed rapeseed (Brassica napus) oil: chemistry and functionality. Food Res Int, 2020, 131: 108997.
[11] Yang R, Xue L, Zhang L, Wang X, Qi X, Jiang J, Yu L, Wang X, Zhang W, Zhang Q. Phytosterol contents of edible oils and their contributions to estimated phytosterol intake in the Chinese diet. Foods, 2019, 8: 334.
[12] Ning N, Hu B, Bai C Y, Li X H, Kuai J, He H Z, Ren Y L, Wang B, Jia C H, Zhou G S, Zhao S M. Influence of two-stage harvesting on the properties of cold-pressed rapeseed (Brassica napus L.) oils. J Integr Agric, 2023, 22: 265-278.
[13] 周广生, 王晶, 蒯婕, 汪波. 专辑导读: 加强大田经济作物栽培措施与环境/资源配置的互作研究、推动产业高效优质发展. 作物学报, 2021, 47: 1633-1638.
doi: 10.3724/SP.J.1006.2021.04633
Zhou G S, Wang J, Kuai J, Wang B. Editorial: strengthening the research on the interaction between cultivated measures and environment/resource allocation of field economic crops to promote the development of industry with high efficiency and high quality. Acta Agron Sin, 2021, 47: 1633-1638. (in Chinese with English abstract)
[14] 张子龙, 王瑞, 李加纳, 唐章林, 谌利. 密度和氮素与甘蓝型黄籽油菜主要品质的关系. 西南农业大学学报, 2006, 28: 349-352.
Zhang Z L, Wang R, Li J N, Tang Z L, Chen L. Effects of planting density and fertilization on seed colour and related quality characters of yellow-seeded rapeseed (Brassica napus L.). J Southwest Agric Univ, 2006, 28: 349-352. (in Chinese with English abstract)
[15] Khalatbari A, Rad A S, Valadabady S A, Sayfzadeh S, Zakerin H. Yield components and fatty acids variation of canola cultivars under different irrigation regimes and planting dates. Gesunde Pflanz, 2022, 74: 17-27.
[16] Egesel C Ö, Gül M K, Kahrıman F, Özer İ, Türk F. The effect of nitrogen fertilization on tocopherols in rapeseed genotypes. Eur Food Res Technol, 2008, 227: 871-880.
[17] Zapletalova A, Ducsay L, Varga L, Sitkey J, Javorekova S, Hozlar P. Influence of nitrogen nutrition on fatty acids in oilseed rape (Brassica napus L.). Plants, 2022, 11: 44.
[18] 范晓波. 澳洲坚果油水剂法提取工艺的研究. 中国油脂, 2016, 41(6): 15-18.
Fan X B. Aqueous extraction of macadamia nut oil. China Oils Fats, 2016, 41(6): 15-18. (in Chinese with English abstract)
[19] Belingheri C, Giussani B, Rodriguez-Estrada M T, Ferrillo A, Vittadini E. Oxidative stability of high-oleic sunflower oil in a porous starch carrier. Food Chem, 2015, 166: 346-351.
doi: S0308-8146(14)00915-7 pmid: 25053066
[20] 于坤, 禹晓, 程晨, 陈鹏, 郑畅. 制油工艺对亚麻籽油品质及脂质伴随物含量的影响. 食品科学, 2020, 41(16): 233-243.
Yu K, Yu X, Cheng C, Chen P, Zheng C. Effects of processing techniques on the quality properties and lipid concomitants of flaxseed oil. Food Sci, 2020, 41(16): 233-243. (in Chinese with English abstract)
[21] Li X, Yang R, Lyu C, Chen L, Zhang L, Ding X, Zhang W, Zhang Q, Hu C, Li P. Effect of chlorophyll on lipid oxidation of rapeseed oil. Eur J Lipid Sci Technol, 2019, 121: 1800078.
[22] Franke S, Fröhlich K, Werner S, Böhm V, Schöne F. Analysis of carotenoids and vitamin E in selected oilseeds, press cakes and oils. Eur J Lipid Sci Technol, 2010, 112: 1122-1129.
[23] Damirchi S A, Savage G P, Dutta P C. Sterol fractions in hazelnut and virgin olive oils and 4,4’-dimethylsterols as possible markers for detection of adulteration of virgin olive oil. J Am Oil Chem Soc, 2005, 82: 717-725.
[24] 覃国新, 劳水兵, 莫仁甫, 何洁, 周其峰, 杨玉霞, 罗丽红. HPLC法快速测定植物油中视黄醇和生育酚. 食品科技, 2018, 43(6): 297-301.
Qin G X, Lao S B, Mo R F, He J, Zhou Q F, Yang Y X, Luo L H. Rapid determination of retinol and tocopherol in vegetable oils by high performance liquid chromatography. Food Technol, 2018, 43(6): 297-301. (in Chinese with English abstract)
[25] Samaram S, Mirhosseini H, Tan C P, Ghazali H M, Bordbar S, Serjouie A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem, 2015, 172: 7-17.
doi: 10.1016/j.foodchem.2014.08.068 pmid: 25442517
[26] Szydłowska-Czerniak A, Dianoczki C, Recseg K, Karlovits G, Szłyk E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta, 2008, 76: 899-905.
doi: 10.1016/j.talanta.2008.04.055 pmid: 18656676
[27] 纪龙, 申红芳, 徐春春, 陈中督, 方福平. 基于非线性主成分分析的绿色超级稻品种综合评价. 作物学报, 2019, 45: 982-992.
doi: 10.3724/SP.J.1006.2019.82057
Ji L, Shen H F, Xu C C, Chen Z D, Fang F P. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis. Acta Agron Sin, 2019, 45: 982-992. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.82057
[28] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价. 作物学报, 2023, 49: 1132-1139.
Sun X J, Jiang Q Y, Hu Z, Li H B, Pang B S, Zhang F T, Zhang S Q, Zhang H. ldentification and evaluation of wheat germplasm resources at seedling stage. Acta Agron Sin, 2023, 49: 1132-1139. (in Chinese with English abstract)
[29] Angadi S, Cutforth H, McConkey B, Gan Y. Early seeding improves the sustainability of canola and mustard production on the Canadian semiarid prairie. Can J Plant Sci, 2004, 84: 705-711.
[30] 秦大河, 丁一汇, 王绍武, 王苏民, 董光荣, 林而达, 刘春蓁, 佘之祥, 孙惠南, 王守荣, 伍光和. 中国西部环境演变及其影响研究. 地学前缘, 2002, 9: 321-328.
Qin D H, Ding Y H, Wang S W, Wang S M, Dong G R, Lin E D, Liu C Z, She Z X, Sun H N, Wang S R, Wu G H. A study of environment change and its impacts in western China. Earth Sci Front, 2002, 9: 321-328. (in Chinese with English abstract)
[31] 张子龙, 李加纳, 唐章林, 谌利, 王瑞. 环境条件对油菜品质的调控研究. 中国农学通报, 2006, 22(2): 124-129.
Zhang Z L, Li J N, Tang Z L, Chen L, Wang R. The research progress of the effect of environmental factors on quality characters of rapeseed. Chin Agric Sci Bull, 2006, 22(2): 124-129. (in Chinese with English abstract)
[32] 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析. 中国油料作物学报, 2012, 34: 114-122.
Zhang S J, Wang H Z. Policies and strategies analyses of rapeseed production response to climate change in China. Chin J Oil Crop Sci, 2012, 34: 114-122. (in Chinese with English abstract)
[33] Omidi H, Tahmasebi Z, Badi H A N, Torabi H, Miransari M. Fatty acid composition of canola (Brassica napus L.), as affected by agronomical, genotypic and environmental parameters. Compt Rendus Biol, 2010, 333: 248-254.
[34] Assefa Y, Prasad P V V, Foster C, Wright Y, Young S, Bradley P, Stamm M, Ciampitti I A. Major management factors determining spring and winter canola yield in north America. Crop Sci, 2018, 58: 1-16.
[35] 杜德志, 肖麓, 赵志, 柳海东, 姚艳梅, 星晓蓉, 徐亮, 李开祥, 王瑞生, 李钧, 付忠, 赵志刚, 唐国永. 我国春油菜遗传育种研究进展. 中国油料作物学报, 2018, 40: 633-639.
doi: 10.7505/j.issn.1007-9084.2018.05.004
Du D Z, Xiao L, Zhao Z, Liu H D, Yao Y M, Xing X R, Xu L, Li K X, Wang R S, Li J, Fu Z, Zhao Z G, Tang G Y. Advances in genetic breeding of spring rapeseed in China. Chin J Oil Crop Sci, 2018, 40: 633-639. (in Chinese with English abstract)
[36] Kachel-Jakubowska M, Sujak A, Krajewska M. Effect of fertilizer and storage period on oxidative stability and color of rapeseed oils. Pol J Environ Stud, 2018, 27: 699-708.
[37] Ward K, Scarth R, McVetty P, Daun J. Effects of genotype and environment on seed chlorophyll degradation during ripening in four cultivars of oilseed rape (Brassica napus). Can J Plant Sci, 1992, 72: 643-649.
[38] Leach J E, Stevenson H J, Rainbow A J, Mullen L A. Effects of high plant populations on the growth and yield of winter oilseed rape (Brassica napus). J Agric Sci, 1999, 132: 173-180.
[39] Zhang S, Liao X, Zhang C, Xu H. Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Ind Crop Prod, 2012, 40: 27-32.
[40] 唐湘如, 官春云. 油菜栽培密度与几种酶活性及产量和品质的关系. 湖南农业大学学报, 2001, 27(4): 264-267.
Tang X R, Guan C Y. Effects of culture density on activities of several enzymes in rapeseed and its relationships with yield and quality. J Hunan Agric Univ, 2001, 27(4): 264-267. (in Chinese with English abstract)
[41] Zaman F M, Dadashi M, Shirani R A, Khorgami A. Analysis of the effect of plant density and use of selenium on oil quality and quantity in winter-planted canola varieties. Appl Ecol Environ Res, 2018, 16: 6903-6916.
[42] Morrison M, McVetty P, Scarth R. Effect of row spacing and seeding rates on summer rape in southern Manitoba. Can J Plant Sci, 1990, 70: 127-137.
[43] 赵继献, 程国平, 任廷波, 高志宏. 不同氮水平对优质甘蓝型黄籽杂交油菜产量和品质性状的影响. 植物营养与肥料学报, 2007, 13: 882-889.
Zhao J X, Cheng G P, Ren T B, Gao Z H. Effect of different nitrogen rates on yield and quality parameters of high grade yellow seed hybrid rape. Plant Nutr Fert Sci, 2007, 13: 882-889. (in Chinese with English abstract)
[44] 邱江, 黄秀芳, 戚存扣, 孙敬东, 陈新军, 韩桂琴. 移栽密度和施氮量对宁油14号油菜产量及品质的影响. 江苏农业科学, 2006, 34(4): 22-24.
Qiu J, Huang X F, Qi C K, Sun J D, Chen X J, Han G Q. Effects of transplanting density and nitrogen application on the yield and quality of Ningyou No.14 oilseed rape. Jiangsu Agric Sci, 2006, 34(4): 22-24. (in Chinese with English abstract)
[45] Wang C, Li Z J, Wu W. Understanding fatty acid composition and lipid profile of rapeseed oil in response to nitrogen management strategies. Food Res Int, 2023, 165: 112565.
[1] 闫子恒, 王先领, 邵东李, 郜耿东, 宁宁, 贾才华, 蒯婕, 汪波, 徐正华, 王晶, 赵杰, 周广生. 油菜籽粒叶绿素降解速率对菜籽油关键品质的影响[J]. 作物学报, 2024, 50(7): 1818-1828.
[2] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[3] 谢雄泽, 谢捷, 褚乾梅, 尹羽丰, 余小红, 王盾, 冯鹏. 长江流域冬油菜需水量及水分盈亏特征分析[J]. 作物学报, 2024, 50(7): 1829-1840.
[4] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[5] 徐泽, 吴莘玲, 刘震宇, 李涵佳, 冷鑫华, 吴天凡, 陈媛, 张祥, 陈德华. 密度与氮素对夏播棉氮素吸收利用的影响[J]. 作物学报, 2024, 50(6): 1584-1596.
[6] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[7] 郭松, 郭慧婷, 张裕梁, 钱紫慧, 王子君, 路佳明, 汪源, 赵灿, 王维领, 张洪程, 杨凤萍, 霍中洋. 侧深施控释氮肥运筹方式对水稻产量、NH3挥发和温室气体排放的影响[J]. 作物学报, 2024, 50(6): 1525-1539.
[8] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[9] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[10] 杨春菊, 唐道彬, 张凯, 杜康, 黄红, 乔欢欢, 王季春, 吕长文. 氮钾减量配施对甘薯产量和品质的影响[J]. 作物学报, 2024, 50(5): 1341-1350.
[11] 王先领, 姜岳, 雷贻忠, 肖胜男, 厍惠洁, 段圣省, 黄铭, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 外源物质浸种对迟播油菜越冬期抗寒性及产量的影响[J]. 作物学报, 2024, 50(5): 1271-1286.
[12] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[13] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[14] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[15] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .